
Towards Efficient Norm-Aware Robots’ Decision Making

Using Datalog

Mahrokh Mirani
1
, Franco Raimondi

1
and Nicolas Troquard

1

1Gran Sasso Science Institute (GSSI), Viale Luigi Rendina 26-28, 67100 L’Aquila, Italy

Abstract

Social, Legal, Ethical, Empathetic, and Cultural (SLEEC) requirements are a key concern for the implementation

of autonomous agents, such as robots. Existing work has focused on the definition of domain-specific languages

for SLEEC rules, and on approaches to ensure the consistency of these rules.

Motivated by the fact that normative deliberation is likely to happen on board, in devices with limited

resources, we investigate methods for the efficient computation of obligations that arise from SLEEC rules.

More in detail, we show that encoding SLEEC rules in Datalog can provide a scalable solution for the

computation of obligations. We demonstrate this through two use cases: we compute the obligations of a robotic

assistant in a care home, and the obligations of an online personal assistant performing charity donations on

behalf of a user. Our results show that a declarative approach can scale both in Boolean and in arithmetic domains

to very large instances.

Keywords

Normative rules, Efficient reasoning, Datalog

1. Introduction

The current trend in autonomous, AI-based robotic applications to support daily human activities,

together with new regulations coming into effect, such as the EU AI Act
1
, are attracting a growing

interest around the issue of specifying and reasoning about norms that regulate human - (autonomous)

robot interactions (see [1] and references therein). One approach that has been suggested to manage

these norms is the adoption of a domain-specific language and an elicitation methodology for Social,

Legal, Ethical, Empathetic and Cultural (SLEEC) rules. More in detail, Townsend et al. [2] propose

a methodology to elicit normative rules for multi-agent systems. The process follows an iterative

approach, in which a default rule is progressively refined to accommodate exceptions. Following it,

philosophers, ethicists, lawyers, domain experts, and other professionals can derive normative rules

specific to a particular domain.

Townsend et al. [2] illustrate the elicitation process on a running example and obtain the rule

presented in Example 1. We employ Boolean atomic propositions in square brackets to capture specific

facts. Notice also the presence of the keyword UNLESS introducing what is called a defeater for the

preceding obligation; see Section 2 for additional details.

Example 1. When the user tells the robot to open the curtains [𝑎𝑠𝑘] then the robot should open the curtains
[𝑜𝑝𝑒𝑛], UNLESS the user is ‘undressed’ [¬𝑑𝑟𝑒𝑠𝑠𝑒𝑑] in which case the robot does not open the curtains
[𝑛𝑜𝑡_𝑜𝑝𝑒𝑛] and tells the user ‘the curtains cannot be opened while you, the user, are undressed,’ [𝑠𝑎𝑦]
UNLESS the user is ‘highly distressed’ [ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑] in which case the robot opens the curtains
[𝑜𝑝𝑒𝑛].

3rd Workshop on Bias, Ethical AI, Explainability and the Role of Logic and Logic Programming (BEWARE24), co-located with
AIxIA 2024, November 25-28, 2024, Bolzano, Italy
$ mahrokh.mirani@gssi.it (M. Mirani); franco.raimondi@gssi.it (F. Raimondi); nicolas.troquard@gssi.it (N. Troquard)

� https://orcid.org/0009-0003-9052-5408 (M. Mirani); https://orcid.org/0000-0002-9508-7713 (F. Raimondi);

https://orcid.org/0000-0002-5763-6080 (N. Troquard)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

https://eur-lex.europa.eu/eli/reg/2024/1689/oj

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mahrokh.mirani@gssi.it
mailto:franco.raimondi@gssi.it
mailto:nicolas.troquard@gssi.it
https://orcid.org/https://orcid.org/0009-0003-9052-5408
https://orcid.org/https://orcid.org/0000-0002-9508-7713
https://orcid.org/https://orcid.org/0000-0002-5763-6080
https://creativecommons.org/licenses/by/4.0/deed.en
https://eur-lex.europa.eu/eli/reg/2024/1689/oj

Towards tractable norm-aware decision making. The rules produced by the elicitation are

expressed in natural language. Previous research demonstrated how to compile them into formal repre-

sentations using a domain-specific language [3]. However, general reasoning with these formalizations

is computationally intractable. Troquard et al. [4] show that reasoning with propositional SLEEC rules is

NP-hard in general. They also propose implementations of the SLEEC rules in Answer Set Programming

and Prolog, which are in general Σ𝑝
2-hard and undecidable, respectively. Feng et al. [5] translate SLEEC

rules into a predicate logic that is also undecidable.

As the amount of data to be processed in a system grows, the less likely a norm-informed decision

will be possible, especially when time performance is a concern.

Contribution. This work investigates the application of logic programming, and in particular Datalog,

to the problem of computing the obligations that arise from SLEEC rules. Logic programming has been

proposed in the past to express norms in AI systems to achieve transparency and explainability [6].

In our work we focus on efficiency, and we do so by identifying specific fragments of the general

syntax of SLEEC rules: in particular, we assume (1) that we can partition the domain into observations

and obligations, and (2) that obligations take effect immediately and do not have time constraints.

Formally, given a set of SLEEC rules, given a set of observations 𝐴 obtained through sensors, and

given an obligation 𝐵(�⃗�), does 𝐵(�⃗�) hold? We call this problem Obligation Inference. We provide

a translation from SLEEC rules to Datalog and we employ Soufflé
2

to validate our approach on two

use cases: a robot in a care home (Boolean domain, scaling on the number of rooms and the number

of patients) and a software agent acting on behalf of a user to select donations for charities (numeric

domain, scaling on the number of users and the number of charities). Our preliminary results show that

the approach can scale to very large instances (millions of users and rooms; thousands of charities).

The rest of the paper is organised as follows. We provide a formalization of SLEEC rule fragment we

address, its translation into classical logic formulae, and the Datalog encoding in Section 2. We report

experimental results in Section 3 and we conclude in Section 4.

2. Making Obligation Inference scale

As discussed in [2] and in [3], SLEEC rules can be expressed in natural language or in a domain-specific

language using the pattern if condition then obligation UNLESS condition in which case
obligation UNLESS condition in which case obligation... We formalize this syntax as follows:

Definition 1. SLEEC rules are expressions of the form

IF 𝐴0 THEN 𝐵0,
UNLESS 𝐴1 IN WHICH CASE 𝐵1,
UNLESS 𝐴2 IN WHICH CASE 𝐵2,
. . .
UNLESS 𝐴𝑛 IN WHICH CASE 𝐵𝑛.

where, 𝐴𝑖 and 𝐵𝑖 are arbitrary formulae. We make the additional assumption that 𝐴𝑖 and 𝐵𝑖 are Boolean
expressions built using the standard connectives (conjunction, disjunction, negation, etc.), in which the
atoms are either Boolean atoms (i.e, 𝑝, 𝑞, . . .) or atomic predicates for first order relations (e.g., 𝑅(𝑥, 𝑦),
𝑥 ≤ 𝑦, etc.). We use the notation 𝑆𝑅 = {𝐴𝑖, 𝐵𝑖}𝑖∈{0,...,𝑛} to denote a generic SLEEC rule, representing the
𝑛 pairs of condition (or defeater) and obligation.

To illustrate this with propositional atoms, consider the SLEEC rule of Example 1. We have that

all expressions are Boolean and 𝐴0 = 𝑎𝑠𝑘, 𝐵0 = 𝑜𝑝𝑒𝑛, 𝐴1 = ¬𝑑𝑟𝑒𝑠𝑠𝑒𝑑, 𝐵1 = 𝑛𝑜𝑡_𝑜𝑝𝑒𝑛 ∧ 𝑠𝑎𝑦,

𝐴2 = ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑, and 𝐵2 = 𝑜𝑝𝑒𝑛. Notice that the atom 𝑛𝑜𝑡_𝑜𝑝𝑒𝑛 should be read as “the

robot has an obligation not to open the curtains”, and is therefore treated differently from the atomic

proposition 𝑜𝑝𝑒𝑛.

2

https://souffle-lang.github.io/

https://souffle-lang.github.io/

In the following, we exploit the simple fact that the 𝐴𝑖’s are about states of affairs that are ‘sensed’, and

the 𝐵𝑖’s are obligations, usually in the form of actions required from the robot, and thus are constituted

of Boolean atoms and atomic predicates from two independent domains, Sensing and Obligations,

such that Sensing ∩ Obligations = ∅.

Compiling SLEEC rules into classical logic. We first remark that the semantics of SLEEC rules

adopted by Feng et al. [7, 5] induces a preference ordering in the obligations. As an example, consider

again Example 1: the last obligation corresponding to opening the window when the user is highly

distressed has a “higher priority” than the previous obligations. Thus, we compute obligations starting

from the highest index. Formally:

Definition 2. Given a SLEEC rule 𝑆𝑅 = {𝐴𝑖, 𝐵𝑖}𝑖∈{0,...,𝑛}, the corresponding logic encoding is as follows:

𝐴0 ∧𝐴𝑛 → 𝐵𝑛⋀︀
𝐴0 ∧ ¬𝐴𝑛 ∧𝐴𝑛−1 → 𝐵𝑛−1⋀︀

. . .⋀︀
𝐴0 ∧ ¬𝐴𝑛 ∧ ¬𝐴𝑛−1 ∧ · · · ∧ ¬𝐴1 → 𝐵0

Considering again Example 1, the corresponding logic translation is:

((𝑎𝑠𝑘 ∧ ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑) → 𝑜𝑝𝑒𝑛)

∧ ((𝑎𝑠𝑘 ∧ ¬ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 ∧ ¬𝑑𝑟𝑒𝑠𝑠𝑒𝑑) → (𝑛𝑜𝑡_𝑜𝑝𝑒𝑛 ∧ 𝑠𝑎𝑦))

∧ ((𝑎𝑠𝑘 ∧ ¬ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑑 ∧ ¬¬𝑑𝑟𝑒𝑠𝑠𝑒𝑑) → 𝑜𝑝𝑒𝑛)

(where the double negation for 𝑑𝑟𝑒𝑠𝑠𝑒𝑑 is left for clarity).

In terms of complexity, notice that the size of this translation is polynomial in the size of the rule,

specifically 𝑂(|𝑆𝑅|2).

Compiling SLEEC rules into Datalog. For our Datalog translation we use the tool Soufflé
3
. Given

the translation of SLEEC rules into logic in Definition 2, the Datalog translation follows a nearly identical

pattern. We introduce a relation for each atomic proposition or predicate 𝐴𝑗
𝑖 and for each obligation

𝐵𝑙
𝑘. Boolean expressions over atoms in Sensing and over Obligations are translated directly, with

the only additional assumption that negations should be stratified4
. The relations corresponding to the

atoms in Sensing are user-provided through facts, while the relations corresponding to the atoms in

Obligations are obtained through rules and are written to a file.

As a concrete example, the following Datalog snippet is a possible encoding of Example 1:

/ / These a r e atoms from S e n s i n g

. d e c l u s e r (u : symbol) / / u i s a u s e r

. d e c l ask (a c t i o n : symbol) / / the u s e r a s k s t o per form an a c t i o n

. d e c l d r e s s e d (u : symbol) / / the u s e r i s d r e s s e d

. d e c l h i g h l y _ d i s t r e s s e d (u : symbol) / / the u s e r i s d i s t r e s s e d

. i n p u t u s e r

. i n p u t ask

. i n p u t d r e s s e d

3

https://souffle-lang.github.io

4

See https://souffle-lang.github.io/rules#negation-in-rules. In practice, since the relations in Sensing and Obligations are

over external entities such as windows and users, stratification is usually possible. See examples in Section 3.

https://souffle-lang.github.io
https://souffle-lang.github.io/rules#negation-in-rules

. i n p u t h i g h l y _ d i s t r e s s e d

/ / These a r e atoms from O b l i g a t i o n s

. d e c l open (window : symbol) / / the r o b o t has an o b l i g a t i o n t o open the

window f o r the u s e r

. d e c l not_open (window : symbol) / / the r o b o t has an o b l i g a t i o n not t o open

the window f o r the u s e r

. d e c l say (message : symbol) / / the r o b o t has an o b l i g a t i o n t o t e l l the

message t o the u s e r

/ / Th i s i s the encod ing o f the r u l e s

open (" window ") : − ask (" open window ") , h i g h l y _ d i s t r e s s e d (u) , u s e r (u) .

not_open (" window ") : − ask (" open window ") , ! h i g h l y _ d i s t r e s s e d (u) , ! d r e s s e d (u

) , u s e r (u) .

say (" cannot open window ") : − ask (" open window ") , ! h i g h l y _ d i s t r e s s e d (u) , !

d r e s s e d (u) , u s e r (u) .

open (" window ") : − ask (" open window ") , ! h i g h l y _ d i s t r e s s e d (u) , d r e s s e d (u) ,

u s e r (u) .

3. Experimental Results

To examine the applicability of our translation of the SLEEC rules to Datalog we conduct two experiments.

The first one is an extension of the Robot Assisted Dressing from Townsend et al. [2] and encoded in

Example 1, which only includes Boolean conditions: we extend the example by considering multiple

users and multiple rooms. The second example is a charity donation program which also includes

arithmetic conditions. We investigate the scalability of these two programs with respect to the input

data. The experiments are carried out on a machine with M1 Pro chip with eight cores and 16 GB RAM,

running macOS Sonoma (14.5) and Soufflé version 2.4.1.

3.1. Robot Assisted Dressing

In order to show pertinent and significant experiments, we extend Example 1 from the literature to

handle a varying number of participating objects (rooms and users). In this variant of the scenario,

there are multiple users and multiple rooms, and a single robot. Each user and window are in a given

room, encoded as 𝑖𝑛_𝑟𝑜𝑜𝑚(𝑥, 𝑟𝑜𝑜𝑚). The problem can be elicited as follows:

Example 2. When a user 𝑢𝑖 asks the robot has an obligation to open the curtains of window 𝑤𝑗 (encoded
as 𝑎𝑠𝑘(𝑢𝑖, 𝑤𝑗)) then the robot should open the curtains of window 𝑤𝑗 (𝑜𝑝𝑒𝑛(𝑤𝑗)), UNLESS the user 𝑢𝑖 is
‘undressed’ (¬𝑑𝑟𝑒𝑠𝑠𝑒𝑑(𝑢𝑖)) in which case the robot has an obligation not to open the curtains of window
𝑤𝑗 (𝑛𝑜𝑡_𝑜𝑝𝑒𝑛(𝑤𝑗)) and tells the user ‘the curtains of window 𝑤𝑗 cannot be opened (𝑠𝑎𝑦(𝑢)), UNLESS the
user 𝑢𝑖 is ‘highly distressed’ (ℎ𝑖𝑔ℎ𝑙𝑦_𝑑𝑖𝑠𝑡𝑟𝑒𝑠𝑠(𝑢𝑖)) in which case the robot opens the curtains of window
𝑤𝑗 (𝑜𝑝𝑒𝑛(𝑤𝑗)), UNLESS the user 𝑢𝑖 is not in the same room as window 𝑤𝑗 in which case the robot does not
open the curtains of window 𝑤𝑗 (𝑛𝑜𝑡_𝑜𝑝𝑒𝑛(𝑤𝑗)) and tells the user ‘the curtains of window 𝑤𝑗 cannot be
opened (𝑠𝑎𝑦(𝑢)).

Applying the compilation presented in Section 2, one obtains the following rules (informally):

• if user asks, and user and window are not in the same room, then not open and say something

• if user asks, user is highly distressed, and user and window are in the same room, then open

• if user asks, user is not dressed, user is not highly distressed, and user and window are in the

same room, then not open and say something

• if user asks, user is dressed, user is not highly distressed, and user and window are in the same

room, then open

Figure 1: Execution time of assisted dressing robot example

The following Datalog snippet reports the key rules employed in the experiments:

. d e c l aux_same_room (t h i n g 1 : symbol , t h i n g 2 : symbol) / / t h i n g 1 and t h i n g 2

a r e i n the same room

. d e c l aux_ask_open (u s e r : symbol , r o b o t : symbol , window : symbol) / / u s e r

a s k s r o b o t t o open c u r t a i n s o f window

aux_same_room (x , y) : − in_room (x , room) , in_room (y , room) .

aux_ask_open (u , r ,w) : − r o b o t (r) , u s e r (u) , ask (u , a ,w) , a =" open " .

not_open (r , w, u) : − aux_ask_open (u , r ,w) , ! d r e s s e d (u) , ! h i g h l y _ d i s t r e s s e d (u) ,

aux_same_room (u ,w) .

not_open (r , w, u) : − aux_ask_open (u , r ,w) , ! aux_same_room (u ,w) .

say (r , w, u) : − aux_ask_open (u , r ,w) , ! d r e s s e d (u) , ! h i g h l y _ d i s t r e s s e d (u) ,

aux_same_room (u ,w) .

say (r , w, u) : − aux_ask_open (u , r ,w) , ! aux_same_room (u ,w) .

open (r , w, u) : − aux_ask_open (u , r ,w) , d r e s s e d (u) , ! h i g h l y _ d i s t r e s s e d (u) ,

aux_same_room (u ,w) .

open (r , w, u) : − aux_ask_open (u , r ,w) , h i g h l y _ d i s t r e s s e d (u) , aux_same_room (u ,

w) .

Figure 1 reports the execution time for this example as a function of the number of users and the

number of rooms. The number of rooms is plotted using a logarithmic scale on the X-axis. As shown in

the picture, Soufflé can analyze 106 users in 107 rooms in approximately 12 seconds. The execution

time increases linearly with the number of rooms (notice that the plot of Figure 1 has a logarithmic

scale on the X-axis). Observe also that in this example the number of rules remains constant.

3.2. Charity Donation

In this novel scenario, a person configures a bot to represent them online. When choosing a charity

among various options to make a donation, the bot must choose the charity with the minimum number

of donations so far. In the case that there is more than one charity with the minimum amount of

donations, the person has an ordered list that shows his/her preference over the charities. Assuming

that these charities are sorted according to the preference (charity 1 is the least preferred), we can elicit

the problem as follows:

Example 3. When the user wants to donate money then donate to charity 1, UNLESS charity 2 received
the minimum amount of donations in which case donate to charity 2, UNLESS charity 3 has received the
minimum amount of donations in which case donate to charity 3, . . . , UNLESS charity n has received the
minimum amount of donations, in which case donate to charity n.

Applying the compilation presented in Section 2, in the case of three charities one obtains the following

rules (informally):

• if user wants to donate, and charity 3 received the minimum amount of donations, then donate to

charity 3;

• if user wants to donate, charity 2 received the minimum amount of donations, and charity 3 has

not received the minimum amount of donations, then donate to charity 2;

• if user wants to donate, charity 2 has not received the minimum amount of donations, and charity

3 has not received the minimum amount of donations, then donate to charity 1;

This example can be scaled both in the number of users that have previously donated and also in the

number of charities which, differently from the previous example, results in an increasing number of

rules. We formulated this problem in Datalog as explained previously. In this specific case, we use a

variable of type number to count the donations received by each charity, and the aggregation functions

count and min to express the rules. As an example, the rule to donate to charity 2 is as follows:

b o t _ d o n a t e s _ t o (" c2 ") : − c o u n t _ f o r _ c h a r i t y (" c2 " , t 2) , minimum_val (t 2) ,

c o u n t _ f o r _ c h a r i t y (" c3 " , t 3) , ! minimum_val (t 3) .

where count_for_charity("c2",t2) is a predicate that encodes in t2 the number of users that

have donated for the second charity, and minimum_val(t2) is true if t2 is the minimum value for

charity donations.

Figure 2 shows the execution time for different numbers of users and charities. On the one hand, it

can be observed that changes in the number of users don’t affect performance significantly: for a given

number of charities, the execution time for users from 100 to 1,000,000 is nearly identical. On the other

hand, increasing the number of charities has a more significant impact due to an increase in the size of

the SLEEC rule, reflected in an increased number of Datalog rules.

Overall, considering both the first and the second scenarios, we can conclude that Datalog seems to

have excellent scalability performance in terms of the size of the input facts (also called data complexity).

In terms of number of rules (program complexity), the performance does not seem to scale as well, even

if Datalog can still handle hundreds of rules, up to 1,000 in less than 15 minutes, on a standard laptop

and without optimizations nor pre-compilation.

4. Conclusion

There is an increasing need for autonomous systems capable of efficient norm-following decision

making. Previous research has shown how to formalise Townsend et al. [2]’s SLEEC rules in various

logics and how to reason about the consistency of these rules. In these logics the decision problem

Obligation Inference considered here remains computationally complex, or even undecidable, in

general. Obligation Inference asks whether an obligation follows from a set of SLEEC rules and a set

of observations. In this paper, we assume that SLEEC rules are consistent and we proposed to translate

SLEEC rules into Datalog programs, for rules not including time and built using either Boolean atoms

or atomic relations.

We illustrated our approach with two scenarios and evaluated the performance of the Datalog solver

Soufflé. These preliminary experiments indicate that Datalog is well-suited for representing SLEEC

principles, for inferring autonomous agents’ obligations, and with excellent scalability features.

Figure 2: Execution time of charity donation example

In the future, we plan to apply our approach to more scenarios in order to understand the possible

limitations. We also plan to investigate the complexity of the Obligation Inference in various

fragments, possibly extended with time. We also intend to integrate it into robotic platforms to perform

the computation of obligations at run-time, for instance as a ROS module [8].

References

[1] M. De Sanctis, P. Inverardi, P. Pelliccione, Do modern systems require new quality dimensions?, in:

A. Bertolino, J. Pascoal Faria, P. Lago, L. Semini (Eds.), Quality of Information and Communications

Technology, Springer Nature Switzerland, Cham, 2024, pp. 83–90.

[2] B. Townsend, C. Paterson, T. T. Arvind, G. Nemirovsky, R. Calinescu, A. Cavalcanti, I. Habli,

A. Thomas, From pluralistic normative principles to autonomous-agent rules, Minds and

Machines 32 (2022) 683–715. URL: https://doi.org/10.1007/s11023-022-09614-w. doi:10.1007/
s11023-022-09614-w.

[3] S. G. Yaman, C. Burholt, M. Jones, R. Calinescu, A. Cavalcanti, Specification and validation of

normative rules for autonomous agents, in: L. Lambers, S. Uchitel (Eds.), Fundamental Approaches

to Software Engineering, Springer Nature Switzerland, Cham, 2023, pp. 241–248.

[4] N. Troquard, M. De Sanctis, P. Inverardi, P. Pelliccione, G. L. Scoccia, Social, legal, ethical, empathetic,

and cultural rules: Compilation and reasoning, in: M. J. Wooldridge, J. G. Dy, S. Natarajan (Eds.),

Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on

Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational

Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, AAAI

Press, 2024, pp. 22385–22392. URL: https://doi.org/10.1609/aaai.v38i20.30245. doi:10.1609/AAAI.
V38I20.30245.

[5] N. Feng, L. Marsso, S. G. Yaman, Y. Baatartogtokh, R. Ayad, V. O. de Mello, B. A. Townsend,

I. Standen, I. Stefanakos, C. Imrie, G. N. Rodrigues, A. Cavalcanti, R. Calinescu, M. Chechik,

Analyzing and debugging normative requirements via satisfiability checking, in: Proceedings of the

46th IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,

https://doi.org/10.1007/s11023-022-09614-w
http://dx.doi.org/10.1007/s11023-022-09614-w
http://dx.doi.org/10.1007/s11023-022-09614-w
https://doi.org/10.1609/aaai.v38i20.30245
http://dx.doi.org/10.1609/AAAI.V38I20.30245
http://dx.doi.org/10.1609/AAAI.V38I20.30245

April 14-20, 2024, ACM, 2024, pp. 214:1–214:12. URL: https://doi.org/10.1145/3597503.3639093.

doi:10.1145/3597503.3639093.

[6] A. Dyoub, S. Costantini, F. A. Lisi, Logic programming and machine ethics, Electronic Proceedings

in Theoretical Computer Science 325 (2020) 6–17. URL: http://dx.doi.org/10.4204/EPTCS.325.6.

doi:10.4204/eptcs.325.6.

[7] N. Feng, L. Marsso, S. G. Yaman, B. Townsend, A. Cavalcanti, R. Calinescu, M. Chechik, Towards

a formal framework for normative requirements elicitation, in: 38th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023,

IEEE, 2023, pp. 1776–1780.

[8] Stanford Artificial Intelligence Laboratory et al., Robotic operating system, 2018. URL: https://www.

ros.org.

https://doi.org/10.1145/3597503.3639093
http://dx.doi.org/10.1145/3597503.3639093
http://dx.doi.org/10.4204/EPTCS.325.6
http://dx.doi.org/10.4204/eptcs.325.6
https://www.ros.org
https://www.ros.org

	1 Introduction
	2 Making Obligation Inference scale
	3 Experimental Results
	3.1 Robot Assisted Dressing
	3.2 Charity Donation

	4 Conclusion

