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Abstract
Accurate cardiovascular (CV) risk assessment is relevant for asymptomatic individuals, in particular for those
at risk for cardiovascular diseases (CVD). Metabolic-associated fatty liver disease (MASLD), previously known
as non-alcoholic fatty liver disease (NAFLD), is recognized as a critical independent risk factor for increased
CV morbidity and mortality. With a prevalence of 25% in the general population, MASLD is the leading cause
of chronic liver diseases and is strongly associated with the development of coronary artery disease (CAD).
Coronary CT is widely used to detect CAD, and it can also assess liver steatosis, providing valuable prognostic
information for at-risk patients.

In this paper, we present a study on methods for performing prognostic stratification of CAD risk in asymp-
tomatic MASLD patients using machine learning (ML) approaches. In particular, we conducted a retrospective
analysis of clinical data from 60 patients who underwent Coronary CT at L’Aquila Hospital (Italy) between 2017
and 2021. Dataset includes significant features, such as radiodensity (Hounsfield Unit), calcium score (Agatston
score), and liver fibrosis (Fib-4 score and APRI).

We compared several ML algorithms (Logistic Regression, Support Vector Classifier (SVC), Random Forest,
Extreme Gradient Boosting, K-Nearest Neighbors (KNN), Naive Bayes), with the main goal of performing binary
classification tasks and creating a model able to differentiate between healthy patients and those affected by both
MASLD and CVD. SVCs emerged as the best-performing models, achieving an AUC of 94%, an accuracy of 95%,
and a recall of 94%. Our approach offers a robust and accurate tool for predicting CAD risk in MASLD patients,
providing a valuable contribution to clinical practice for early CV risk stratification and management.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) recently emerged as one of the most widespread liver condi-
tions globally, affecting nearly a quarter of the world’s population; its incidence is expected to grow
progressively in the future. NAFLD is characterized by fat accumulation in the liver and encompasses
a wide range of liver conditions, from simple fat deposition (steatosis) to more severe forms such as
hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma [1, 2]. Due to the strong association with
obesity and metabolic syndrome, NAFLD was recently redefined as metabolic-associated fatty liver
disease (MASLD), to better reflect its metabolic origin [3].
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Currently, cardiovascular disease (CVD) is reported as the primary cause of death and illness in
MASLD patients. It is estimated that nearly half of the adult population in the United States has some
degree of liver fat, adding significantly to the national healthcare and economic burden [4, 5, 6]. Because
of the overlap in risk factors such as obesity, insulin resistance, high blood pressure, and abnormal
cholesterol levels, MASLD has been proposed as an independent risk factor for CVD [7, 8]. Hence,
conducting a precise cardiovascular risk assessment in asymptomatic MASLD patients is crucial for
preventing and properly managing related complications.

Coronary CT, an imaging technique that does not require contrast agents, is an effective mean for
detecting CVD through the measurement of coronary artery calcification (CAC), which is in turn a
reliable indicator of future cardiac events in both symptomatic and asymptomatic individuals [9]. Recent
researches have demonstrated that non-contrast CT can also detect liver fat, thereby extending its
clinical utility [10, 11]; this enables the possible to evaluate both CAC and hepatic steatosis during a
single Coronary CT scan, offering a more comprehensive assessment of cardiovascular risk [12].

To evaluate liver fibrosis, we used two non-invasive markers: the AST-to-platelet ratio index (APRI)
and the Fibrosis-4 (FIB-4) score, which are calculated using clinical parameters like AST, ALT, platelet
count, and age. These methods provide a safer and reliable alternative to liver biopsy for determining
fibrosis severity [13, 14].

In this study, we explored the use of machine learning (ML) techniques to analyze clinical data
and create predictive models aimed at evaluating cardiovascular risk in individuals with MASLD. Our
main goal is to improve the accuracy of risk stratification, thereby offering a valuable tool for early
intervention and enhancing clinical outcomes in this at-risk population. The main contributions of this
work are summarized next.

• We construct a new dataset that includes demographic information (such as gender, age, and
comorbidities), blood test results (including ALT, AST, BUN, creatinine, hemoglobin, platelets,
and white blood cells), as well as derived metrics like FIB-4 and APRI. Additionally, radiological
data such as liver density, liver-to-spleen ratio, and Coronary Artery Calcium (CAC) score are
incorporated.

• We conduct a comprehensive comparison of various ML algorithms, including Logistic Regression,
Support Vector Classifier (SVC), Random Forest, Extreme Gradient Boosting (XGBoost), K-Nearest
Neighbors (KNN), and Naive Bayes. These algorithms were employed in a binary classification
task to differentiate between healthy individuals and those suffering from both MASLD and CVD.

• We perform several experiments to identify the most suitable algorithms; also, we optimized the
models through hyperparameter tuning to fulfil the best possible performance. Specifically, the
effectiveness of these models was assessed using several metrics, including accuracy, precision,
recall, and the area under the curve (AUC).

• We employed SHapleyAdditive exPlanations (SHAP) to interpret the results of the best-performing
model, providing insights into feature importance, enhancing the explainability and the under-
standing classification model.

The remainder of the paper is structured as follows. In Section 2 we provide a detailed description of
our approach; then, we illustrate a careful and thorough experimental activity aimed at assessing it in
Section 3. Results are analyzed and discussed in Section 4, and our conclusions are eventually drawn in
Section 5.

2. Proposed approach

With this study, we aimed to develop and identify an optimal binary classifier of CAD in asymptomatic
MASLD patients. We conducted a comparative analysis to evaluate the performance of widely used
supervised ML classification algorithms [15]: Logistic Regression, SVC, Random Forest, XGBoost, KNN,
and Naive Bayes. We briefly describe the algorithms next, and report the workflow of the herein
reported approach in Figure 1.



Figure 1: Example of workflow of our approach.

1. Logistic Regression [16] models the relationship between a dependent variable and one or more
independent variables using a logistic function, providing the probability of a binary outcome.

2. SVC [17] is a supervised learning algorithm that constructs hyperplanes in a high-dimensional
space to separate different classes of data points. It is effective for high-dimensional datasets and
can be extended to non-linear classification through the use of kernel functions. SVC is known
for its robustness to overfitting, especially in cases where the number of dimensions exceeds the
number of samples.

3. Random Forest [18] is an ensemble method that constructs multiple decision trees during training
and outputs the mode of the classes for classification tasks. It improves accuracy and robustness
by reducing overfitting and provides insights into feature importance.

4. XGBoost [19] is a powerful gradient boosting algorithm that builds an ensemble of trees sequen-
tially, where each new tree corrects errors made by the previous ones. It offers high predictive
accuracy, efficient handling of large datasets, and robustness against overfitting and missing data.

5. KNN [20] is a non-parametric classification algorithm that assigns a class to a data point based
on the classes of its nearest neighbours in the feature space. The number of neighbours 𝑘 is a
hyperparameter that can be tuned. KNN is simple to implement and works well for small datasets
but can be computationally intensive for large datasets.

6. Naive Bayes [21] is a family of probabilistic algorithms based on applying Bayes’ theorem with
strong (naive) independence assumptions between the features. Despite its simplicity, Naive Bayes
can be very effective for text classification and other tasks, particularly when the dimensionality
of the input is high.

3. Experimental Analysis

In the following section, we will detail the dataset acquisition and partitioning process, the model
training procedures, and the hyperparameter tuning strategies that were critical to optimizing ML
models.



Figure 2: Patients acquisition and exclusion criteria.

3.1. Dataset Acquisition and Description

As for data, 1205 patients were selected who underwent Coronary CT between 2017 and 2021 at San
Salvatore Hospital in L’Aquila (Italy); patients were excluded based on incomplete liver or spleen scans,
severe artifacts, alcohol abuse or insufficient medical history and blood tests. Figure 2 summarizes the
data collection and exclusion criteria. All patient information was anonymized prior to measurement.
A retrospective analysis was conducted on clinical, laboratory, and imaging data from 402 subjects (217
males, 185 females). The CT images were acquired using a prospective cardiosynchronized technique
and pre-contrast scans were evaluated for Coronary Artery Calcium (CAC) score (Agatston score) [22]
and liver density (measured in Hounsfield units, HU). The images were acquired using a Toshiba
Aquilion scanner with the following settings: 320-slice CT (100 kV, 46 mAs, 0.35s, 0.5mm slice thickness,
and 280mm scan range). Regarding the presence of CAC, patients were classified into four risk categories
based on the Agatston score: 0–10, 11–100, 101–400, and over 400 [23]. Two senior radiology residents,
with over 5 years of experience each, selected the appropriate Coronary CT exams containing complete
liver and spleen parenchyma on non-contrast CT sequences first; then, they independently identified the
liver images for ROI placement, blinded to the patient’s clinical history. To assess reproducibility, each
resident repeated the ROI measurements on their colleague’s selected images, and the mean attenuation
values were compared with the initial measurements. The Fib-4 and APRI scores were calculated as
a non-invasive marker of hepatic fibrosis from common parameter like blood tests. Specifically, we
evaluated several Fib-4 cut-off thresholds commonly used in clinical practice. The first cut-off is the
most widely adopted, indicating absence of fibrosis for values below 1.3 and presence of fibrosis for
values above 2.67 (Fib-4 I). The second threshold categorizes fibrosis for values below 2 and above
2.67(Fib-4 II), while the third uses <1.45 to indicate no fibrosis and >3.25 (Fib-4 III) to indicate significant
fibrosis [24, 25].

On unenhanced CT, normal liver attenuation is approximately 64 HU, about 10 HU higher than the
spleen and the fat’s attenuation leads to a proportional decrease in liver density. To measure liver and
spleen density in nonenhanced Coronary CT sequences, the correct axial slice must be identified. Given
that hepatic lipid concentration is uniformly distributed, precise placement of Regions of Interest (ROIs)
is crucial, avoiding large vessels and confounding factors like artifacts. Each ROI was standardized to an
area of 2.00 ± 0.15 cm2. Three ROIs were placed in the liver following a modified Couinaud’s method:
one in the left lobe (segment II or III) and two in the right lobe (segments VII/VIII and V/VI), positioned
at least 5–10 mm from the liver periphery. The final liver density was calculated as the arithmetic mean
of these three ROIs. Additionally, two ROIs were placed in the anterior and posterior regions of the
spleen, and the average value was used for analysis [26]. Liver steatosis was determined using liver
attenuation or the liver-to-spleen (L/S) ratio. In unenhanced CT, moderate steatosis corresponds to



Table 1
Dataset distribution between training and testing according to male, female, and class of interest (Healthy/Un-
healthy).

Type of Dataset N. Patients Male Female Healthy Unhealthy
Train 42 23 19 21 21
Test 18 7 11 9 9

Table 2
Tuning Parameters, Selected Values, and Best Values for Machine Learning Algorithms.
Algorithm Tuning Parameter Selected Values Best Value

Logistic Regression
Regularization (C) 0.001, 0.01, 0.1, 1, 10, 100 1
Max Iterations (max_iter) 100, 500, 1000 1000
Penalty l1, l2 l2

SVC Kernel Linear, Polynomial, Radial Basis (RBF) Radial Basis (RBF)
Regularization (C) 0.001, 0.01, 0.1, 1, 10, 100 1

Random Forest
Number of Trees (n_estimators) 10, 50, 100, 200 100
Maximum Depth (max_depth) None, 10, 20, 30 20
Minimum Samples per Split (min_samples_split) 2, 5, 10 2

XGBoost
Learning Rate (eta) 0.01, 0.1, 0.3 0.1
Number of Trees (n_estimators) 50, 100, 200, 500 100
Maximum Depth (max_depth) 3, 6, 9 3

KNN Number of Neighbours (n_neighbours) 3, 5, 7, 9 5

Naive Bayes Distribution Type Gaussian, Multinomial Gaussian
Smoothing Parameter (alpha) 1𝑒−09,1𝑒−02 0.1, 0.5, 1 1𝑒−09

approximately 40 HU, while a steatotic liver was defined as having a hepatic-to-spleen attenuation
ratio of less than 1.0 on unenhanced CT. The sensitivity and specificity of CT for detecting mild liver
steatosis are 57% and 88% respectively; while for higher-grade steatosis CT sensitivity increases to 72%
and specificity to 95% [27, 28, 29].

We classified the cohort into five groups:

• moderate to high CAC (>101 Agatston) and moderate to severe HS (<40 HU),
• minimal CAC (<10 Agatston) and absent HS (>60 HU),
• moderate to high CAC (>101 Agatston) and absent HS (>60 HU),
• minimal CAC (<10 Agatston) and moderate-severe HS (<40 HU),
• with minor CAC (10–100 Agatston) and minor HS (40–60 HU).

In our experiments, we selected patients belonging to two classes: healthy and patients that suffer
from both CAC and HS. Then, we selected 60 patients and we split into training and testing set, as
described in Table 1.

3.2. Experimental setting

For training our models, we split the dataset into training (70%) and testing (30%) sets. For the training
phase, we performed Grid Search to find the optimal hyperparameters for each model. Details are
provided below; The key hyperparameters tuned for each model are detailed in Table 2.

• Logistic Regression. The regularization strength (denoted by parameter C) was set to 1, striking a
balance between preventing overfitting and maintaining model accuracy. The maximum number
of iterations (𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) has been increased and set to 1000 in order to ensure proper convergence,
especially in more complex cases. Additionally, the l2 penalty was selected, given that it is
commonly preferred for regularization for avoiding large coefficient magnitudes.

• SVC. We chose the Radial Basis Function (RBF) kernel, due to its ability to handle non-linear
data. The regularization parameter C was set to 1, providing a good trade-off between margin
maximization and misclassification tolerance. This combination allowed the SVC to generalize
effectively, while managing complexity.



Figure 3: ROC curve results for each ML algorithm.

• Random Forest. The number of trees (𝑛_𝑒𝑠𝑡 𝑖𝑚𝑎𝑡𝑜𝑟𝑠) has been set to 100, as this configuration showed
to improve accuracy without introducing excessive computational overhead. A maximum depth
of 20 was selected for the trees, so to prevent overfitting while maintaining model performance.

• XGBoost. The learning rate has been set to 0.1, thus allowing the model to make gradual updates
during training and avoid overshooting the optimal solution. The maximum depth of the trees
has been set to 3, providing a good balance between model complexity and generalization.

• KNN. We found that setting the number of neighbours (𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠) to 5 yielded the most reliable
results.

• Naive Bayes. The Gaussian distribution has been selected because of its suitability for continuous
data. The smoothing parameter (alpha) was set to 1𝑒−09, which helped to improve model stability.

These parameter configurations were carefully selected based on performance metrics such as
accuracy, precision, recall, and AUC, ensuring that each algorithm was optimized for the task at hand.

4. Results and Discussion

A detailed analysis of the dataset revealed a significant positive correlation between liver attenuation
and the Agatston score (P<0.01) and a significant association between Fib-4 and Agatston (P<0.01).

To assess the viability of our approach, we tested the ML algorithm for binary classification using
clinical data from 60 patients.

Results are shown in Table 3. Furthermore, we compute the Receiver Operating Characteristic (ROC)
curve, a key tool for evaluating the performance of classification models. It illustrates the trade-off
between sensitivity and specificity across various thresholds, with the area under the curve (AUC)
serving as a measure of the model’s ability to differentiate between classes. A higher AUC indicates



Figure 4: Feature importance of each feature in the SVC model.

Table 3
Performance Metrics for Different Machine Learning Algorithms.

Algorithm Accuracy Precision Recall Specificity Sensitivity AUC
Logistic Regression 0.89 0.89 0.89 0.89 0.89 0.89
SVC 0.94 0.95 0.94 0.89 0.99 0.94
Random Forest 0.89 0.89 0.89 0.89 0.89 0.89
XGBoost 0.72 0.73 0.72 0.67 0.78 0.72
KNN 0.89 0.89 0.89 0.89 0.89 0.89
Naive Bayes 0.78 0.85 0.78 0.99 0.56 0.78
Mean Values 0.85 0.86 0.85 0.87 0.83 0.85

better model performance. Figure 3 presents the ROC curve results obtained from the ML algorithms. A
proper ROC curve analysis reveals that SVC and Random Forest appear to be the most effective models
for identifying cardiovascular risk in MASLD patients, as indicated by their high AUC values and good
positioning of their ROC curves.

In particular, SVC stands out among evaluated models showing the highest performance, achieving
strong accuracy, precision, and an impressive sensitivity of 99%; hence, it appears to be an ideal
tool for medical applications where identifying every positive case is crucial. This model’s ability to
balance precision and recall highlights its robustness, particularly in complex decision boundaries.
In comparison, Random Forest and KNN also performed well, offering balanced metrics across all
categories; however, their performance was slightly behind SVC, especially in sensitivity, where SVC
outperformed them. Interestingly, Logistic Regression, despite being a simpler model, demonstrated
valuable results, closely matching Random Forest and KNN.

It is worth noting that XGBoost, which usually excels in different domains, underperformed on our
problem achieving the lowest accuracy, precision, and recall scores. This could be due to the relatively
small nature of the dataset, which might have precluded XGBoost from leveraging its strengths in large
or high-dimensional data. Naive Bayes, on the other hand, had high precision and specificity, but its
poor sensitivity (56%) suggests it failed to capture many true positives, making it a risky choice for
healthcare tasks where missing positive cases could have severe consequences.

Overall, we can conclude that SVC is the best choice in the pool, given its superior metrics, particularly



in critical areas like sensitivity. Random Forest and KNN results as reliable alternatives, while Naive
Bayes and XGBoost may not be suitable for this specific kind of datasets.

4.1. Explainability

The interpretability of ML models has become increasingly important, especially in healthcare appli-
cations where decisions can significantly impact patient outcomes [30]. In this context, in order to
provide some insights into the contribution of each feature to model’s predictions, we make use of
SHAP. This method helps bridge the gap between complex model behavior and human understanding,
making it easier for clinicians to trust and utilize these tools in practice.

In our study, we focus on the results of SVC, which in our experiments emerged as the top-performing
algorithm. By applying SHAP, we gained a detailed understanding of how various clinical features
influence the SVC’s predictions for both classes. The summary plot in Figure 4 shows the feature
importance of each feature in the SVC model.

The SHAP results for class 1 (unhealthy) revealed that the most influential features contributing to
the classification included Dyslipidemia, with an importance score of 0.086749, indicating that lipid
abnormalities are a significant risk factor for this group. Variables Age at 0.061625 and Diabetes Mellitus
(DM) with 0.056511 immediately follow, underscoring the role of these demographic and metabolic
factors in cardiovascular risk assessment. Similar results are obtained for class 0. It is worth noting that
features such as Dyslipidemia and Diabetes Mellitus (DM) showed similar SHAP values for both healthy
and MASLD patients with CVD; this clearly indicates that these factors are significant risk indicators
across both populations, reinforcing their importance in clinical assessments and decision-making;
notably, this aligns with the current background medical knowledge, as confirmed by physicians.

5. Conclusion

This study demonstrated the potential of machine learning (ML) techniques in analyzing clinical data
and creating predictive models for evaluating cardiovascular risk in individuals with MASLD. Among
the evaluated models, SVC emerged as the most effective, achieving high accuracy and sensitivity,
making it particularly valuable for early diagnosis in asymptomatic patients.

The application of this model in clinical settings could significantly enhance risk stratification,
enabling the timely identification and management of high-risk patients. Building on this foundation,
we plan to conduct additional experiments in future work, such as implementing k-fold cross-validation
and investigating alternative performance metrics, like the Matthews Correlation Coefficient (MCC),
which may provide further insights into our classification tasks.

We also intend to expand our dataset to include more samples and incorporate multimodal data, such
as geometric features extracted from CT images, to enhance the predictive power of the models.
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