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Abstract
Early detection of cardiovascular diseases (CVDs) is crucial for minimizing their adverse impact on patients’ health.
Electrocardiograms (ECGs), which capture the heart’s electrical activity, have been widely used to primarily
evaluate heart conduction disorders. On the other hand, phonocardiograms (PCGs) recorded during cardiac
auscultation, have been less explored, often being overlooked in favor of echocardiograms for detecting mechanical
issues such as valvular diseases. However, due to their low cost and non-invasive nature, the analysis of both
ECGs and PCGs can be easily integrated into preventive settings. Combining effectively the complementary
information from these two modalities could significantly enhance the early detection of CVDs, where Machine
Learning (ML) techniques can offer promising and cost-effective solutions. Progress in this area, however, has
been limited by the lack of large enough datasets containing both ECG and PCG signals. One objective of this
work is to analyze in-depth prior bimodal CVD detection research, identifying key issues to better address
data collection and transfer learning limitations. We also propose a different approach to transfer learning for
improving heart sound interpretation. Our findings confirm the effectiveness of using both signals to detect
abnormal heart conditions. However, we also notice that even a refined transfer learning approach to enhance
PCG interpretation is not enough to fully address the issues coming from the lack of bimodal data, indicating
the need for further efforts in this direction. Ultimately, our bimodal approach achieved an overall AUROC
of 96.4%, exceeding the performance of corresponding ECG-only and PCG-only models by approximately 3%
and 10%, respectively. Compared to the other existing approaches, our method demonstrated superior AUROC
performance while maintaining a relatively low false-negative rate, which is critical in CVD screening contexts.
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1. Introduction

Cardiovascular diseases (CVDs) are the primary cause of morbidity and mortality worldwide, accounting
for an estimated 17.9 million deaths each year, decreasing the quality of life and imposing a subsequent
significant burden on global healthcare systems [1]. Early diagnosis systems play a crucial role in
mitigating the negative effects of these diseases, as delayed identification is a major reason for high
morbidity and death [2].
Given the complexity of heart activity, CVDs encompass different conditions, such as arrhythmias,
valvular diseases, and coronary artery disease. Clinicians use a range of diagnostic tools, including
echocardiography, computer tomography scans, and angiography: all of these approaches, although
highly specific and considered gold standards for the diagnoses, turn out to be expensive and not
accessible in primary care, limiting their use for large-scale screening [3, 4]. In contrast, electrocar-
diography and cardiac auscultation are widely used methodologies for early detection of pathological
cardiac conditions due to their low cost, non-invasiveness, and ease of measurement, guiding for further
specific diagnostic examinations [2]. An electrocardiogram (ECG) records the heart’s electrical activity
during each heartbeat, while a phonocardiogram (PCG), the audio signal obtained via an electronic
stethoscope during heart auscultation, captures the vibrations caused by the flow of blood through the
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heart’s chambers. These vibrations are generated by the mechanical activity of the heart valves as they
open and close, which occurs in response to the electrical activation that triggers atrial and ventricular
contractions during the cardiac cycle [5]. As shown in Figure 1, due to their physiological origin, the
two signals, despite very different, are strictly related. Although ECGs and PCGs signals are widely
used to detect CVDs, studies have shown that interpretation accuracy can vary significantly depending
on the clinician’s level of training, with expert cardiologists achieving a median accuracy of less than
80% for both signals [6, 7]. Currently, neither the ECG nor the PCG signal alone can fully diagnose
CVDs, as these two modalities reflect the heart’s electrical and mechanical activities, respectively [3].
Heart sounds can reveal pathological conditions of the cardiac valves, while ECG is better suited for
detecting conduction disorders: in particular, different patients may exhibit similar heart sounds but
different ECGs, or vice versa [8].
In this scenario, Machine Learning (ML) methods can be leveraged to develop automatic diagnostic
tools that could enhance early detection of CVDs in a preventive setting. So far, most efforts have
focused mainly on single-modality approaches, using either ECG [9, 10, 11] or PCG [12, 13, 14] signals
[3]. Most approaches that use ECG signals have been developed to detect conduction or structural
issues, as publicly available datasets typically contain these labels. Due to the electrical nature of the
ECG signal, conditions that are primarily or more effectively identified through cardiac auscultation
(such as valvular diseases) have been less studied and modeled using ECG signals. Moreover, this
context lacks public datasets, and the few studies that utilize ECGs to identify valvular diseases are
based on non-publicly available datasets [4], making the PCG counterpart preferred to investigate these
conditions. Recent research explores multimodal techniques to improve diagnostic performance, taking
advantage of complementary information given by the two signals [3]. The limited exploration in this
area is primarily due to the lack of a large dataset with combined PCG and ECG recordings. There is
only one publicly available bimodal dataset from both healthy and pathological individuals, that enables
the development of a classification model for abnormal heart conditions. Actually, there is another
open-access database of synchronous ECGs and PCGs that consists only of signals from healthy subjects
undergoing different stress-test sessions, making it unsuitable for pathological classification tasks [15].
Due to strict regulations, data collection in the healthcare field is significantly more challenging than
in other fields, such as computer vision. This lack of data can affect the development of accurate ML
models, especially in the supervised paradigm, where data labeling is often costly and time-consuming.
In this context, transfer learning has arisen as a valuable approach, often demonstrating the ability
to improve performance, mitigating overfitting issues commonly faced by models built from scratch
on limited datasets. With transfer learning, models pre-trained on large datasets can be leveraged to
"transfer knowledge" across different domains. These pre-trained models can serve as feature extractors
or be further fine-tuned on the data of the new task. The core principle is to transfer knowledge
acquired in one domain (source) and apply it to a new task in a related but different domain (target)
[16, 17]. Although transfer learning has already been applied to address data limitations in detecting
abnormal heart conditions using bimodal approaches, its full potential remains underexplored, and
several possible improvements have not been investigated. Based on existing findings, interpreting
PCG signals has proven to be more challenging compared to the electrical counterpart. However,
not all publicly available PCG unimodal datasets have been fully leveraged to enhance this signal
comprehension. Additionally, since PCG signals are essentially audio recordings, employing audio data
as the source domain in a transfer learning setting could potentially improve PCG interpretation and,
by extension, enhance overall bimodal performance. Therefore, in this work, we aim to investigate
whether applying transfer learning from audio recordings, along with the use of a larger amount of
unimodal PCG data, could effectively enhance the understanding of heart sounds, and improve the
ability to detect CVDs by combining the information coming from ECGs.
The main contributions of this work can be summarized as follows:

• analyzing in-depth the literature, deriving observations and highlighting problems that are not
always evident in individual works, trying to explore some of their limitations better;

• investigating the potential of a transfer learning approach from audio data to improve abnormality



Figure 1: ECG-PCG relationship: the first (𝑆1) and second (𝑆2) heart sounds occur at the beginning of the
systole and diastole phases, respectively, as a result of the closure of the mitral and tricuspid valves in the first
case, and the aortic and pulmonary valves in the latter [5].

detection in PCG recordings, leveraging all the unimodal PCG datasets for the fine-tuning process;
• developing a bimodal model based on both ECG and PCG signals and confirming the effectiveness

of multimodal analysis compared to single-modality approaches.

2. Related Work

The first attempt to fully leverage the information underlying ECG and PCG signals to improve the iden-
tification of chronic and non-conduction heart disorders dates back to 2019 [18]. Using simultaneously
collected ECG and PCG recordings, a novel dual-input neural network was developed, integrating both
conventional feature extraction and deep learning. That work proved for the first time that combining
both signals significantly improves performance in detecting coronary artery disease compared to
analyzing just one. Traditional methods, such as support vector machine, were employed by Chakir
et al., Singh et al., and Li et al., using manually extracted features from synchronized ECG and PCG
signals to classify normal and abnormal heart conditions [19, 20, 21]. Within this context, other studies
have combined different decomposition techniques as feature extractors, which are then used as inputs
for neural networks [22, 23]. To overcome the limitations of manual feature extraction required in
traditional machine learning methods, several studies have leveraged deep learning models, such as
Convolutional Neural Networks (CNNs) and Long Short Term Memory (LSTM) networks. By automati-
cally extracting hierarchical features directly from raw data and optimizing complex representations,
deep learning models eliminate the need for manual feature engineering, and different configurations
have been investigated in the classification of CVDs [3, 24, 25, 26]. To tackle the challenge of limited
bimodal data, the first transfer learning approach was introduced by Hettiatachchi et al. in 2021 [27].
Time-frequency representations of both ECG and PCG signals were used as inputs of two CNNs initially
trained separately on publicly available unimodal datasets of ECGs and PCGs. The results showed that
the performance on bimodal data significantly improved when using the hybrid model using these
pre-trained networks to extract more meaningful and representative features, compared to PCG-only
or ECG-only models. A second transfer learning approach utilized two slightly modified VGG-16
architectures [28] for the two branches of ECG and PCG signals, with a 2-dimensional time-frequency
transformation as input. The study explored two strategies: using pre-trained ImageNet models as



feature extractors and fine-tuning them using an ECG and a PCG unimodal dataset for the two branches,
obtaining better results in the first case [29]. These latter transfer learning approaches rely on a single
publicly available PCG dataset, limiting the potential improvements that could come from incorporat-
ing additional data sources. However, with other unimodal PCG datasets now available, there is an
opportunity to enhance heart sound interpretability, which often appears to be the limiting factor in
bimodal models.

3. Datasets

In this section, we provide a detailed description of the most significant and widely used unimodal PCG
datasets, focusing on key aspects such as data sources, recording conditions, and label characteristics.
Additionally, we thoroughly examine the bimodal dataset, which contains simultaneous recordings of
both PCG and ECG signals from healthy and pathological individuals, used in the development of the
bimodal model.

3.1. PhysioNet/CinC 2016

The PhysioNet/Computing in Cardiology (CinC) Challenge 2016 is the first attempt to address the
lack of a large and open database of heart sound recordings: before it, the only two open-source
datasets available counted together for less than 200 PCG signals making their use worthless to develop
classification models [5, 30]. It is made by assembling databases collected from seven different research
groups worldwide over more than ten years, in clinical and nonclinical environments. Due to its
composite nature, signals from distinct sources differ in several aspects, such as the type of stethoscope,
sampling rate, recording positions, number of recordings per individual, length of recorded signals,
subjects’ cardiac conditions, and methods for obtaining diagnoses. In particular, the 3M Littmann and
the Welch Allyn Meditron electronic stethoscopes were used for the data acquisition of three and two
databases respectively, whereas, in the other cases, the type of sensor is either unknown, prototypes,
or from different manufacturers. In most cases, the sampling frequency chosen was either 4𝑘Hz or
8𝑘Hz, except for one database in which it was set at 44.1𝑘Hz. The number of recordings per subject,
the sensor placement, and the signals’ length differ both between and within databases, with recording
duration ranging from several seconds to a few minutes, and stethoscope locations varying from one to
multiple chest positions that do not always correspond to the standard auscultation ones. The database
includes heart sounds from both healthy subjects and pathological patients, mainly affected by heart
valve diseases (such as aortic stenosis or mitral regurgitation) and coronary artery disease. In most
cases, the actual diagnoses were established by echocardiographic examination, although sometimes
they were determined by clear heart murmurs or a cardiologist’s diagnosis that is not further specified.
In addition, demographic data, such as age and gender, were sometimes provided. Since the data were
acquired in real-world, uncontrolled scenarios, many recordings are corrupted by noise, including
sensor motion and speech [5].
The challenging training set is publicly available in PhysioNet repository [31]: the dataset is clearly
imbalanced, consisting of a total of 3,153 heart sound signals from 764 individuals, with 2,488 recordings
defined as normal and the remaining 665 obtained from pathological patients. In order to standardize
the realized data, all the signals have been resampled at 2𝑘Hz and provided in .hea and .wav formats
[30].

3.1.1. MITHSDB

The Massachusetts Institute of Technology Heart Sounds Database (MITHSDB) is one of the databases
that contribute in composing PhysioNet/CinC. To the best of our knowledge, this is currently the only
publicly available bimodal dataset that contains data from both healthy and pathological individuals.
It is composed of 409 PCG recordings acquired using a Welch Allyn Meditron electronic stethoscope,
of which 405 are coupled by a simultaneous single-lead ECG recording, obtained from 121 subjects.



Among the bimodal signals, 117 represent the normal control group, while the remaining 288 are labeled
as pathological, having been collected from patients with either mitral valve prolapse, benign murmurs,
aortic disease, or other miscellaneous pathological conditions. In this case, the diagnoses were verified
based on the echocardiogram analysis [5].
Given that this is the only available bimodal dataset for disease classification task, it has attracted
significant interest. Specifically, since deep neural networks need large amounts of data, P. Li et al.
generated an augmented version of the dataset using a sliding window strategy. First of all, 17 visually
noisy recordings were eliminated manually. The remaining 388 signals were first divided into training
and validation datasets to generate mutually exclusive sets. At this stage, the data were expanded by
segmenting the raw signals with a fixed window of 8𝑠, using a window stride of size 8𝑠 and 3𝑠 for
abnormal and normal recordings respectively, in order to achieve a balance between the two classes.
Then the PCG signals were resampled to 1𝑘Hz, whereas the frequency rate for ECGs was left unchanged
at 2𝑘Hz. In total, this augmented version of the MITHSDB contains 1,975 recordings, 1,009 from healthy
subjects and 966 from pathological ones, each with a fixed duration of 8𝑠 [3].
This expanded dataset will be leveraged in this work and can be downloaded on Zenodo [32].

3.2. GitHub Dataset

In 2018, an open-source heart sound database was released on GitHub. It contains 1,000 audio files from
various sources, such as books and over 40 websites, each consisting of three-period heart sound signals
and completely free of noise. The recordings are divided into 5 perfectly balanced groups, with 200
audio clips per category, corresponding to different cardiac valve conditions: normal, aortic stenosis,
mitral regurgitation, mitral stenosis, and mitral valve prolapse. The recordings were sampled at 8𝑘Hz
and are released in .wav format [13, 33].

3.3. CirCor DigiScope

The CirCor DigiScope database was collected during two screening campaigns performed in Northeast
Brazil from a pediatric population (under 22 years old), with 70% of it publicly released for the George
B. Moody PhysioNet Challenge 2022 [34]. The majority of the participants were children and infants,
with most joining the study without a formal indication, others for follow-up on previously diagnosed
heart conditions, and a smaller portion to monitor the progression of existing murmurs. The most
common diagnoses included simple congenital cardiopathy and acquired cardiopathy, with some cases
also diagnosed with complex congenital cardiopathy. In the database, the presence or absence of a
pathological condition in the subjects was determined by a pediatric cardiologist’s comprehensive
assessment, which included clinical history, physical examination, and/or echocardiogram, but without
having access to the signals recorded. The heart sounds were recorded primarily from one to four
standard auscultation points (pulmonary, aortic, mitral, tricuspid) using a Littmann 3200 stethoscope
equipped with the DigiScope Collector technology. Since the acquisitions were performed in a real
clinical setting, the signals may have been corrupted by various noisy sources, such as stethoscope
rubbing or background crying. The heart sound recordings were sampled at 4𝑘Hz, normalized within the
[-1, 1] range, and provided in .hea and .wav formats. Additional demographic information, including age,
gender, weight, and height, is provided for almost all the subjects [35]. Even if data quality assessment
was performed, removing inconsistent and outliers data, this dataset appears to be noisy: researchers
assert that the baseline accuracy is approximately equal to 55 % [36].
The public dataset consists of 3,163 recordings from 942 subjects, with 1,632 from individuals with
normal heart conditions and 1,531 from those with pathological ones: it is provided online on PhysioNet
[31].



4. Materials and Methods

This chapter outlines the experimental methodology, starting with a comprehensive literature review
to establish the genesis of the study’s rationale. Moreover, we describe the data preparation process
and model configurations for both unimodal and bimodal analyses, explaining how transfer learning
was applied to try to overcome data collection issues.

4.1. Comparative Literature Analysis

Analyzing the related works described in Section 2, key aspects have emerged that warrant further
investigation to better understand the rationale behind the experiments conducted in this work and to
derive fair results for comparison. Most of these studies have shown that ECG-only models tend to
outperform PCG-only models when using the MITHSDB bimodal data in single-modality settings. This
highlights the need for further efforts to enhance the interpretability of PCGs in order to improve the
performance of bimodal models. Additionally, as outlined many times, the main challenge in developing
bimodal models is the lack of an adequate dataset, a problem that transfer learning has been applied to
address. Using this approach, Vieira [29] pointed out that the fine-tuning setting failed to outperform
the feature extraction strategy from a pre-trained model on ImageNet, likely due to the limitation
of relying solely on the Physionet/CinC 2016 dataset for the heart sound branch. This suggests the
potential benefits of incorporating additional PCG datasets in such scenarios. Furthermore, Koike et
al. showed that using a deep learning model pre-trained directly on audio data yields more valuable
representations than transferring the knowledge from image data. In particular, they compared the
performance of several models pre-trained on ImageNet, such as VGG-16, with that achieved using
the Large-Scale Pretrained Audio Neural Networks (PANNs) [37] pre-trained on AudioSet, which had
previously demonstrated strong generalization capabilities in many audio pattern recognition tasks.
Using the Physionet/CinC 2016 PCG dataset, Koike et al. obtained the highest unweighted average
recall in classifying normal versus abnormal heart sounds by leveraging the PANNs-CNN14 model to
extract higher representations from the inputs [38]. Based on these findings, the experiments conducted
in this study aim to explore a wiser transfer learning approach by fine-tuning the PANNs-CNN14 model,
pre-trained on AudioSet, with additional unimodal PCG data.
Table 1 outlines the principal characteristics of all the bimodal studies described in Section 2. Notably,
four of these studies rely on private databases rather than the MITHSDB, and the diseases predicted
do not always align with the labels presented in MITHSDB. As a result, they are unsuitable for direct
performance comparison with our solution. For the remaining studies, the best model performance
are reported, particularly the AUROC (Area Under the Receiver Operating Characteristic Curve) when
available, as well as the accuracy: the AUROC is independent of dataset imbalance, making it a more
reliable metric compared to accuracy which is, in contrast, highly affected by different class distributions.
For instance, J. Li et al. [21] used the MITHSDB which has an imbalanced class distribution, as well as
the subset of MITHSDB extracted by Singh et al. in [20] that includes 240 abnormal and 102 normal
signals. In this latter case, the model achieved a high accuracy of 93.1%, but this is largely due to
its tendency to predict the majority class (abnormal). In addition to the dataset’s class imbalance, in
[25] the confusion matrix and the corresponding performance reported were based on the training set,
raising concerns about overfitting. Another factor that raises questions about the performance reported
by Morshed et al. [26] is that the test set performance is evaluated using only 10% of the data, but
when the test set size increased to 30%, the performance significantly dropped, with accuracy falling to
90.7% and AUROC to 96%, suggesting a poor generalization ability of the model.

4.2. Experimental Pipeline

4.2.1. Data Preparation

The raw signals, both bimodal data from the MITHSDB and unimodal PCG recordings from unimodal
datasets, undergo initial pre-processing steps such as filtering, downsampling, and normalization. The



Table 1
Summary of studies that combined ECG and PCG signals for classifying pathological heart conditions. AUROC
= Area Under the Receiver Operating Characteristic Curve, BiLSTM = Bidirectional Long Short Term Memory,
CAD = Coronary Artery Disease, CNNs = Convolutional Neural Networks, HD = Heart Disease, LSTM = Long
Short Term Memory, SVM = Support Vector Machine.

Study Outcome Dataset Approach used Performance

H. Li et al. [18] CAD/non-CAD
Augmented dataset
from 195 subjects

Manually features extraction and
deep learning

Accuracy = 95.6%

Chakir et al. [19] Normal/Abnormal
100 subjects of
MITHSDB

SVM
Accuracy = 92.5%
AUROC = 95.1%

Singh et al. [20] Normal/Abnormal
342 subjects of
MITHSDB

SVM Accuracy = 93.1%

J. Li et al. [21] Normal/Abnormal MITHSDB SVM Accuracy = 86.4%

EL-Bouridy and
EL-Batouty [22]

Normal/Abnormal

Integrated cardio-
graph scanned image
of 12-lead ECGs and
5-probe PCGs

Signals’ decompositions and Neu-
ral Network

Accuracy = 96.8%

Jyothi and
Pradeepini [23]

Five classes: normal,
arrhythmias, mitral
valve prolapse, is-
chemic HD, valvular
HD

335 subjects
Signals’ decompositions and Neu-
ral Network

Accuracy = 96.1%

P. Li et al. [3] Normal/Abnormal
Augmented version
of MITHSDB (3.1.1)

CNNs and LSTM
Accuracy = 87.3%
AUROC = 93.6%

H. Li et al. [24] CAD/non-CAD
Augmented dataset
from 195 subjects

1-D and 2-D CNNs Accuracy = 96.5%

J. Li et al. [25] Normal/Abnormal MITHSDB BiLSTM-GoogLeNet Accuracy = 96.1%
Morshed et al.
[26]

Normal/Abnormal
Augmentation of
MITHSDB

1-D CNNs
Accuracy = 95.1%
AUROC = 99%

Hettiarachchi et
al. [27]

Normal/Abnormal
Augmentation of
MITHSDB

Transfer learning
Accuracy = 87.7%
AUROC = 93.8%

Vieira [29] Normal/Abnormal
Augmentation of
MITHSDB

Transfer learning from ImageNet
Accuracy = 82.8%
AUROC = 91.3%

most clinically relevant ECG components primarily occupy a frequency band below 50 Hz, whereas the
frequency content of PCG typically falls within the 20-200 Hz range [39, 40]. Therefore, to reduce noise
and simultaneously eliminate power-line interference in ECGs, a second-order low-pass Butterworth
filter is applied to both signals, with cutoff frequencies set to 48 Hz for ECG and 200 Hz for PCG.
The sufficiency of a low-pass filter for PCGs is attributed to the fact that the augmented MITHSDB
provided recordings decomposed into four separate frequency bands ranging from 25 to 400 Hz, which
were summed together before filtering. After that, the signals are downsampled to 100 Hz and 500 Hz
respectively, and then normalized as follows:

𝑥𝑛𝑜𝑟𝑚 =
𝑥− 𝑥𝑚𝑒𝑎𝑛

𝑥𝑚𝑎𝑥

To reduce the influence of spurious peaks caused by noise, the maximum value used for normalization
is determined as the median of the maximum values detected within intervals obtained using a sliding
window approach with a window length of 1 second, ensuring that each window almost always contains
at least one heartbeat. By doing so, all the signals have zero mean and range almost in [-1, 1] interval.
These steps are applied regardless of the source dataset. For the PCG recordings coming from unimodal
datasets, additional transformations are applied. In particular, to align these signals with the ones
within the augmented version of the MITHSDB used, recordings shorter than 8 seconds are replicated
until the desired duration is reached, while recordings longer than 8 seconds are cropped. In the latter
case, cropping is generally performed in the center, however, if the length of a recording exceeds 16
seconds (plus a 1-second margin of error, 0.5 seconds on each side), the signal is divided into multiple
non-overlapping segments. Doing so, the number of PCGs in PhysioNet/CinC 2016 (excluding the
signals from MITHSDB) increases from 2,744 to 5,857, the dimension of CirCor DigiScope grows from
3,163 to 7,076, while the size of the GitHub-dataset remains unchanged. Furthermore, before the



normalization step but after extending the recordings, Gaussian white noise is added to the signals
from the GitHub-dataset to make the PCGs more similar to those in the other datasets.
Since the MITHSDB is already divided into two distinct datasets with an 80/20 split, the training and
validation sets are created by further splitting the 80% portion into an 80/20 ratio, ensuring that each
patient is assigned to only one group, keeping the 20% portion for the test set. As a result, the training
set contains 1,243 recordings of both ECG and PCG, while the validation and test sets consist of 337 and
395 bimodal signals, respectively. On the other hand, each unimodal dataset is split into two separate
groups with an 80/20 ratio, stratified by label before the extension step, and then combined. This results
in an unimodal training set of 11,111 recordings, of which 7,124 are from subjects with normal heart
conditions, and a validation PCG set consisting of a total of 2,823 signals (1,822 normal).

4.2.2. Model setting and configuration

As a first step toward the proposed bi-modal analysis system, one-dimensional Convolutional Neural
Networks (1D-CNNs) based on either ECG or PCG signals are developed to classify normal and abnormal
heart conditions using the unimodal portion’s data from the augmented version of MITHSDB. Since
abnormal heart conditions like valvular diseases often present with localized and specific waveform
features, 1D-CNNs are a strategic choice due to their high ability to capture local and hierarchical spatial
patterns through their receptive fields. In this way, the model can efficiently learn specific waveform
features that indicate abnormalities, without the need for extensive modeling of long-term dependencies
that other architectures, such as LSTMs, would focus on. The unimodal network consists of multiple
convolutional blocks, each containing a 1-D convolutional layer, batch normalization, ReLU activation
function, and a pooling layer with a stride of 2. The convolutional portion is followed by global average
pooling and two fully connected layers (64 and 1 neurons respectively) with batch normalizations and
non-linear transformations (ReLU and Sigmoid). Table 2 summarizes the different configurations of
convolutional blocks, including the number of feature maps and kernel sizes associated, as well as
the pooling types and whether dropout with a neglect probability of 0.2 is applied that are tested to
optimize the model’s performance; information about the models’ complexity, in term of number of
trainable parameters, is also provided.
The next step involves leveraging all the unimodal PCG datasets to perform transfer learning, using the
PANNs-CNN14 as base model. The parameters of the initial layers, which are responsible for generating
the spectrogram and its log-mel transformation, are modified to handle the fixed-size 8-second signals.
Meanwhile, the weights obtained from training the PANNs-CNN14 model on AudioSet [37] are loaded
into the remaining part of the network. The final fully connected layer, originally designed for multiclass
classification across 527 classes in AudioSet, was replaced with a multilayer perceptron comprising four
fully connected layers with 512, 128, 32, and 1 neurons, respectively. Each of these layers is followed by
batch normalizations and ReLU transformations, except for the final layer, where a Sigmoid function
is applied to obtain the abnormal class’s probability. The entire network is either fully fine-tuned or
trained with its first convolutional blocks frozen using all the combinations of the unimodal datasets.
For instance, a total of seven dataset combinations: with all datasets assembled, including only GitHub-
dataset and excluding it, including only Physionet/CinC and excluding it, and including only CirCor
DigiScope and excluding it.
Finally, the multimodal model is created using a late fusion strategy. The ECG and PCG embeddings,
obtained from the unimodal models (excluding the fully connected head), are concatenated and then
processed by a multi-layer perceptron to produce the classification. We evaluate both the network with
the simple convolutional PCG-only model and the architecture where the PCG branch is managed by
the PANNs-CNN14 model pre-trained with all the publicly available heart sound datasets.
Figure 2 shows all the different strategies implemented.

Training Settings In our experiments, since we use a sigmoid activation function for the final layer,
the loss function with which all the models are trained is the binary cross-entropy (BCE) loss, defined



Table 2
Different unimodal network configurations. In the configuration with both pooling types, the first

⌊︁
# conv layers

2

⌋︁
+1

pooling layers implement average pooling, while the remaining layers utilize max pooling.

#
conv
layers

Features maps Kernel sizes Pooling types 𝑃
dropout

#
params

5 16, 32, 64, 128, 256 7, 5, 5, 3, 3
all avg/all
max/both

0/0.2 153923

6 16, 32, 64, 128, 256, 256 7, 7, 5, 5, 3, 3
all avg/all
max/both

0/0.2 368707

7 16, 32, 64, 64, 128, 256, 256 7, 7, 5, 5, 3, 3, 3
all avg/all
max/both

0/0.2 372995

8 16, 32, 64, 64, 128, 128, 256, 256 7, 7, 5, 5, 5, 3, 3, 3
all avg/all
max/both

0/0.2 438915

as:

𝐵𝐶𝐸 = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log 𝑦�̂� + (1− 𝑦𝑖) log (1− 𝑦�̂�)]

were N is the batch size, 𝑦�̂� is the predicted probability of the abnormal class and 𝑦𝑖 is either 1 or 0,
indicating whether the true label of the 𝑖-th input is abnormal or normal, respectively.
The batch size is set to 32 when using the augmented version of MITHSDB since the datasets are still
small. However, the batch size is increased to 256 during the fine-tuning step with the unimodal PCG
datasets to improve training stability. Moreover, an Adam optimizer with a learning rate of 0.01 is used
for all the trainings, and the maximum number of epochs is set to 100. However, an early stopping
technique with a patience of 15 and a tolerance of 0.001 is implemented, considering accuracy when the
class distribution is balanced (i.e. in the MITHSDB) and AUROC in the imbalanced case.

5. Results

Below, we present the results of our experiments, reporting the test performance achieved by the
best unimodal and bimodal model configurations. We place particular emphasis on evaluating the
effectiveness of the transfer learning approach, examining its impact on the PCG interpretation and its
influences on the overall performance of the bimodal configuration for CVD detection.

5.1. One-Dimensional Convolutional Neural Networks (1D-CNNs)

Using MITHSDB in a single-modality setting, all the different configurations reported in Table 2
are implemented for training the 1D-CNN PCG-only model, whereas, due to the input size and the
dimensionality reduction across the layers, the analogous ECG-only model is trained with up to 7
convolutional layers. The best unimodal models are selected based on both AUROC and accuracy values
on the test set. Concerning the ECG, using AUROC as a selection criterion, the best model configuration
results in six 1D-convolutional blocks and average pooling for all layers, whereas, the best accuracy is
achieved with five 1D-convolutional blocks implementing both max and average pooling. About the
PCG, both maximum AUROC and accuracy are obtained using eight 1D-convolutional blocks with only
average pooling. Figure 3 shows their confusion matrices on the test set, while all the performances are
summarized in Table 3 where the metric used to choose the best model is highlighted.

5.2. Transfer learning

The weights from the PANNs-CNN14 model that achieves the best mean average precision on AudioSet
released in Zenodo [41] are loaded into the transfer learning model’s base (excluding the modified layers



Figure 2: Graphical representation of the different architectures developed to classify between normal (N) and
abnormal (A) heart conditions. (a): Unimodal model consists of multiple 1D-convolutional blocks for either
PCG or ECG signals. (b): Transfer learning from PANNs-CNN14 using different combinations of unimodal
PCG datasets for the fine-tuning process. After the symbol @ is indicated the number of feature maps, while
BN stands for batch normalization. (c): Late fusion bimodal architecture using the embedding from the best
ECG-only and PCG-only model.

for the log-mel extraction). Both a complete fine-tuning approach, where all layers in the base model
are set as trainable, and a partial freezing approach, where the first 1, 2, or 3 out of the 6 convolutional
blocks are frozen, are implemented. Additionally, all possible combinations of the PCG datasets are
used for fine-tuning the entire network. Subsequently, the fine-tuned model on the unimodal data is
used to evaluate performance on the MITHSDB dataset. In this phase, the first 4 or 5 convolutional
blocks of the base model are kept frozen, while the remaining layers are further fine-tuned using the
MITHSDB training data. The best model, which achieves both the maximum accuracy and AUROC on
the test set, results in a first fine-tuning (keeping the first two convolutional blocks frozen) using all the
PCG recordings available excluding those coming from the GitHub-dataset, and then further fine-tuned
with MITHSDB training data with the first four convolutional blocks frozen. All test performance and
confusion matrix are also reported respectively in Table 3 (last line) and Figure 3 (bottom right).



Figure 3: Confusion matrices of the best unimodal models on the test set of MITHSDB.

Table 3
Summary of the best unimodal performance on the test set extracted from the augmented version of MITHSDB.
For each model, the metric value used to select the best one is highlighted.

Configuration Accuracy AUROC Precision Recall Specificity F1
1D-CNNs ECG-only; 5 layers,

both pooling types
86.1% 92.6% 85.9% 86.3% 85.9% 86.1%

1D-CNNs ECG-only; 6 layers,
all avg pooling type

85.6% 93.1% 88.9% 81.2% 89.9% 84.9%

1D-CNNs PCG-only; 8 layers,
both pooling types, dropout

77% 83% 74.1% 82.7% 71.2% 78.2%

Transfer learning PCG 77.2% 85.7% 80.6% 71.6% 82.8% 75.8%

Table 4
Summary of the best bimodal performance on the test set extracted from the augmented version of MITHSDB,
with or without implementing transfer learning into the PCG branch. For each model, the metric value used to
select the best one is highlighted.

ECG model PCG model Accuracy AUROC Precision Recall Specificity F1
1D-CNNs 6 layers,

all avg pooling type;
frozen

1D-CNNs 8 layers,
both pooling types,

dropout; frozen
90.6 % 96.4% 88.1% 93.9% 87.4% 90.9%

1D-CNNs 6 layers,
all avg pooling type;

frozen

Transfer learning
unimodal PCG model;

fronzen
90.4% 95.8% 90% 91.4% 89.4% 90.5%

5.3. Bimodal

Each of the best unimodal models obtained above, with their "head" (identified with a dashed rectangle
in Figure 2) removed, is then incorporated into the bimodal network. In this setup, both strategies
of fine-tuning all the bimodal network and keeping one or both unimodal branches frozen to extract
embeddings are tested. The best configurations, selected based on both test accuracy and AUROC, with
or without the implementation of transfer learning into the PCG branch, see the six 1D-convolutional
block configuration for the ECG branch as well as both branches frozen during the embedding extraction.
The results of the bimodal analysis are summarized in Table 4, while in Figure 4 the confusion matrices
on the MITHSDB test set are reported.



Figure 4: Confusion matrices of the best bimodal models on the MITHSDB test set with and without using the
transfer learning approach to extract highly representative features from heart sound recordings.

6. Discussion

Concerning the unimodal approach, our findings confirm the results of most prior works. Specifically,
when using the MITHSDB in a single-modality setting, the best models developed using only ECG
signals outperform those trained on the corresponding PCG recordings. Additionally, despite fine-tuning
the PANNs-CNN14 model with a larger and more diverse set of heart sounds, it doesn’t improve the
PCG interpretability as much as we expected compared to the simpler 1D-CNNs model. This result
suggests that even a more reasonable transfer learning approach can not completely overcome the
limitations posed by the lack of bimodal data, emphasizing the need for additional research and data
collection in this area. Moreover, from the confusion matrices reported in Figure 3, we notice that the
transfer learning approach tends to predict normal labels, leading to a high number of false negatives
(i.e., misclassifying pathological heart sounds as normal). In contrast, the model based on 1D-CNNs is
more inclined to assign abnormal labels, which is preferable in a CVD screening setting. This suggests
that an ensemble model could improve the ability to distinguish between normal and abnormal heart
sounds. This reasoning, along with the analysis of the confusion matrices for the unimodal ECG and
PCG models, may also explain why the limited improvements obtained using transfer learning, are
not reflected in the bimodal setting. For instance, both the 1D-CNNs ECG-only with six convolutional
blocks and the PANNs-CNN14 fine-tuned models are more likely to predict normal labels, resulting
in a higher amount of false negatives, whereas the 1D-CNNs PCG-only model is more effective at
identifying the abnormal class. Therefore, by combining the strengths of both the ECG and PCG
branches, the bimodal model is able to take advantage from each modality, significantly improving
overall performance and further reducing the false-negative rate. As highlighted in Section 4.1, a direct
comparison with existing bimodal approaches is not always feasible for several reasons. However, a
fair comparison with previous works can be made when the classification task is consistent, and key
information that affects performance, such as dimensionality, is provided. In such cases, we can rely
on the AUROC metric, as it retains clinical relevance even in unbalanced datasets. Based on these
considerations, as reported in the comparison Table 5, our best bimodal configuration achieves a higher
AUROC on unseen data compared to the other existing bimodal approaches. This result suggests that
valuable information can be extracted directly from the temporal characteristics of these signals without
the need for manual feature extraction or a 2D time-frequency representation. Additionally, we mitigate
the overfitting issue that can arise when data is limited and the model has too many parameters, as
may be the case for P. Li et al. [3], by reducing the model’s complexity. Despite the model’s strong
performance, its generalizability remains limited due to reliance on a single bimodal dataset. To assess
the model’s adaptability in real-world scenarios, particularly across diverse patient populations, a more
comprehensive data acquisition process is crucial. Another limitation of this work involves the absence
of explainability techniques, avoiding a clearer understanding of which modality contributes most
significantly to the predictions. Identifying the contributions of each modality would provide valuable



Table 5
Perfomance comparison with related works.

Author AUROC Accuracy Recall Specificity
Chakir et al. [19] 95.1% 92.5% 92.3% 92.9%

P. Li et al. [3] 93.6% 87.3% 90.3% 84.5%
Hettiarachchi et al. [27] 93.8% 87.7% 87.7% 87.5%

Vieira [29] 91.3% 82.8% 93.1% 57.1%
Our model 96.4% 90.6% 93.9% 87.4%

insights into the model’s decision-making process, enhancing interpretability and supporting more
reliable clinical applications. Addressing this limitation could be a key focus for future development.

7. Conclusions

In this work, we conducted an in-depth analysis of previous research regarding the use of ECG and PCG
signals in developing ML models for early CVD detection. We explored a promising transfer learning
approach by leveraging publicly available unimodal PCG datasets to address the challenge of insufficient
bimodal ECG-PCG data. However, our findings indicate that this approach does not fully answer the
limitations posed by the lack of enough bimodal datasets, highlighting the need for further efforts in
this area. Nevertheless, our results confirm the effectiveness of a multimodal approach, demonstrating
that combining the complementary insights from ECG and PCG signals can significantly enhance CVD
detection compared to single-modality approaches. Our proposed bimodal model, built on 1D-CNN
architectures and employing a late fusion strategy, outperforms existing methods, achieving an AUROC
of 96.4% in abnormal heart condition detection, and demonstrating its potential for integration into
large-scale CVD screening systems.
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