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Abstract
South Africa faces a critical shortage of blood donors, leading to substantial deficits in the national blood supply.
Blood donations are vital for the treatment of life-threatening conditions, making it crucial to develop efficient
models for the management of blood stocks. This paper presents a mathematical model to optimize blood donation
and ensure sufficient supply to meet fluctuating demands. The model captures the complex interactions within
the blood banking system, focusing on minimizing costs, reducing waste, and efficiently distributing blood units.
Specifically, it addresses daily supply challenges by minimizing the need for emergency imports and reducing
blood wastage due to expiration while meeting all demand requirements. The core objective is to minimize blood
wastage and reduce the reliance on imported blood banks during emergencies. The proposed objective function
incorporates variables such as emergency importation and expiration rates, and robust optimization techniques
are applied to identify optimal solutions while satisfying operational constraints. Symbiotic Organism Search
(SOS), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) methods are utilized for optimization.
Among these, SOS demonstrated superior performance, achieving the lowest levels of importation and wastage.
However, the algorithms were unable to significantly reduce supply levels due to the accumulation of excess
stock from the previous day, which carried over into the next day. This paper provides valuable information on
blood supply management and highlights the potential for optimization techniques to improve efficiency and
sustainability in blood banking.
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1. Introduction

Blood is an essential fluid that delivers oxygen and nutrients to cells while removing carbon dioxide
and waste products. The primary constituents of blood consist of red blood cells, responsible for
oxygen and carbon dioxide transport; white blood cells, crucial for combating pathogens and aiding
in immune response; platelets, which facilitate clot formation to prevent blood loss from injuries; and
plasma, the fluid component transporting blood cells and platelets throughout the body [1]. Plasma
also contains proteins, ions, nutrients, and wastes. Blood donation involves a voluntary process in
which blood is extracted from donors and then transported to blood banks for storage until it is required
for transfusion to patients in hospitals who require blood. Examples of situations where blood might
be needed range from traumatic accidents, surgical procedures, childbirth, chronic disease, severe
infections, blood-related conditions, and excessive blood loss, among others [2]. Therefore, ensuring an
adequate blood supply is crucial for effective blood donation.

A blood bank is a center where blood collected from blood donation is stored and preserved for later
use in blood transfusion. Key participants and entities within the blood supply chain process include
blood donors, blood banks, hospitals, and patients. Figure 1 outlines the general interactions between
each participant. In addition, it highlights the flow of blood from donation to utilization, emphasizing
the crucial roles played by each entity.
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The operations in a blood bank include the collection of blood from donors, processing the blood,
testing its health and specific properties, separating blood units based on blood type and other factors,
and finally, storing these operations. As illustrated in Figure 1, the process of blood collection and
distribution begins with the testing and screening phase, where blood collected by the South African
National Blood Service (SANBS) undergoes rigorous testing to ensure its safety and suitability for
transfusion. This includes screening for diseases such as HIV and other potential contaminants.
Following successful screening, the blood collected is transferred to designated blood banks for further
processing. Here, blood is subjected to processing techniques to preserve its quality and extend its
shelf life. Once processed, blood is classified according to its blood type and subjected to additional
screenings to confirm its safety for transfusion. Blood is quickly discarded to avoid potential harm if
abnormalities or contaminants are detected during this stage. However, if the blood passes all necessary
screenings and is deemed safe, it is sent to various hospitals and medical facilities according to their
demands and needs. This ensures that hospitals have a steady blood supply to meet the demands of
patients who require transfusions. The model derived later will focus only on the phases after donor
acceptance and blood collection. It will not consider the initial step of donor evaluation or the risk of
donor rejection, as these factors can vary over time and significantly impact the inflow of blood units
to a hospital.
Alternatively, hospitals can transfer or export surplus blood to other facilities facing emergencies

or experiencing lower demand. This collaborative approach helps optimize the distribution of blood
resources, ensuring that they are used efficiently where they are most needed. Any surplus blood that
remains after transfusion or exportation is stored in designated storage facilities. These blood reserves
serve as a crucial backup to ensure that an adequate blood supply is always available, particularly
during increased demand or emergencies. However, it is essential to note that despite these measures,
blood units have a finite shelf life. If blood expires before it can be utilized, it is discarded to maintain
the integrity and safety of the blood supply. Hospitals can import additional blood units from other
facilities when they face a sudden surge in blood demand. This emergency measure helps to address
immediate needs and ensures that patients receive timely and life-saving transfusions. These blood
products use first-in-first-out (FIFO) and last-in-first-out (LIFO) methods to reach hospitals [2].

The demand for blood has increased worldwide, while there are low levels of blood donations. This
means that the demand for blood exceeds the blood supply in hospitals. This poses a threat to patients
in need of blood. Blood is being wasted through expiration when a specific type of blood is not in
demand. There is insufficient blood stored for emergency events such as car accidents.

2. Related Work

This section presents a brief overview of preliminary studies and related works to further emphasise
the current study’s relevance.

According to Charpin et al. [1], blood is continuously required daily in hospitals for blood transfusion,
emergencies, and treating diseases. Addressing shortages, handling limited shelf life, and navigating
blood type mismatches present challenges in managing ongoing transfusion demands, as Govender and
Ezugwu [3] highlighted in their research. An adequate blood supply is critical to ensure that lifesaving
measures can be implemented when needed.

Blood compatibility is one of the most important factors in blood transfusions. Additionally, natural
blood grouping restricts transfusion options due to blood compatibility. Karl Landsteiner’s 1901 dis-
covery identified the human blood system, the ABO system, comprising four primary groups. In 1940,
Reid et al. [4] discovered that in total, there exist eight blood group classifications for white blood cells,
including 𝐴+, 𝐴−, 𝐵+, 𝐵−, 𝐴𝐵+, 𝐴𝐵−, 𝑂+ and 𝑂−. Table 1 illustrates the compatibility pairs among the
eight blood groups, with blood type 𝐴𝐵 represented as 𝐶. The first row of the table represents the blood
donor’s blood type, and the first column represents the recipient’s blood type. ”+” entries in the table
indicate compatibility, signifying that the donor’s blood type matches that of the recipient, allowing for
a successful blood transfusion. The ”-” entries in the table indicate an incompatibility between the donor



Figure 1: Flowchart of Blood Donation Process

and recipient. This concept forms the basis of the model formulation in this study. As is evident, 𝑂−

serves as the universal donor, while 𝐴𝐵+ acts as the universal recipient. During emergencies, patients
are given blood type 𝑂− since it can be administered to anyone, as noted by Charpin et al. [1].

Table 1
Blood Compatibility Chart

Recipient/Contributor 𝐴+ 𝐴− 𝐶+ 𝐶− 𝐵+ 𝐵− 𝑂+ 𝑂−

𝐴+ + + − − − − + +
𝐴− − + − − − − − +
𝐶+ + + + + + + + +
𝐶− − − − + − + − +
𝐵+ − − − − + + + +
𝐵− − − − − − + − +
𝑂+ − − − − − − + +
𝑂− − − − − − − − +

The shelf life of blood depends on the type of blood product and the temperature conditions. Whole
blood lasts 30 days, red blood cells 24 days, plasma 12 months, and platelets 5 days. This study focuses
on whole blood cells; thus, we will use 30 days for the expiration period in accordance with the study
conducted in [3]. The assignment aims to allocate blood products to hospitals while minimizing the
need for imports and mitigating the risk of expiration, as outlined by Charpin et al. [1] and Ezugwu et
al. [5] in their investigation into optimal distribution strategies.
A model that describes the inflow and outflow processes of blood units is necessary to enhance the

blood supply chain. In 1976, a planning model was developed by Cumming et al. [6] for donation
collection and a basic model for distributing blood units to hospitals. Subsequently, a model was
devised by Charpin et al. [1] that simplifies the blood assignment problem, focusing solely on red
blood cells and excluding the Rhesus factor (with potential future inclusion). Govender and Ezugwu
[3] later formulated an optimization objective function to efficiently allocate blood units to hospital
patients while minimizing wastage due to expiry and reducing importation from external sources. Blood
allocation for daily demand and the available supply follows the FIFO process, prioritizing the oldest
blood units first and the newest last. The goal was to enhance the efficiency of the blood allocation
procedure using the SANBS and demographic data.



The study by Dufourq et al. [7] addressed blood assignment problems; the study endeavours to
optimize blood allocations to patients while minimizing blood importation without considering the
expiration and emergency factors. The findings suggest that GA facilitated a more efficient distribution
of blood importation, prioritizing fewer imports of more valuable types. According to the research
undertaken by Govender and Ezugwu [3], which tried solving the blood assignment problem by
minimising blood unit wastage importation while efficiently distributing blood units. The authors
investigated six algorithms, including PSO, but the SOS algorithm slightly lowered the importation
levels.

3. Methodology

To enhance the mathematical model introduced in prior research, which omitted considerations such
as blood expiration and emergency demand, this study aims to refine it. Thus, the expanded model
incorporates factors including the rate of blood expiration, the volume of blood expiring per unit
time, the quantity of blood imported from other blood banks for each blood group, and the volume of
blood exported to other blood banks for each blood group. The mathematical model maintains eight
differential equations, each corresponding to a distinct blood type: 𝐴+, 𝐴−, 𝐵+, 𝐵−, 𝐴𝐵+, 𝐴𝐵−, 𝑂+,
and 𝑂−. Each equation denotes the rate of change of the total blood units for the respective blood
type, determined by subtracting the total available blood for transfusion from the total units transfused,
adjusted for expired blood and accounting for both imported and exported blood units for emergency
purposes at other hospitals.
Figure 2 shows the interactions between blood types 𝐴+, 𝐴−, 𝐵+, 𝐵−, 𝐴𝐵+, 𝐴𝐵−, 𝑂+, and 𝑂−, with

𝐴𝐵 simplified as 𝐶. The flowcharts depict how each type evolves through expiration, importation,
exportation, and donations. Each blood type is color-coded, representing the system of differential
equations governing changes in blood units. Inputs are added, and outputs are subtracted from the
equations.
This study addresses the removal of expired units after transfusions or transfers and importation

during emergencies. Importation increases blood availability, while exportation decreases it. The model
represented by Equation 1, 2, 3, 4, 5, 6, 7, and 8 serves as a mathematical representation of the problem,
accounting for the complexities of different blood types.

3.1. Mathematical Model

𝑑𝑉𝑂−

𝑑𝑡
=𝑄𝑂− − (𝐷𝑂−𝑂− + 𝐷𝑂−𝑂+ + 𝐷𝑂−𝐴− + 𝐷𝑂−𝐴+ + 𝐷𝑂−𝐵− + 𝐷𝑂−𝐵+ + 𝐷𝑂−𝐶− + 𝐷𝑂−𝐶+) + 𝐼𝑂−−

𝛼1𝑉𝑂− − 𝐸𝑂− ,
(1)

𝑑𝑉𝑂+

𝑑𝑡
=𝑄𝑂+ − (𝐷𝑂+𝑂+ + 𝐷𝑂+𝐴+ + 𝐷𝑂+𝐵+ + 𝐷𝑂+𝐶+) + 𝐼𝑂+ − 𝛼2𝑉𝑂+ − 𝐸𝑂+ , (2)

𝑑𝑉𝐴−

𝑑𝑡
=𝑄𝐴− − (𝐷𝐴−𝐴− + 𝐷𝐴−𝐴+ + 𝐷𝐴−𝐶− + 𝐷𝐴−𝐶+) + 𝐼𝐴− − 𝛼3𝑉𝐴− − 𝐸𝐴− , (3)

𝑑𝑉𝐴+

𝑑𝑡
=𝑄𝐴+ − (𝐷𝐴+𝐴+ + 𝐷𝐴+𝐶+) + 𝐼𝐴+ − 𝛼4𝑉𝐴+ − 𝐸𝐴+ , (4)

𝑑𝑉𝐵−

𝑑𝑡
=𝑄𝐵− − (𝐷𝐵−𝐵− + 𝐷𝐵−𝐵+ + 𝐷𝐵−𝐶− + 𝐷𝐵−𝐶+) + 𝐼𝐵− − 𝛼5𝑉𝐵− − 𝐸𝐵− , (5)

𝑑𝑉𝐵+

𝑑𝑡
=𝑄𝐵+ − (𝐷𝐵+𝐵+ + 𝐷𝐵+𝐶+) + 𝐼𝐵− − 𝛼6𝑉𝐵+ − 𝐸𝐵+ , (6)

𝑑𝑉𝐶−

𝑑𝑡
=𝑄𝐶− − (𝐷𝐶−𝐶− + 𝐷𝐶−𝐶+) + 𝐼𝐶− − 𝛼7𝑉𝐶− − 𝐸𝐶− , (7)

𝑑𝑉𝐶+

𝑑𝑡
=𝑄𝐶+ − 𝐷𝐶+𝐶+ + 𝐼𝐶+ − 𝛼8𝑉𝐶+ − 𝐸𝐶+ . (8)

For 𝑥 representing an element of 𝐴+, 𝐴−, 𝐵+, 𝐵−, 𝐴𝐵+, 𝐴𝐵−, 𝑂+, and 𝑂−, where 𝐴𝐵 is denoted as 𝐶,
and for 𝑛 as an element of {1, 2, 3, 4, 5, 6, 7, 8}, the explanation of each term in this model is as follows:



Figure 2: Blood type flowchart

𝑉𝑥 denotes the amount of blood available for donation, while 𝑑𝑉𝑥
𝑑𝑡 represents the rate of change of the

blood type 𝑉𝑥 over time. 𝑄𝑥 indicates a source of blood from donations, and the terms 𝐷𝑥𝑦 refer to
various diffusion rates between different blood types. The term 𝐼𝑥 represents an external blood input
from other hospitals, often in emergencies. 𝛼𝑛 stands for the expiration rate of blood units for each
blood type, and 𝛼𝑛𝑉𝑥 accounts for the degradation or removal process due to expiration, proportional
to the concentration of 𝑉𝑥. Finally, 𝐸𝑥 represents the exportation of blood to other hospitals to meet
their emergency demands. The number of blood units of a particular blood type imported (𝐼𝑥) and
exported (𝐸𝑥) on any given day will depend on the number of emergencies in the hospital. The blood
units indicated by 𝐼𝑥 will be imported into the hospital to address emergencies, while those represented
by 𝐸𝑥 will be exported to other hospitals to meet their emergency needs. Additionally, the volume of
blood transfused during emergencies is critical in determining the net inflow and outflow of blood units
within the healthcare system.

3.2. Objective Function

The equation

𝜁 = min (
𝑝
∑
𝑡=1

𝐸(𝑡) +
𝑝
∑
𝑡=1

𝐼 (𝑡)) , (9)



subject to
1 ≤ 𝑡 ≤ 365,

denotes the formulation of the model objective function and aims to minimize the amount of blood
imported and expired for each blood type. It will be tested with the dataset, and its results will be
compared to those reported in previous studies.

3.2.1. Expiration

Equation 10 calculates the remaining amount of blood after it expires 30 days post-issuance, rendering
it unsuitable for hospital use due to health reasons:

𝐸𝑥(𝑡) =
∞
∑
𝑡=31

𝑅𝑥(𝑡), (10)

subject to 𝑡 > 30. Where 𝑅𝑥(𝑡) determines the amount of blood that remains after it has been issued.

𝑅𝑥(𝑡) = 𝑆𝑥(𝑡) − 𝐷𝑥(𝑡), (11)

subject to

𝑆𝑥(𝑡) ≥ 𝐷𝑥(𝑡), 1 ≤ 𝑑 ≤ 365.

If the demand over the period after 30 days is less than the supply before the 30-day expiration, the
expired amount will be the difference between this supply and the demand, as the blood will surpass
the 30-day expiration period. This can be mathematically represented as follows:
When 𝑡 > 30, if

(
𝑝
∑
𝑡=30

𝐷𝑥(𝑡)) < 𝑆𝑥(𝑡 − 30),

then,

𝐸𝑥(𝑡) = 𝑆𝑥(𝑡 − 30) − (
𝑝
∑
𝑡=30

𝐷𝑥(𝑡)) ,

where 1 ≤ 𝑡 ≤ 365.

3.2.2. Importation

Hospitals frequently encounter situations where there is an urgent need for blood due to emergencies.
In such cases, hospitals can initially import blood from other compatible blood types and then resort
to importing blood from other hospitals when needed. Equation 12 calculates the amount of blood
imported for each type.

𝐼 (𝑡) =𝐼𝐴+(𝑡) + 𝐼𝐴−(𝑡) + 𝐼𝐵+(𝑡) + 𝐼𝐵−(𝑡)+
𝐼𝐴𝐵+(𝑡) + 𝐼𝐴𝐵−(𝑡) + 𝐼𝑂+(𝑡) + 𝐼𝑂−(𝑡) (12)

Blood banks and hospitals can import blood from other compatible blood types when there is a
shortage of a particular blood type, which can be represented as:
If

𝐷𝑥(𝑡) > 𝑆𝑥(𝑡), (13)

then

𝐼𝑦(𝑡) = 𝐷𝑥(𝑡) − 𝑆𝑥(𝑡). (14)

Figure 3.2.2 represents the vector representation of an individual in the population. Each segment
represents a distinct value derived from the blood data set, facilitating individual manipulation in
subsequent calculations.
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Figure 3: Grid representation of an individual in a population

3.3. Methods

In this research, Metaheuristic Algorithms such as Symbiotic Organism Search (SOS) [8], Genetic
Algorithm (GA) [9], and Particle Swarm Optimization (PSO) [10] have been selected based on their
proven performance and suitability for the problem at hand. The decision to use SOS and PSO is
supported by the study conducted by Govender and Ezugwu [3], which focused on the Blood Assignment
Problem and concluded that SOS outperformed other metaheuristic implementations, while PSO was
the fastest in producing results. Additionally, the GA algorithm has been chosen based on the findings
by Dufourq et al. [7], where GA not only outperformed other algorithms under investigation but also
provided a more efficient distribution of blood importation with fewer imports from high-value blood
types. These algorithms were selected for their efficiency, speed, and ability to achieve superior results
in similar problem domains.

3.3.1. Symbiotic Organism Search

The SOS and GA algorithms have demonstrated superior performance compared to other algorithms
examined in each study. The algorithm incorporates three phases inspired by real-world biological
interactions: mutualism, commensalism, and parasitism phases.
Mutualism Phase: An organism 𝑋𝑗 is selected to pair with organism 𝑋𝑖. Together, these organisms

engage in mutation to enhance the survival probabilities of organisms within the ecosystem. The
offspring solutions 𝑋new

𝑖 and 𝑋new
𝑗 are computed based on the mutualistic symbiosis between the

parent organisms 𝑋𝑖 and 𝑋𝑗. The calculations are defined as:

𝑋new
𝑖 = 𝑋𝑖 + rand(0, 1) ∗ (𝑋best −Mutualism_Vector ∗ BF1), (15)

𝑋new
𝑗 = 𝑋𝑗 + rand(0, 1) ∗ (𝑋best −Mutualism_Vector ∗ BF2), (16)

Mutualism_Vector =
𝑋𝑖 + 𝑋𝑗

2
. (17)

Commensalism Phase: Randomly selecting two organisms, 𝑋𝑖 and 𝑋𝑗, from the ecosystem, we mod-
ify organism 𝑋𝑖 with the assistance of organism 𝑋𝑗. The resulting child solution, derived from this
modification through commensal symbiosis between organisms 𝑋𝑖 and 𝑋𝑗, is expressed as:

𝑋new
𝑖 = 𝑋𝑖 + rand(−1, 1) ∗ (𝑋best − 𝑋𝑗). (18)

Parasitism Phase: Organism 𝑋𝑖 is randomly selected, and a Parasite Vector is created by duplicating
𝑋𝑖 and modifying some dimensions. Then, another organism 𝑋𝑗 is chosen as the host and is replaced by
the parasite vector, which usually has a better fitness value than 𝑋𝑗. However, if 𝑋𝑗 has a higher fitness,
it becomes immune to the Parasite Vector, preventing it from surviving in the ecosystem.

3.3.2. Genetic Algorithm

This algorithm utilizes recombination and mutation to generate new chromosomes, akin to biological
reproduction. The mutation alters genes within the chromosome. GA aims to evolve the optimal
chromosome for solving a given problem. The algorithm comprises three main components: natural
selection, mutation, and crossover.
Natural Selection: In nature, individuals with superior survival traits survive for longer periods.

Consequently, over time, the population becomes dominated by genes from these superior individuals,



while genes from inferior individuals diminish. Species with high survival rates thrive, whereas those
with low survival rates perish. This is the theory of natural selection.

Crossover: During the crossover operation, two individuals combine genetic material to create diverse
offspring. The parent strings yield children strings based on a chosen crossover point. With a crossover
probability 𝑝𝑐, 100 ⋅ 𝑝𝑐% of the population undergoes crossover, while 100 ⋅ (1 − 𝑝𝑐)% remains unchanged.
Common methods include single-point and double-point crossovers.

Mutation: Mutation introduces random variations into the genetic search process, thereby preventing
the population from becoming stuck in local optima. It enhances diversity within the population by
operating at the bit level: during reproduction, each bit in the offspring has a small probability of
mutation, typically denoted as mutation probability 𝑝𝑚.

3.3.3. Particle Swarm Optimization

The PSO algorithm creates global memory for the whole population of particles by recording the best-
ever position and the corresponding fitness value. This is computed on every iteration of the algorithm.
In a PSO system, particles traverse a multi-dimensional search space by ”flying” around until they reach
a relatively stable state or until computational constraints are met [10]. In a multi-dimensional space,
let 𝑋 represent the positions of 𝑚 particles, expressed as 𝑋 = [𝑋1, … , 𝑋𝑗, … , 𝑋𝑚]. At time step 𝑡, the
position of the 𝑗-th particle, 𝑋 𝑡

𝑘, is determined by its previous position and current velocity, denoted as
𝑋 𝑡
𝑘 = 𝑋𝑘(𝑋 𝑡−1

𝑘 , 𝑉 𝑡
𝑘). The neighborhood of a particle 𝑋𝑘, 𝑁(𝑋𝑘), includes all particles 𝑋𝑗 that are “near” 𝑋𝑘.

The best previous position of 𝑋𝑘 is defined as 𝑋 𝑡
𝑘
∗
, satisfying 𝑓 (𝑋 𝑡

𝑘
∗) > 𝑓 (𝑋 𝑡

𝑘). Each particle 𝑋𝑘 updates
its state according to the equations:

𝑉 𝑡
𝑘+1 = 𝑤𝑉 𝑡

𝑘 + 𝑐1𝑟1(𝑋 𝑡
𝑘
∗ − 𝑋 𝑡

𝑘) + 𝑐2𝑟2(𝑔𝑘 − 𝑋 𝑡
𝑘), (19)

𝑋 𝑡
𝑘+1 = 𝑉 𝑡

𝑘+1 + 𝑋 𝑡
𝑘. (20)

The global best position found by the swarm from the beginning of the search up to the current
iteration 𝑘 is represented by the term 𝑔𝑘 is calculated using the equation:

𝑔𝑘 = 𝑏𝑒𝑠𝑡𝑡 ,𝑘{𝑋 𝑡
𝑘, 𝑡 = 1, 2, .., 𝑛, 𝑘 = 1, 2, .., 𝑘}. (21)

3.4. Dataset Summary

The study uses real-world blood datasets to implement state-of-the-art metaheuristic algorithms that
include SOS, GA, and PSO. Data sourced from the Enugu National Blood Transfusion Service in
Nigeria, spanning from 2010 to 2018, was adapted from the Nigerian Enugu blood bank’s records over a
decade (2009-2019). These datasets detail monthly distributions of blood units across various blood
types. Ethical concerns have been carefully considered throughout the process of collecting data. The
confidentiality and anonymity of the individuals in the data set have been strictly maintained.

4. Experiment, Results and Discussion

In this section, we describe a series of experiments conducted to evaluate the practicality of the
proposed mathematical model and the efficiency of the GA, SOS, and PSO optimization algorithms. The
experiments were performed on a computing platform equipped with an Intel Core i3 CPU running at
1.20 GHz, 8 GB of RAM, and the Windows 11 operating system. All three algorithms were implemented
using Python.

Different population sizes of 50, 100, and 150 were tested during the experiments. These population
sizes were chosen to maintain consistency with a study in [5], which used the same population sizes. By
adhering to these values, we ensure a fair comparison with existing research, enabling a more accurate
evaluation of our results relative to the established findings. The supply values were set within constant
percentage bounds ranging from 0 to 100%, with the initial blood volume capped at 300 units. The



selection of parameters for the SOS, PSO, and GA algorithms is consistent with the implementation
used in study [5], which worked with the same dataset. Table 4 shows the parameters used to apply the
algorithms.

Table 2
Parameter Configuration for SOS, PSO, and GA Algorithms

Parameter SOS PSO GA
Population Size (𝑁) 50/100/150 50/100/150 50/100/150
Crossover Rate (𝐶𝑟) 0.07
Mutation Rate (𝑚) 0.03
Personal Learning Coefficient
(𝑐1) 1.7
Global Learning Coefficient (𝑐2) 1.7
Inertia Weight (𝑤) 0.715
Inertia Weight Damping Ratio
(𝑤𝑑𝑎𝑚𝑝) 0.99
Maximum Iterations 1000/1500/2000/3000 1000/1500/2000/3000 1000/1500/2000/3000

The discrepancy between demand and supply must be zero for an optimal solution, but no such
solution was found due to the excess supply. This occurred because leftover blood units from the
previous day were carried over, increasing the total supply. As a result, the algorithms couldn’t meet
the required optimal supply. Additionally, import values should be minimal, but this condition wasn’t
satisfied due to high import quantities. However, the expiration values, which should approach zero,
were met. All supply, import, and expiration conditions must be satisfied for a valid solution.

The SOS algorithm achieved the lowest importation levels compared to GA and PSO, as shown in
Tables 3 and 5, which aligns with our goal to minimize imports. Additionally, from Tables 3, 4, and 5,
the PSO algorithm consistently minimized blood expiration, with values very close to zero across all
population sizes. In contrast, other algorithms still had blood units expiring after 30 days. The different
population sizes investigated show trends in monthly blood volume (imported versus expired) for a
population of 50 monitored over a108 months(2010–2018).

Table 3
Best overall solution across all months for N = 50.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 52.3378 82.0033 4.6288 2.8539 72.4485 79.1469 5.5448 31.8383
Import 0.3812 0.0000 0.0000 1.4168 0.0000 0.1493 0.0000 0.0000
Expiry 0.8947 0.7583 1.0100 0.0000 0.0000 0.4466 0.0000 2.1598

GA Supply 66.1899 26.3545 38.4704 33.0664 43.4723 62.5835 80.0120 40.2313
Import 0.0000 2.2822 0.0000 8.5202 0.0000 6.5266 0.0000 0.0000
Expiry 7.0944 0.0000 0.0000 7.5624 0.0000 0.0000 0.0000 0.1411

PSO Supply 85.3712 44.1428 11.6032 34.3623 22.5331 26.5761 57.9227 38.8552
Import 0.0000 0.0000 0.0000 0.2374 0.0000 0.0000 0.0759 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0322 0.0000 0.00098 0.0000

Table 4
Best overall solution across all months for N = 100.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 94.0303 55.2482 89.6114 51.9018 67.7487 61.5071 16.2537 5.3548
Import 0.0000 0.3944 0.0000 0.0000 0.0000 0.0000 0.1091 0.0000
Expiry 2.0318 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GA Supply 63.7027 59.9290 74.8799 77.2995 42.9237 41.8013 20.9964 46.2272
Import 18.3455 0.0000 0.0000 0.0000 2.6478 0.0000 10.0721 1.4992
Expiry 5.4329 11.7177 0.0000 0.0000 7.7886 0.0000 2.1490 0.0000

PSO Supply 98.4776 97.3294 57.3443 15.2266 60.3158 66.5277 89.5080 23.5496
Import 0.0011 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0001
Expiry 0.0000 0.0000 0.0000 0.0007 0.0000 0.0084 2.9875 0.0000

The comparison of the SOS, GA, and PSO algorithms inmanaging blood supply, import, and expiration
across all months (Tables 3, 4, and 5) reveals distinct performance patterns. For a population size of 50,
the SOS algorithm delivers the highest supply for 𝑂−, with minimal import and near-zero expiration,



Table 5
Best overall solution across all months for N = 150.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 71.3746 19.2465 70.2420 97.6066 3.1203 80.2222 44.7775 51.3909
Import 1.2239 1.9949 0.0000 0.0000 0.2681 0.0000 0.0000 0.0000
Expiry 1.7547 0.5083 1.8952 0.2479 0.0110 1.4982 0.0000 1.2795

GA Supply 61.3059 20.9250 84.9485 50.3067 53.6114 84.3721 70.1356 84.0563
Import 10.1416 0.0000 2.4322 2.3351 0.0450 4.5331 3.9506 15.8105
Expiry 0.0000 0.0000 0.0000 0.0000 2.8422 0.0000 1.5940 5.0178

PSO Supply 30.9199 76.9317 99.9976 33.3497 27.4404 29.6979 37.2713 15.6569
Import 0.0047 0.0005 13.7263 0.0000 0.0000 0.0000 0.0000 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

especially for 𝐴−, 𝐵+, and 𝐴𝐵+, making it the most efficient. The GA algorithm shows good supply for
𝐴𝐵+, lower import for 𝑂−, but struggles with expiration rates for 𝑂+, 𝐴−, and 𝐴𝐵−. The PSO algorithm
minimises import and expiration, particularly for 𝑂+, though zero importation is impractical. For a
population size of 100, SOS offers a high supply for most blood types with low imports and expirations
but struggles slightly with 𝑂+. GA performs well for 𝐴−, with low import for 𝐴𝐵−, though expiration
for 𝐴𝐵 needs improvement. PSO achieves high supply for 𝑂+ and 𝑂−, while minimizing import and
expiration rates, making it the most effective at maintaining supply with minimal waste. At a population
size of 150, SOS maintains a high supply for 𝐴− with low import and expiration rates. GA provides a
strong supply for 𝐴+ and 𝐵−, but shows less efficient management for expiration, especially for 𝐴𝐵+
and 𝐴𝐵−. PSO delivers the highest supply for 𝑂−, maintaining minimal import and expiration across
all blood types.

In summary, SOS demonstrates the most consistent performance in supply management, while PSO
excels in minimizing import and expiration. GA shows room for improvement in managing expiration
rates.

Figure 4: Trends in blood units
for a population of 50
for the SOS algorithm.

Figure 5: Trends in blood units
for a population of 50
for the GA algorithm.

Figure 6: Trends in blood units
for a population of 50
for the PSO algorithm.

Figure 7: Trends in blood units
for a population of 100
for the SOS algorithm.

Figure 8: Trends in blood units
for a population of 100
for the GA algorithm.

Figure 9: Trends in blood units
for a population of 100
for the PSO algorithm.

When the population is initially set to 50, Figures 4, 5, and 6 reveal that imported blood volume
exhibits high variability with occasional spikes, while expired volume remains consistently low. Notably,
the PSO model shows the highest peak in imported blood, followed by GA, with SOS exhibiting lower
peaks. Despite the algorithmic differences, trends indicate that imported blood volume fluctuates



Figure 10: Trends in blood units
for a population of 150
for the SOS algorithm.

Figure 11: Trends in blood units
for a population of 150
for the GA algorithm.

Figure 12: Trends in blood units
for a population of 150
for the PSO algorithm.

significantly over time, whereas PSO maintains a zero expired volume, indicating SOS’s efficiency in
this scenario.

As the population increases to 100, a correlation between importation and expiration is anticipated.
In Figure 7, SOS shows significant fluctuations in importation and more minor variations in expired
blood. Conversely, Figure 8 depicts both volumes experiencing frequent volatility, yet the expired
volume remains low. The PSO model in Figure 9 illustrates more significant import variability while the
expired volume remains near zero. Overall, GA proves to be the most efficient at this population size.

With a population size of 150, blood imports display similar fluctuations to those seen in populations
of 50 and 100, but with slightly lower peaks. In Figure 10, the SOS algorithm shows that expired blood
remains low relative to imports, suggesting a negative correlation between expired units and population
size. Figure 11 shows more frequent, less pronounced peaks in imports for GA, while expired units
occur more frequently than in SOS, indicating less efficient usage. The PSO model in Figure 12 reflects
a slight decrease in imports compared to smaller populations, with expired units remaining low. In this
case, SOS again emerges as the most efficient.
Overall, across varying population sizes, the SOS algorithm consistently demonstrates superior

efficiency in managing blood imports and minimizing expired units.

Figure 13: Comparison of Computation Times
for SOS, GA, and PSO Algorithms
Across Increasing Population Sizes

The computation times for the SOS, GA, and PSO algorithms at different population sizes (𝑁 ∈
{50, 100, 150}) reveal distinct trends. Additionally, Figure 13 shows that SOS is always higher compared
to GA and PSO, and there is a positive relationship between population size and computational time.
Its time significantly increases with larger populations, indicating its sensitivity to dataset size, which
suggests it may not be the most efficient for higher populations. The GA algorithm also shows a rise in
computation time with increasing population size, but this increase is more moderate than that of SOS.
While GA requires more time than PSO, it remains faster than SOS, making it a better balance between
accuracy and efficiency. In contrast, the PSO algorithm consistently exhibits the lowest computation
times at each population size, scaling efficiently with a relatively linear increase in time. Thus, PSO is
highly suited for managing larger populations while maintaining computational efficiency. In summary,
all algorithms show increased computation times as population size grows. However, SOS has the most



substantial rise, GA exhibits moderate scaling, and PSO is the most scalable and efficient for larger
datasets.

Additionally, different iteration counts of 1000, 1500, 2000, and 3000 were investigated to analyze how
increasing the number of iterations would impact the results. Most prior studies utilized 1000 iterations
as a standard, providing a baseline for comparison. The selection of these four specific iteration counts
was deliberate, following a systematic progression that allows for a thorough examination of the effects
of increased iterations on convergence and solution quality. Starting with 1000 iterations, a commonly
accepted threshold in the literature, ensures consistency with existing studies. The increments of 500
allow for a gradual exploration of the effects of increased computational effort on the results. The results
for iteration 1000 are represented by Table 3 which was used initially before changing the iteration
sizes.

Table 6
Best overall solution across all months for iteration = 1500.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 64.0454 46.8071 54.3417 14.0263 5.3065 89.6529 97.4574 62.4392
Import 0.0000 0.0000 0.8161 0.2179 0.0000 0.8953 0.0228 0.0000
Expiry 0.5999 0.0000 0.0122 0.2850 0.8730 0.7395 0.0437 2.5337

GA Supply 29.5575 81.7788 75.5449 77.7300 11.0796 85.8349 97.8943 23.6903
Import 4.0783 0.0000 0.0000 5.1850 2.8365 0.0000 0.0000 1.7617
Expiry 5.4661 3.2693 0.0000 1.9745 2.1263 7.2586 0.0000 15.2805

PSO Supply 27.2534 41.1694 75.0992 33.6941 100.0000 63.4012 88.5958 74.7302
Import 0.0000 0.0000 13.2614 0.0000 0.0000 0.0000 0.0000 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7
Best overall solution across all months for iteration = 2000.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 39.7338 31.7426 24.0939 41.3134 19.2563 51.3032 68.0335 1.1295
Import 2.7445 0.5518 1.0493 0.0000 0.0903 1.1284 0.0000 0.2013
Expiry 0.8038 0.4107 0.0933 1.8271 0.4450 0.0000 0.0000 1.0459

GA Supply 56.5495 73.0082 87.9078 3.2571 69.3914 74.4764 46.3198 99.7527
Import 3.3600 3.8645 9.0355 2.9689 0.0000 8.9388 2.2576 0.0000
Expiry 5.1377 1.3377 0.0000 1.9421 10.8324 0.0000 0.0000 0.0000

PSO Supply 22.8763 28.8392 100.0000 0.0000 9.9644 100.0000 36.5501 32.9503
Import 0.0000 0.0000 0.0000 1.8936 0.0000 0.0000 0.0000 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 8
Best overall solution across all months for iteration = 3000.

MA Metric 𝑂+ 𝑂− 𝐴+ 𝐴− 𝐵+ 𝐵− 𝐴𝐵+ 𝐴𝐵−

SOS Supply 3.3447 89.7159 87.1079 74.9300 4.1742 20.4870 98.0572 5.3403
Import 1.3726 0.0000 0.8773 0.0000 0.0000 0.0000 1.2245 0.2152
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GA Supply 39.0868 4.9251 11.2667 56.5289 66.4698 74.2616 57.1878 68.7403
Import 0.0000 0.0000 9.4337 6.8285 1.0444 3.3390 0.3088 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

PSO Supply 59.5217 46.8161 68.6812 56.6590 26.7479 0.0000 100.0000 26.5916
Import 0.0000 0.0000 0.0000 0.0000 0.0000 2.4892 0.0000 0.0000
Expiry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Increasing the number of iterations from 1000 to 1500, 2000, and 3000 significantly improved the
results across the algorithms used (SOS, GA, and PSO) in terms of importation and expiration metrics.
Both the SOS and PSO algorithms exhibited a marked reduction in importation values, achieving near-
zero expiration rates, particularly at higher iterations, which aligns with the goal of minimizing non-zero



importation and eliminating expiration. In contrast, the GA algorithm showed less sensitivity to iteration
increases, maintaining low importation levels but failing to reach zero expiration consistently. Overall,
the findings suggest that higher iterations enhance the performance of most algorithms, particularly
SOS and PSO, in optimizing blood supply management. Table 6 and 8 show that the SOS algorithm
outperformed the other algorithm as it has the smallest values for both importation and expiration. But
for Table 7, the PSO algorithm has the smallest values for both factors.

Figure 14: Trends in blood units
at iteration 1500 for the
SOS algorithm.

Figure 15: Trends in blood units
at iteration 1500 for the
GA algorithm.

Figure 16: Trends in blood units
at iteration 1500 for the
PSO algorithm.

Figure 17: Trends in blood units
at iteration 2000 for the
SOS algorithm.

Figure 18: Trends in blood units
at iteration 2000 for the
GA algorithm.

Figure 19: Trends in blood units
at iteration 2000 for the
PSO algorithm.

Figure 20: Trends in blood units
at iteration 3000 for the
SOS algorithm.

Figure 21: Trends in blood units
at iteration 3000 for the
GA algorithm.

Figure 22: Trends in blood units
at iteration 3000 for the
PSO algorithm.

The analysis of blood unit trends across different algorithms and iterations (Figures 14–22) suggests
that the SOS algorithm may be the most effective in balancing blood imports and minimizing expirations
over time. At iterations 1500, 2000, and 3000, SOS (Figures 14, 17, and 20) shows relatively stable import
rates with consistently low expiration levels, indicating an efficient management of blood inventory. In
contrast, the GA (Figures 15, 18, and 21) exhibits high and frequent import peaks across all iterations,
which could lead to unnecessary over-importation without a proportional decrease in expirations.
Similarly, the PSO algorithm (Figures 16, 19, and 22) maintains high import levels but with fewer
expirations, indicating limited success in minimizing imports. Overall, the SOS algorithm emerges as
themost suitable forminimizing both blood imports and expirations as iterations increase, demonstrating
more excellent stability and efficiency in blood unit management compared to GA and PSO.

These results are quite similar to those obtained in the study by Ezugwu et al. [5], which used the same
dataset and parameters. The results in this study are improved because expiration was also included
in the objective function, and different rhesus factors were considered. Lower levels were reported



compared to their study, with significantly lower supply levels, even though an optimal solution was not
found. This discrepancy between blood supply and demand arose from updating the supply with the
remainder of the previous day. Additionally, the algorithms in this study required less computational
time than the earlier study. However, both studies suggest that the SOS algorithm outperformed all
tested algorithms.

5. Conclusion and Future Work

The optimal assignment of the blood problem presented in this paper aims to find the best solution to the
global supply and demand of blood by considering factors such as blood expiration and the importation
of blood during emergencies. Notably, blood is constantly in high demand worldwide, making a reliable
supply essential. The heuristic algorithms used in this study effectively optimised certain critical choice
variables relevant to the developed model. Overall, these algorithms made significant progress in
addressing the problem.
To enhance their effectiveness, it is essential to introduce variables that account for the remaining

blood from the previous day, as carrying over the remainder did not yield satisfactory results. Future
work should focus on minimizing the remainder to reduce or eliminate carryover. Additionally, factors
such as seasonal variations, patient demographics by supplying blood based on the demographics of
the patient population, and the investigation of other algorithms should also be considered.
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