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Abstract
In response to the escalating limitations of traditional electronic computing, the potential of nanophotonic
calculators, which utilize light instead of electricity to enhance computing performance, appears promising.
Nonetheless, the development of nanophotonic calculators presents significant challenges for physicists, primarily
due to the complexity of design and the absence of established guidance to optimize the operation conditions
from a vast parameter landscape, as well as the need for a collaborative framework to manage knowledge and
support decision-making. This paper introduces an innovative approach that combines cognitive psychology
and ontological formalization to capture and structure expert knowledge and domain-specific constraints. This
interdisciplinary strategy enables the formalization of knowledge into structured, machine-readable ontologies,
optimizing simulation and fabrication processes for nanophotonic calculators. By integrating expert insights
with artificial reasoning, our approach aims to improve the efficiency and reliability of simulations, thereby
reducing the time and cost associated with experimental methods. The developed ontology has been successfully
applied in multiple simulation scenarios, demonstrating its effectiveness in guiding the development of all-optical
nanophotonic devices.
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1. Introduction

The demand for faster and more efficient computing systems has driven technological advancements
in recent decades. Traditional electronic computing devices, which rely on silicon-based transistors,
have experienced remarkable progress in speed and miniaturization [1]. However, as the limitations of
these devices become increasingly apparent [2, 3], the quest for alternative computing paradigms has
intensified. A promising direction lies within the field of nanophotonics, where light is used instead of
electricity to transmit and process information [4]. By exploiting the natural properties of photons,
such as their high-speed transmission and low energy consumption, nanophotonics can transform
computing architectures and propel us into a new era of computing capabilities. Therefore, developing
nanophotonic calculators offers a potent alternative to traditional electronic processors.

Conventional devices operate within the confines of electrical circuits and semiconductor materials
and obey the laws of solid-state physics applied to electrons in materials. In contrast, the development
of nanophotonic calculators must adhere to the constraints and fundamental laws of optics and light
propagation. Thus, research into nanophotonic calculators requires technical expertise and a profound
understanding of light-matter interaction principles. This poses a significant challenge for physicists
and engineers in this field, mainly because this understanding often relies on experimental results
and evolving expertise. Depending on the operator to be developed, physicists must determine the
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optimal structure and excitation parameters to fabricate the nanophotonic calculator. In addition to the
constraints of physics, the solution must consider additional parameters such as material properties,
simulation environment, and fabrication constraints according to technical limitations and available
fabrication processes.

The first successful experimental results were obtained using a double hexagonal structure (DH) for
a set of logic gates [5, 6]. However, the discovery of more complex calculator configurations may be
limited by the choice of structure and simulation parameters, often defined from intuitive assumptions
of domain experts, through experimental and/or numerical tests, which can be time-consuming and
costly. To address this issue, we propose employing artificial reasoning to verify the validity of optical
simulation parameters before proceeding to real experimentation. This approach aims to enhance
efficiency by using computational models to systematically evaluate shapes and excitation parameters,
thereby eliminating configurations that do not adhere to expert knowledge and domain constraints.
This strategy not only reduces the time and cost associated with experimentation but also facilitates
the exploration of more complex calculator configurations beyond those previously considered feasible.

To do that, collecting, comprehending, and formalizing the expert knowledge and the domain
constraints is essential. In this paper, we propose an innovative approach that combines cognitive
psychology techniques inspired by work psychology [7, 8] and ontological formalization, commonly
used in artificial intelligence [9]. Our approach aims to collect and structure expert knowledge and
domain-specific constraints using knowledge elicitation techniques and formalize it into a shared and
formal model using ontology engineering to facilitate the reasoning process.

Integrating perspectives from cognitive psychology into our approach enhances the acquisition and
comprehension of experts’ knowledge and domain constraints. Employing ontology modeling and
reasoning allows for the formalization of collected knowledge in a well-defined and structured manner
that is machine-readable. The objective is twofold: first, to describe and consolidate nanophotonic
knowledge and constraints into a unified and formal model, and second, to mitigate fabrication errors by
ensuring the validity of simulation parameters according to defined constraints. This approach enables
experts to easily explore solutions involving new shapes and excitation parameters, while providing the
validity of optical simulation before advancing to real experimentation. This synergistic combination
leverages both human expertise and machine reasoning capabilities, resulting in a robust framework
for knowledge management and decision support in the development of nanophotonic calculators.

2. From Cognitive Knowledge Elicitation to Ontology Engineering

Developing a reasoning model requires the acquisition of explicit and tacit knowledge from experts
who have a deep understanding of domain constraints. Explicit knowledge refers to information readily
articulated by individuals, whereas tacit knowledge involves expertise gained through experience,
which might be complex to verbalize. These two knowledge forms are crucial to creating a formal
model with a deep understanding of the domain, thus ensuring that the reasoning process aligns with
the limitations and constraints of the real world.

Knowledge acquisition is an essential step in the development of knowledge-based reasoning systems.
However, in practice, collecting expert knowledge is a complex social interaction process that faces
several difficulties impacting the quality and the completeness of the resulting model [10]. To avoid
comprehension errors and omission of necessary knowledge, it is essential to employ adapted elicitation
techniques to ensure the reliability, accuracy, and relevance of the collected knowledge and then
facilitate the formalization process. To do that, we propose a collaborative approach that integrates
expertise from cognitive psychology with ontological engineering to facilitate the transition from expert
knowledge to a formal model.

Figure 1 illustrates the main phases of our methodology, which combines cognitive knowledge
elicitation with ontology engineering. The initial step concerns knowledge acquisition using a cognitive
knowledge elicitation technique developed in collaboration with researchers in human and social
sciences [11]. Rooted in the psychology of work and development domains, this technique integrates



conversational, observational, and analytical methods of elicitation [12]. It is designed to be flexible,
allowing for adaptation to the specific needs of the application domain and the constraints inherent
in reasoning processes. A cognitive analyst possessing the necessary skills to conduct and facilitate

Figure 1: Combining Cognitive Knowledge Elicitation and Ontology Engineering.

knowledge acquisition sessions with domain experts performs the knowledge acquisition process. This
phase focuses on understanding and capturing experts’ explicit and tacit knowledge and the domain’s
constraints.

After the acquisition phase, the collected knowledge will be organized and structured into a semi-
formal model using mind maps and UML diagrams [11]. At this stage, domain concepts with their
properties and relationships are defined, allowing the development of a preliminary model of structured
knowledge. This initial model serves as an intermediary result of the process, presenting the collected
information in an organized manner and preparing it for further refinement. During this phase, the
combined efforts of cognitive analysts, ontological engineers, and domain experts are essential to
ensure a precise interpretation of knowledge and the development of coherent models aligned with
expert descriptions. Through iterative discussions and feedback loops, this collaborative approach
facilitates a deeper understanding of the knowledge. It also aids in identifying inconsistencies and gaps
in knowledge, potentially prompting revisions in the acquisition phase to enhance the model’s accuracy
and comprehensiveness.

The final phase involves transforming structured knowledge into a formal representation, such as
an ontology, for reasoning purposes and the development of artificial intelligence solutions. During
this phase, the formalized knowledge model is collaboratively tested and refined with domain experts
to ensure that the formal model is aligned with both the expert knowledge and the domain’s specific
descriptions and constraints. It is an iterative process in which feedback and adjustments are consistently
integrated to refine the model and enhance the accuracy and precision of the reasoning system according
to domain-specific knowledge.

3. Application for the design and simulation of a nanophotonic
calculator

The conception of a holistic nanophotonic calculator, i.e. that performs the calculation in itself rather
than as part of a cascaded network of devices, requires the determination of the specific shape of the
device and excitation parameters, including the laser position, polarization, and phase, according to
the intended logic gates. These parameters are defined by domain experts who thoroughly understand
the constraints imposed by physical laws, practical conditions, and limitations of fabrication processes,
optical drive, and read-out. Thus, a deep understanding of both theoretical aspects of the field and



practical production and operation challenges is crucial for the formalization process. This ensures that
the developed reasoning model conforms to the domain’s constraints and aligns with the objectives
defined by the physics experts.

A knowledge acquisition process is necessary to identify the expert knowledge and domain constraints
that must be formalized for nanophotonic calculators. This process aims to extract domain-specific
terminology, systematically defining concepts and their interrelations. Performed in collaboration with
cognitive analysts, this process uses our approach’s cooperative knowledge elicitation technique to
ensure a thorough understanding of the domain [11].

After the acquisition process, the collected expert knowledge and domain constraints are structured
and modeled using a UML (Unified Modeling Language) class diagram [13]. This graphical and standard-
ized representation, known for its clarity and ease of understanding, is an essential tool for validating
the accuracy and completeness of the captured knowledge. Figure 2 presents a simplified overview
of the UML model related to the simulation of a nanophotonic calculator. This class diagram visually
outlines the domain concepts, their properties, and their interrelations, fostering a shared understanding
among physics experts and computer engineers. It guarantees that the modeled knowledge aligns with
the insights of the physics experts and accurately reflects the predefined domain constraints. This step
is essential to ensure that the foundational knowledge for the nanophotonic calculator is correctly
interpreted, laying a solid basis for the subsequent formalization process.

Figure 2: Simplified view of the UML model related to the studied nanophotonic calculator application.

The validated UML model is then used in the formalization process, during which a formal model is
constructed as an ontology for reasoning purposes. In this phase, concepts represent classes, while at-
tributes and relationships transform into data and object properties. Complex constraints are formalized
using the SWRL rules (Semantic Web Rule Language)1, which are used during the reasoning process.
The resulting ontology is rigorously tested across diverse use cases and validated by physics experts to
confirm its robustness and practical applicability. The reasoning process is used not just to infer new
knowledge, but also to explain the reasons behind the invalidity or infeasibility of a simulation. To
do that, the ontology incorporates concepts and parameters relevant to the validity of each parameter
during the experimentation phase. For instance, an optical simulation is considered valid if its specified
shape and excitation parameters adhere to constraints set by experts, such as the permissible minimum
or maximum size of a segment within the defined polygonal shape or the minimal distance between two
excitation points for the laser beam. This method guarantees that simulations are theoretically verifiable,
aiding experts in selecting suitable parameters in alignment with the physical law and fabrication
constraints.

1https://www.w3.org/submissions/SWRL/

https://www.w3.org/submissions/SWRL/


Figure 3 describes a simplified view of the developed ontology. The complete version is available via
this link2. This ontology formalizes the knowledge collected to model an optical simulation, as well as
the information needed to generate a numerical simulation of the laser field using the PyGDM tool3 [14].
The developed ontology provides a formal way to describe the parameters of each optical simulation. It
encompasses the geometry of the polygonal shape in terms of line segments and their point coordinates,
the parameters for laser excitation, the input excitation points, and the output parameters necessary
for defining the aimed logical gates. Each concept within the ontology is enriched with a set of data
properties, object properties, and SWRL rules describing collected knowledge and domain constraints.
This ontology can be populated with data related to a given simulation, and an inference engine is used
to verify the coherence and validity of this simulation.

Figure 3: Simplified view of the ontology related to the studied nanophotonic calculator application.

We have conducted various optical simulation tests on different shapes and parameters to validate our
approach and the ontology developed. These simulation tests are provided by either expert physicists
or automatically generated by a machine learning algorithm. For each simulation, the ontology is
automatically populated with data related to the description of a shape and its excitation parameters.
This includes a detailed set of segments and their coordinate, input excitation points, laser beam
characteristics, etc.

A reasoning process will then be applied to the populated ontology to ensure the validity of the
optical simulation regarding the physical and real fabrication constraints defined in the ontology. Expert
physicists will use the result of the reasoning process to validate the simulation or adjust its parameters
before advancing to the fabrication and optical experimentation stages. To simplify the interpretation of
the reasoning results, we introduced a Boolean data property for each concept, indicating the validity of
each related element in the simulation. As shown by the example presented in Figure 4, the value of this
data property is inferred by the reasoner based on the ontology’s stored knowledge and predefined rules.
This enables experts to easily identify elements that do not meet the specified constraints, facilitating
adjustments or corrections to enhance the reliability of the simulation. This approach improves the
precision of experiments and ensures that the transition from theoretical models to practical applications
is efficient and effective.

4. Conclusion and Future Work

This paper presents a methodological approach to transforming expert knowledge into ontologies and
illustrates its application through the simulation of nanophotonic calculators. Our approach integrates
techniques from cognitive sciences to ensure a comprehensive capture and deep understanding of
domain-specific expertise, thus enabling the transformation of informal expert knowledge into a for-
malized, structured ontology. This method highlights the critical role of expert insights for precise
ontological development and showcases the synergy between cognitive science methodologies and on-

2https://ontology.dalhai.webapp.ciad-lab.fr/
3https://homepages.laas.fr/pwiecha/pygdm_doc/
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Figure 4: Example of reasoning process: In this example, the optical simulation is not valid because the
reasoning process identified that the shape used for the simulation is not valid. The shape contains a
segment whose length, calculated according to a rule defined in the ontology, is less than the minimum
segment length defined by the domain expert.

tological formalization. Such an integration enhances the creation and application of reasoning systems,
improving their applicability and reliability in the addressing of complex challenges. Transitioning
from a nuanced understanding of human experts to a formalized ontological model, our approach offers
a streamlined path for developing cognitive-informed artificial reasoning systems.

We have applied this methodology to formalize expert knowledge in the context of simulating
nanophotonic calculators. Based on cognitive knowledge elicitation, the developed ontology has been
tested across multiple simulation scenarios, demonstrating its effectiveness in aiding physicists to select
simulations for fabrication and experimental validation. This harmonization of human expertise with
formal modeling demonstrates the importance of interdisciplinary collaboration and the advantages of
integrating cognitive sciences with artificial intelligence. It illustrates how a deep understanding of
human cognition and expert knowledge can be effectively converted into computational and former
models, facilitating the development of more precise and reliable artificial reasoning systems.

For future work, we aim to integrate the developed ontology with a machine learning algorithm
automatically. This integration will enable us to evaluate a vast array of machine learning simulations
while also using ontological knowledge to guide and refine the learning process. This future direction
seeks to enhance the precision and efficacy of simulations, thereby advancing the development of
nanophotonic calculators.
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