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Abstract
We are witnesses to a society in which the growing need for Artificial Intelligence in every aspect of life has
pushed the research in the field. However, this enduring effort often leads to a lack of conscience in the process
of evaluation of results from several perspectives. One of the most still underrepresented aspects is the detection
of possible biases in the datasets used for model training, leading to unforecastable consequences for society or
specific groups of people. Techniques generally used in traditional Machine Learning settings like perturbation or
randomization can also be part of the evaluation of the dataset itself, in order to distinguish whether perturbations
on sensitive features lead to significant changes in the output. What we propose here is a solution that allows
making fictitious instances given the possibility of varying the values, thanks to ontology definitions that specify
all the possible combinations for the different instances, and a metric to measure the distance between them.
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1. Introduction

In the realm of Machine Learning (ML) becoming more and more pervasive and crucial in our everyday
life activities, the capability of understanding the process governing decision-making phases of algo-
rithms is essential to connect to Artificial Intelligence (AI) in a responsible and effective way. Basically,
all the ML models learn by a first step of instance training, in which the model learns the correlation
between input data and the target (correct in theory) label. The correlation between input and target
will be the rationale for the algorithm to predict unseen data, the ones that we are interested in and
make use of constantly.

In more recent years, the community of ML engineers, but not only, has raised the problem of how the
models are trained. Specifically, they refer to the process of collecting and managing training data that
the model is based on for the rest of its life. The problem we are mentioning is the dataset unbalancement,
a sort of problem in which the dataset presents some biases, which can be defined as patterns that
should not appear in the data because it does not reflect the reality of the domain we are describing.
Many patterns emerging from datasets can be misleading, false, or appear only with the specificity of
the data. Still, we are referring to those that can harm some categories of people, or that lead to unfair
decision-making processes. Recognizing unfair datasets or biases is even a recent line of research in
which researchers endeavour to find techniques for detecting and (possibly solving) biases in data. One
of the most frequent tasks for which a great extent of bias has been detected is the classification of
criminals that, unfortunately, in many situations resulted in using ethnicity as one of (if not THE) main
features [1]. Among the possible solutions to deal with this problem, much room has been dedicated to
explainable or reasoning techniques. They are particularly suitable given their interpretable nature, and
the capability of experts to evaluate the quality of the model. There are, on the other hand, techniques
for improving ML models based on data perturbation or randomization. Perturbing is the process of
(pseudo-)randomly varying values of instances to evaluate how the model behaves after perturbation. In
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the context of dataset evaluation, we exploit data perturbation to understand whether slight changes in
the instance (most likely in the suspected biased features) lead to significant changes in the prediction.
For instance, one of the basic questions we want to be able to answer is ’What happens if I change
the ethnicity of the instance?’. Perturbating values can be done in many ways but, in order to create
instances that make sense, we should know all the possible domains for the feature, so we know that
’caucasian’ is a possible value to test while ’42’ is not. For this purpose, we work under the assumption
that data is based on ontology (or schema). This is twofold: (i) we know exactly the domains of values
for each property, and (ii) we have a strategy to measure instances of the same class. Without this
assumption, an ontology alignment phase would be necessary.

2. Related Works

In traditional ML settings, bias is statistically detected [2]. Yet these kinds of analyses are time-consuming
in large scenarios and do not always provide evidence of the consequences of the biases in the decision
process. The most common causes of biases are dataset imbalance and label errors [3]. Statistical
analysis can mitigate this problem but, still, there is no measure for computing bias to the best of our
knowledge. Given the subtle nature of biases, it is quite common to prefer interpretable models over
others. For the sake of interpretability, decision trees are still one of the most frequent solutions to
recognize and solve the decision processes. Going further in this direction, Logic in AI is increasingly
mixing up with concerns like machine ethics and fairness.

Here we are interested in measurement bias [4], i.e. when improper features become too selective for
the classification. In [5, 6, 7] a regularization-based technique has been proposed to mitigate unfairness.
One of the most common solutions is to train multiple classifiers (ensembled) [8, 9, 10]. Zafar et al. [11]
provided a mathematical interpretation of bias and developed a constraint-based solution to find the
optimal classifier. Kamirant et al. [] exploited the information available about the possible values for
every feature. In this way, they developed a preferential sampling that projects instances into a space in
which it becomes evident those that are more susceptible to bias. These statistical approaches do not
rely on any ontological knowledge, meaning that quite often the discriminative features need to be
recognised. Statistical techniques, although highly specialized in tackling the problem, barely cannot
provide a measure of imbalance, that is generally recognised as the imbalance in the dataset.

More related to symbolic solutions, Adams et al. [12] designed a Fuzzy Logic-based model capable of
outperforming black box technologies for financial support with the introduction of regulations and
fair outcomes. Fuzzy Logic was introduced by Zadeh [13] as an extension of predicate logic for the
efficient management and computation of fuzzy concepts (like “fairness”) and fuzzy rules (bureaucracy
in general).

3. Methodology

In this section, we briefly describe our methodology for data perturbation in the context of ontology-
based data. In this context, we define an ontology 𝒪 = (𝒞,𝒫,ℛ) where 𝒞 is a set of classes,
each of them uniquely identified by its name, 𝒫 a named function 𝒫 : 𝒞 × 𝒟 from entities to a
generic domain 𝒟. Without losing generality, we suppose 𝒟 can only be one of these domains
{𝐼𝑛𝑡, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, 𝑂𝑟𝑑𝑒𝑟𝑒𝑑, 𝑆𝑡𝑟𝑖𝑛𝑔}. 𝐼𝑛𝑡 represents a set of number withing a range. 𝑂𝑟𝑑𝑒𝑟𝑒𝑑
is a set of defined values like 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 but ordered like Likert scales. 𝒫 expresses all the possible
properties that can be defined for instances. If a property exists for a class at the ontological level, it
means that it might be present also in instances. On the other hand, if a property is present for instances,
it must exists also in the ontological level. ℛ : 𝒞 −→ 𝒞 is the set of relationships between entities. In this
work, we do not take them into account. Among the relationships, isA the relationship expressing the
subclass ontological concept. This will be useful since instances can be compared only if they belong to
the same entity or one is subclass of the other. We assume every instance belongs to exactly one class
and that, for each class, there exists at most one isA relationship, i.e. single inheritance.



3.1. Feature Similarity

Given the above setting, we can now define how to measure differences between features of instances.
Features are the peculiar characteristics of instances, described in the form of the above-mentioned
properties. Remind that the domain 𝒟 can be any of {𝐼𝑛𝑡, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, 𝑂𝑟𝑑𝑒𝑟𝑒𝑑, 𝑆𝑡𝑟𝑖𝑛𝑔}, and so a
distance metric must be defined for each of them. Specifically, we propose the following ones:

• Int: given 𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟 ∈ N, 𝑙𝑜𝑤𝑒𝑟 ≤ 𝑢𝑝𝑝𝑒𝑟, a range ℐ = [𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟] and 𝑥, 𝑦 ∈ ℐ ,

0 ≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) =
2 · ⌈log2 |𝐼|⌉ · |𝑥− 𝑦|

|𝐼|
≤ 2 · ⌈log2 |𝐼|⌉

• Date: given 𝑥, 𝑦 two dates expressed as yyyy/mm/dd, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) is equal to the ordinary
number of days separating the two.

• Categorical: given a set of labels ℒ and 𝑥, 𝑦 ∈ ℒ,

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) =

{︃
1, if 𝑥 ̸= 𝑦

0, otherwise

Note that with |ℒ| = 2 (boolean case), we can map this case onto the 𝐼𝑛𝑡 with ℐ = {0, 1} and
we have 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(0, 1) = 2·⌈log2 |∈|⌉·|0−1|

2 = 1 as expected.
• Ordered: given a set of labels ℒ and a bijective function 𝑂 : ℒ −→ {0, 1, ..., |𝐿| − 1} specifying

the order and 𝑥, 𝑦 ∈ ℒ,

0 ≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = |𝑂(𝑥)−𝑂(𝑦)| ≤ |ℒ|

• String: given an alphabet Σ and 𝑥, 𝑦 ∈ Σ*,

0 ≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = 𝐷𝐿(𝑥, 𝑦) ≤ 𝑚𝑎𝑥{|𝑥|, |𝑦|}

where 𝐷𝐿(𝑥, 𝑦) is the Damerau-Levenshtein distance [14], particularly useful and suited for
spell-checking.

In principle, an ontology designer may recognize which are the most prominent features to define
similarity between instances of the same class. For instance, the features name and surname for Person
will be much more useful than age or title. Suppose for each property 𝑝 ∈ 𝑃 we have a weight function
𝑊 : 𝑃 −→ 𝑅, the overall distance between two instances 𝑑1, 𝑑2 is

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑1, 𝑑2) =

∑︀
𝑝∈𝑃𝑑1∩𝑃𝑑2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝(𝑑1), 𝑝(𝑑2)) · 𝑤(𝑝)∑︀
𝑝∈𝑃𝑑1∩𝑃𝑑2

𝑤(𝑝)

where 𝑃𝑑 represents the set of properties available for instance 𝑑, and 𝑝(𝑑) the value of property 𝑝 for
instance 𝑑.

Unfortunately, it is not always the case for weighting properties for practical reasons given the time
required in specifying all the weights, but also for the specificity of the domain knowledge required.
For these reasons, it is much more convenient to identify a generic strategy based on types. Like the
example about name and surname, it is intuitive to assume that 𝑆𝑡𝑟𝑖𝑛𝑔 types are much more relevant
in similarity computation. This is because the free text provides (in general) more specific information,
and their equality/inequality provides quite often a good guess of how similar two instances are. If you
reason with generic real-world instances you may think about people (often identified by name and
surname), objects (which have name), places (which have names and addresses) and so on. For this
reason, we prioritize similarities between strings over the others. Next, we claim that dates are stable,
reflecting the date for which events happened. Apart from errors, it can be referred to as a meaningful
feature for understanding similarity. Finally, integer values are less stable than categories, in the sense
that the number of times for which something happened is subject to changes over time. Following the



above-mentioned idea of weighting, we now assign the same weight to all the features of the same type.
In this case, it is much easier for an ontology designer to weigh only types, which should be a few in
principle. Naming 𝛼𝑠𝑡𝑟𝑖𝑛𝑔 , 𝛼𝑑𝑎𝑡𝑒, 𝛼𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, 𝛼𝑜𝑟𝑑𝑒𝑟𝑒𝑑, 𝛼𝑖𝑛𝑡 the weights of types (respectively) 𝑆𝑡𝑟𝑖𝑛𝑔,
𝐷𝑎𝑡𝑒, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, 𝑂𝑟𝑑𝑒𝑟𝑒𝑑, 𝐼𝑛𝑡, and 𝒯 = {𝑆𝑡𝑟𝑖𝑛𝑔,𝐷𝑎𝑡𝑒, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙, 𝑂𝑟𝑑𝑒𝑟𝑒𝑑, 𝐼𝑛𝑡} the formula
will be:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑑1, 𝑑2) =

∑︀
𝑡∈𝑇 𝛼𝑡

∑︀
𝑝∈𝑃𝑑1∩𝑃𝑑2,𝑃 (𝑝)=𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝(𝑑1), 𝑝(𝑑2))∑︀

𝑡∈𝑇 𝛼𝑡 · |𝑝 ∈ 𝑃𝑑1 ∩ 𝑃𝑑2, 𝑃 (𝑝) = 𝑡|

Given the interpretable and ontology-based nature of the problem, we implemented the procedure
for distance computation in Prolog. Listing 1 shows the main computation.

Listing 1: Prolog Code for an example of distance computation

1 node_distance(N1, N2, AlfaInt, AlfaDate, AlfaCategorical, AlfaOrdered, AlfaString
, Properties, Distance) :-

2 findall(P1, property(N1, P1, _), Properties1),
3 findall(P2, property(N2, P2, _), Properties2),
4 findall(P, (member(P, Properties1), member(P, Properties2)), Properties),
5 findall(P, (member(P, Properties), type(P, int)), IntProperties),
6 findall(P, (member(P, Properties), type(P, date)), DateProperties),
7 findall(P, (member(P, Properties), type(P, categorical)),

CategoricalProperties),
8 findall(P, (member(P, Properties), type(P, ordered)), OrderedProperties),
9 findall(P, (member(P, Properties), type(P, string)), StringProperties),

10 node_int_distance(N1, N2, IntProperties, 0, DInt),
11 node_date_distance(N1, N2, DateProperties, 0, DDate),
12 node_categorical_distance(N1, N2, CategoricalProperties, 0, DCategorical)

,
13 node_ordered_distance(N1, N2, OrderedProperties, 0, DOrdered),
14 node_string_distance(N1, N2, StringProperties, 0, DString),
15 Numerator is AlfaInt * DInt + AlfaDate * DDate + AlfaCategorical *

DCategorical + AlfaOrdered * DOrdered + AlfaString * DString,
16 length(IntProperties, LInt),
17 length(DateProperties, LDate),
18 length(CategoricalProperties, LCategorical),
19 length(OrderedProperties, LOrdered),
20 length(StringProperties, LString),
21 Divisor is LInt * AlfaInt + LDate * AlfaDate + LCategorical *

AlfaCategorical + LOrdered * AlfaOrdered + LString * AlfaString,
22 Distance is Numerator / Divisor.
23

24 entity(person). entity(student).
25 isA(student, person).
26 attribute(age, person). attribute(date_of_birth, person). attribute(is_worker,

person).
27 attribute(qualification, person). attribute(name, person).
28 type(age, int). type(date_of_birth, date). type(is_worker, categorical).
29 type(qualification, ordered). type(name, string).
30 category(is_worker, ’yes’). category(is_worker, ’no’).
31 order(qualification, ’high_school’, 0). order(qualification, ’bachelor’, 1).
32 order(qualification, ’master’, 2). order(qualification, ’phd’, 3).
33 node(1, person). node(2, student).
34 property(1, age, 52). property(2, age, 27).



35 property(1, date_of_birth, ’1972/12/10’). property(2, date_of_birth,
’1997/05/17’).

36 property(1, is_worker, ’yes’). property(2, is_worker, ’no’).
37 property(1, qualification, ’phd’). property(2, qualification, ’master’).
38 property(1, name, ’stefano’). property(2, name, ’davide’).

4. Dataset Evaluation

Given these instruments, we can perform some analysis of datasets, in order to understand distances
among instances that are differently classified by some ML algorithms. Specifically, we mention two
possible analyses: distance-based and generative. While the first gives a glance at the relevant distance
for an instance to change the label, the latter allows a deeper understanding of every feature in the
dataset, providing a measure to verify how variations affect the result.

Distance-based In this analysis, we group instances of the test set according to how they have been
classified and find the pair of instances belonging to distinct classifications that minimize the distance.

Generative In this analysis, we take a subset of instances equally classified and, by varying one of its
features up to certain distance thresholds, we verify the distance for which the classification changes
based only on one feature. After the analysis of one feature, pairs can be considered, followed by triples
and so on.

4.1. First Results with Credit Cards Approval

A first analysis has been conducted on the Credit Approval dataset1. The dataset contains 690 instances
and is composed of 15 features, of types Int, Real and Categorical. Some features regard gender and
ethnicity, features that in principle should not be taken into account when deciding credit card approval
The goal is to classify whether people At first, we performed a classification based on an interpretable
model. Interpretability provided us with an easier way to determine which features to test first. We
performed classification tasks with Decision Tree [15] and traditional split between train (80%) and
test (20%). Following decision rules, we detected that some relevant rules are governed by the “gender”
or “ethnicity” of the person, features that should not be included in the classification process. For this
reason, we generated instances distant 1 for the two features and reclassified all instances in the test
set. Experiments showed that more than 5% of the people in the test set were classified differently only
changing gender or ethnicity. Specifically, 3% of the population changed classification based on gender,
and the 2% on ethnicity, and the intersection is empty. Experiments have been conducted on an Intel(R)
Core(TM) i7-1065G7 CPU single-core, 16GB of RAM processor. Each node has been compared with all
the others, so the number of performed comparisons was

∑︀𝑁−1
𝑖=1 𝑖 ≃ 4000 given 𝑁 = 690. The overall

time execution was about 4 minutes, which shows that about 16 distances per second are computed.

5. Conclusions

In this work, we proposed a novel method to evaluate whether there are potential biases in the dataset
exploiting a generative distance-based strategy, that can be applied to ontology-guided data. Part of the
generative implementation is still ongoing and new experiments need to be conducted. Future works
regard applying ML to automatically select suspected biased features in the training process.

1https://archive.ics.uci.edu/dataset/27/credit+approval
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