
Between Input and Output: The Importance of
Modelling Transients in Meal Preparation Tasks
Michaela Kümpel1,∗, Vanessa Hassouna1, Alina Hawkin1 and Michael Beetz1

1Institute for Artificial Intelligence, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany

Abstract
We are moving closer to autonomous robots preparing meals. While restaurant robots in static envi-
ronments already are successfully performing single actions like making pizza, the goal is to enable
robots to perform changing actions, in various environments and with any available object. Towards this
goal, a methodology for creating actionable knowledge graphs that can be used to parameterise general
action plans has been proposed. However, for extended failure handling towards fully automated action
execution, we argue that transients need to be considered. A transient can be described as a transitory
object in a task that is not the same as the input object anymore but not yet the output object of the task.
For example, when pouring ingredients into a bowl to make the dough, the added ingredients form a
mass of ingredients (here: a transient) that only becomes dough through mixing them. This work shows
how transients can be modelled and how robots can integrate and possibly benefit from this modelling.

Keywords
Knowledge Representation, Meal Preparation Tasks, Transients, Agent Application

1. Introduction

Enabling robots to autonomously perform meal preparation tasks in changing environments,
on varying objects and with any given tool is one of the goals of cognitive robotics research.
Due to the variety of environments, actions, and objects, it is also very hard. Recent research
has shown how general action plans can be used to tackle this challenge in the examples of
setting the table [1] or performing task variations of cutting actions [2]. It has been shown
how such general action plans can be parameterised using actionable knowledge graphs that
link objects to action and environment information, thus making the contained knowledge
actionable for agents [3]. What is more, the inclusion of object affordances and dispositions [4],
as well as image schema-based reasoning, has shown to help robots understand the conditions
of the environment for an improved failure handling [5, 6].
However, if we consider robotic agents making pancakes, an action that has been the focus

of many research projects in the past (such as in [7, 8]), we argue that for a fully automated

Proceedings of the Joint Ontology Workshops (JOWO) - Episode X: The Tukker Zomer of Ontology, and satellite events
co-located with the 14th International Conference on Formal Ontology in Information Systems (FOIS 2024), July 15-19,
2024, Enschede, The Netherlands.
∗Corresponding author.
Envelope-Open michaela.kuempel@uni-bremen.de (M. Kümpel); hassouna@uni-bremen.de (V. Hassouna);
hawkin@uni-bremen.de (A. Hawkin); beetz@cs.uni-bremen.de (M. Beetz)
Orcid 0000-0002-0408-3953 (M. Kümpel); 0000-0003-1335-5698 (V. Hassouna); 0000-0003-1826-9983 (A. Hawkin);
0000-0002-7888-7444 (M. Beetz)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:michaela.kuempel@uni-bremen.de
mailto:hassouna@uni-bremen.de
mailto:hawkin@uni-bremen.de
mailto:beetz@cs.uni-bremen.de
https://orcid.org/0000-0002-0408-3953
https://orcid.org/0000-0003-1335-5698
https://orcid.org/0000-0003-1826-9983
https://orcid.org/0000-0002-7888-7444
https://creativecommons.org/licenses/by/4.0

Figure 1: The action of making pancakes broken down into the object states that occur during task
execution.

task execution and extended failure handling, transients need to be considered. A transient is a
transitory object that exists during task execution. It is only apparent in the transitional state
where it is not an input object anymore, but not an output object either.

Figure 1 shows the motivation behind modelling transients for the example of making
pancakes using pictures from WikiHow instructions on how to prepare pancakes1. Here, we
first have a number of separate ingredients. The ingredients are poured into a bowl and thus
transform into a transient that is neither ingredient nor dough just yet. This transient is mixed
until it transforms to dough. Some part of the dough is taken out of the bowl and poured into
a pan, again forming a transient that is neither dough nor pancake. The transient is flipped
and finally turns into a pancake.
Considering transients in action execution has the potential to enable robots to apply rules

and thus reason about action execution and improve failure handling. For example, a robot that
knows that the action of mixing dough includes input objects (ingredients), a transient object
(mass of ingredients), and an output object (dough), can assign rules for action execution, such
as setting time limits for mixing dough based on the temperature of the butter.
This work describes the logic of transients, how they might be modelled and the benefits

for robots if transients are considered. We therefore show how the logic of transients can be
integrated in a robot action plan.

2. Related Work

Many of the needed knowledge to perform tasks can be acquired using top-level ontologies such
as the DOLCE+DnS Ultralite (DUL) foundational framework and its definitions of descriptions
and situations [9] in combination with the Socio-physical Model of Activities (SOMA) [4],
which models relations of actions, objects and agents at a given time and space, designed to
provide robots with environment and activity knowledge so that they can relate an object to
the task at hand through its dispositions and affordances. SOMA additionally allows for the
integration of image schematic relations like SOURCE_PATH_GOAL (SPG), thereby supporting
robots in reasoning about the functional relationships of objects and enabling a more dynamic
action selection [6]. Actions in SOMA can be broken down into tasks, which again can be
broken down into body movements of agents as shown in [3]. While SOMA includes upper
terms for processes, processes have not been a research focus.
In contrast to this, the basic formal ontology (bfo) defines occurrents and continuants over

a period of time [10], which has been used to formally model processes that are defined as

1The WikiHow article on how to prepare pancakes is accessible at https://www.wikihow.com/Make-Pancakes

https://www.wikihow.com/Make-Pancakes

occurrences in bfo [11]. Here, a process relates to an execution plan and can be broken down
into steps.

Both approaches based on SOMA and bfo have modelled input objects and output objects for
tasks [2] and processes [11], but have not considered transients.

3. Logic of Transients

Let us continue to consider the action “making a pancake”. For this, we first have to break down
the action into its subtasks. Making a pancake can be broken down into the tasks of grasping
the ingredient container, pouring the ingredient into the bowl and placing the empty container
(these steps are repeated for all ingredients), grasping the whisk, mixing the dough, placing
the whisk to then grasping a spoon, scooping some part of dough out of the bowl, pouring
that dough part and placing the spoon to finally grasping a spatula, flipping the half-baked
pancake, transporting the pancake to a plate and placing the spatula. If we closely look at
these tasks, we can see that transients actually do not necessarily belong to a single task (which
might have been expected) but can cover more than one task. In particular, when pouring a
second ingredient into the bowl, the ingredients already form a transient. When the pouring
task is completed, the transient still exists. Only after the mixing task is performed is the
transient transformed into the dough. If we consider a cutting action, however, only the cutting
task includes a transient (the moment the knife touches the food object, it turns into a transient
until the knife touches the supporting surface and the food object is cut into two pieces).
Looking at these two examples, it seems that the availability of input and output objects

define transients. In particular, for the cutting task we can state that the input is a food object
and the output are two food parts. For a pouring task, input and output objects are equal,
unless more than one object is poured or the properties of the pouring destination (e.g. the
heat of the pan) will lead to a transformation of the object. Thus, the logic behind transients
can be described formally as in Equation 1, 2, 3 and 4, which are stated in accordance to the
SOMA ontology. In Equation 1 we consider tasks that have an input object and a result object,
where the input object is different to the output object in its form (e.g. transitioning from a
food object to food parts) or its quantitative measure (e.g. one object to two objects), then we
can state that the input object transforms into a transient during task execution since the task
triggers a process, in which the transient participates in. The process is stopped when the task
is completed.

∀ 𝑖, 𝑡 , 𝑜 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡 , 𝑎 ∶ 𝑇 𝑎𝑠𝑘, 𝑝 ∶ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑋 ∶
(ℎ𝑎𝑠_𝑖𝑛𝑝𝑢𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑖) ∧ ℎ𝑎𝑠_𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑜) ∧ 𝑖 ≠ 𝑜)

→ 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) ∧ 𝑡𝑟 𝑖𝑔𝑔𝑒𝑟𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑎, 𝑝) ∧ ℎ𝑎𝑠_𝑝𝑎𝑟 𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡(𝑝, 𝑡) ∧ 𝑠𝑡𝑜𝑝𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑝, 𝑜)
(1)

In Equation 2, we consider tasks that have the same input object and result object (like
pouring). As discussed above, these tasks only start a process when performed multiple times
and with different objects for every execution (e.g., if I pour water twice, the result object is still
water and not transient). We can then state that the objects transform into a transient when

performing the task for a second time, and the second object is added.

∀ 𝑖1, 𝑖2, 𝑡 , 𝑜1, 𝑜2 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡 , 𝑎 ∶ 𝑇 𝑎𝑠𝑘, 𝑝 ∶ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑋 ∶
(ℎ𝑎𝑠_𝑖𝑛𝑝𝑢𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑖1) ∧ ℎ𝑎𝑠_𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑜1) ∧ 𝑖1 = 𝑜1
ℎ𝑎𝑠_𝑖𝑛𝑝𝑢𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑖2) ∧ ℎ𝑎𝑠_𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑜2) ∧ 𝑖2 = 𝑜2 ∧ 𝑜1 ≠ 𝑜2
→ 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) ∧ 𝑡𝑟 𝑖𝑔𝑔𝑒𝑟𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑜2, 𝑝) ∧ ℎ𝑎𝑠_𝑝𝑎𝑟 𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡(𝑝, 𝑡)

(2)

Another parameter that can trigger a process are object properties such as the pan’s heat or
the oven. In Equation 3, we, therefore, consider tasks that have the same input object and result
object (like pouring) where the temperature as an object property leads to a transient. To add
this additional restriction, we state that a task includes another object (the pan or oven) which
is acted upon. This object has a temperature, and if the temperature is above a certain value, a
baking process is started. In the same manner, a freezing process will start when performing a
placing task and the object acted on has a temperature below a certain value.

∀ 𝑖, 𝑡 , 𝑜, 𝑔 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡 , ℎ ∶ 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎 ∶ 𝑇𝑎𝑠𝑘, 𝑝 ∶ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑋 ∶
(ℎ𝑎𝑠_𝑖𝑛𝑝𝑢𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑖) ∧ ℎ𝑎𝑠_𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑜) ∧ 𝑖 = 𝑜

𝑜𝑏𝑗𝑒𝑐𝑡_𝑎𝑐𝑡𝑒𝑑_𝑜𝑛(𝑎, 𝑔) ∧ ℎ𝑎𝑠_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑔, ℎ) ∧ ℎ > 80°
→ 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) ∧ 𝑡𝑟 𝑖𝑔𝑔𝑒𝑟𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(ℎ, 𝑝) ∧ ℎ𝑎𝑠_𝑝𝑎𝑟 𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡(𝑝, 𝑡)

(3)

Similarly, we can now state that consecutively performed tasks will stop the process started
in Equation 2 or 3. For this, in Equation 4, we consider tasks that again have differing input and
result objects and add the restriction that a transient already exists. Then, we can deduce that
the transient is the task’s input object, and the task’s output object ends the process.

∀ 𝑖, 𝑜 ∶ 𝑂𝑏𝑗𝑒𝑐𝑡 , 𝑎 ∶ 𝑇 𝑎𝑠𝑘, 𝑝 ∶𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑋 ∶
(ℎ𝑎𝑠_𝑖𝑛𝑝𝑢𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑖) ∧ ℎ𝑎𝑠_𝑟𝑒𝑠𝑢𝑙𝑡_𝑜𝑏𝑗𝑒𝑐𝑡(𝑎, 𝑜) ∧ 𝑖 ≠ 𝑜∧(∃ 𝑡 ∶ 𝑡𝑟𝑎𝑛𝑠𝑖𝑒𝑛𝑡(𝑡) ∧ 𝑖 = 𝑡)

→ 𝑠𝑡𝑜𝑝𝑠_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑜, 𝑝)
(4)

4. Modelling Transients

With the described logic of transients, we can model transients as objects that participate in
processes, as exemplarily depicted in Figure 2 for two tasks.

Figure 2: Model excerpt of Actions, Tasks, Processes and involved objects.

Figure 3: Actions involved in making pancakes and their relation to processes.

For modelling transients, we propose to:
• include a relation such as triggers_process that links a task to a process
• integrate processes for every task that meets the criteria formulated in Equation 1, 2, 3
and 4

• integrates transients as participant_of processes
• include a relation such as stops_process that links result objects to processes

As mentioned before, in DUL an action executes a task and can have a physical object as
a participant. From SOMA we know that cutting is a task performed on an object. In recent
work, input and result objects of tasks were proposed [2]. Regarding processes, in DUL, a
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ⊑ 𝐸𝑣𝑒𝑛𝑡 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦. Other work proposed input and output objects of processes [11]. In
bfo, a 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ⊑ 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑡 ∈ 𝐸𝑛𝑖𝑡𝑦. Thus, transients can similarly be modelled for both top-level
ontologies.
Following the proposed modelling approach, we enable agents to infer triggered processes

and thus transient objects, as depicted in Figure 3. As described above, pouring the different
ingredients into a bowl triggers a mixing process, which involves a transient. Similarly, pouring
the dough into the hot pan triggers a baking process.

5. Benefits of Incorporating Transients into NEEMs

Narrative Enabled Episodic Memories (NEEMs) [12]play a crucial role in helping robots learn
from experience [13] [14]. By integrating knowledge about transients into NEEMs, a detailed
record of transitional states and objects during task execution can be provided. This integration
allows robots to analyse their actions, understand where transients occurred, and determine
the success factors for completing tasks.

We propose to utilise Narrative Enabled Episodic Memories (NEEMs) to improve the robot’s
performance by tracking the transient state’s duration and related conditions. If the robot is
mixing [15] certain components for the first time, it is yet unknown for how long the mixing
action should last to transition the mass from the transient to the goal state. The robot would
have to potentially interrupt the mixing process, lift the tool in order not to obstruct the camera
and perceive the current transient’s state so that it can be determined if the mixing action needs
to be prolonged or if the desired state has been reached. If the robot can generate NEEMs during
this process, a knowledge databasecan be filled with the obtained results. With this, whenever
the robot is tasked to mix the same components, it would gain a much better estimate of how

long the mixing process should last. This would result in less time to check the transient’s state,
potentially reducing spillage during the checking-of-current-mixing-state action. Accumulating
this knowledge over time would also allow a robot to learn about the different properties of
ingredients (such as the influence of the temperature of butter for mixing duration) and the
success of different mixing techniques. The next time ingredients which have been mixed before
need combining, it would be possible to estimate the mixing time more accurately in advance.
Another benefit of generating NEEMs that consider transient states is that should an action end
in that state; it would be possible to try and analyse why this might have happened. Maybe
the robot dropped the whisk and could not pick it up again, or the consistency of the transient
became too difficult for the robot to mix, or spillage occurred, and the experiment was aborted.
NEEMs provide the potential to analyse such occurrences in hindsight, allowing the planning
system to try and avoid them in the future.

6. Enabling Agents To Reason About Transients

Transients exist during transitional states (here: processes) in task execution, representing
the intermediate stages between input and output objects. We utilize the Python version of
the Cognitive Robot Abstract Machine (CRAM) [16], known as PyCRAM, to effectively enable
robotic agents to reason about these transients. This adaptation assists robots in planning and
executing complex, sequential tasks efficiently. PyCRAM encapsulates the logic and transitions
within such tasks, significantly enhancing its ability to manage symbolic plans that account for
transients. This adaptability is essential for robots to perform intricate tasks, allowing them to
decompose tasks into smaller, manageable steps and adapt to fluctuating conditions. Central
to PyCRAM are action designators that convert symbolic task descriptions into specific ROS
action goals for robots. This structure enables robots to carry out high-level actions with an
awareness of context and flexibility, which is crucial for handling complex tasks effectively.
Although PyCRAM offers a promising solution for understanding transients, there is still

work to be done to fine-tune the framework to ensure it meets the demands of real-world
applications. Integrating transients into PyCRAM requires careful consideration of action
designators, task planning, and robotic reasoning, especially considering processes that span
several tasks or involve multiple stages and transitional states. For instance, in a mixing task,
a transient occurs when ingredients are combined but have yet to form a consistent mixture.
Action designators that model triggered processes must include additional information on how
tasks relate to processes and how transients transition from one state to another. Processes
can then encompass information like the expected duration of a process, additional rules such
as the influence of temperature on consistency, and desired results. One practical approach
to integrating transients into PyCRAM is establishing rules that explain how transients are
initiated, monitored, and concluded.

In our past work - ”Steps Towards Generalized Manipulation Action Plans - Tackling Mixing
Task” [15], action designators break down the mixing task into various stages, including
preconditions, mix motions, and postconditions. Each of these stages can contain
transients. The mix motions are categorised into circular, ellipse, and orbital movements.

The action designator must describe the mixing process’s initial conditions, intermediate
transitions, and outcomes to incorporate transients. For example, a ”spiral outwards” motion
leading into the main mixing phase represents a transitional state where the robot approaches
the final mixing pattern. This phase’s transient could be a partial combination of ingredients
that requires further mixing to achieve the desired consistency. To further integrate transients
into PyCRAM for real-world applications, it’s essential to establish a robust method for coding
these transitions into the framework. This enhancement involves refining the action designators
to include detailed descriptions of task stages, outlining how transients are initiated, evolve,
and conclude.
For example, consider the mixing task, which can be divided into several key stages or

transient states:
Initial Mixing: Starts the mixing at a slow speed to blend ingredients without spillage.
Main Mixing: Increases speed to ensure thorough batter mixing.
Consistency Checking: Reduces speed to check the batter regarding its consistency.
Finalizing Mix: Completes the mixing process and prepares to conclude the task.

The concept centres around the introduction of the TransientState class with Conditions, as
depicted in Listing 1:

Listing 1: Transient Python Class
c l a s s T r a n s i e n t S t a t e :
Example c a l l { T r a n s i e n t S t a t e (” Cons i s t ency Checking ” , [] , [] , \ { speed : ” low ” , d u r a t i o n :

”2 minutes ” , check : ” v i s u a l ” \ })
d e f _ _ i n i t _ _ (s e l f , name , e n t r y _ c ond i t i o n s , e x i t _ c o n d i t i o n s , p r o c e s s _ i n f o) :

s e l f . name = name
s e l f . e n t r y _ c o n d i t i o n s = e n t r y _ c o n d i t i o n s
Cond i t i on s to en t e r t h i s s t a t e
s e l f . e x i t _ c o n d i t i o n s = e x i t _ c o n d i t i o n s
Cond i t i on s to l e a v e t h i s s t a t e
s e l f . p r o c e s s _ i n f o = p r o c e s s _ i n f o
I n f o rma t i on l i k e du ra t i on , i n f l u e n c e f a c t o r s
[. . .]

This object-oriented strategy utilizes the TransientState class to manage various task stages,
with each state capturing essential details such as duration and external influences. The
ActionDesignator class, illustrated in Listing 2, has been expanded from its initial design to
direct the sequence of states required to complete the entire task.

Listing 2: Action Designator
c l a s s Ac t i onDe s i gna t o r :

d e f _ _ i n i t _ _ (s e l f , task_name , s t a t e s : L i s t [T r a n s i e n t S t a t e] , [. . .]) :
s e l f . task_name = task_name
s e l f . s t a t e s = s t a t e s
L i s t o f s t a t e s r e p r e s e n t i n g the t r a n s i e n t s
[. . .]

d e f pe r f o rm_ ta sk (s e l f) :
f o r the s t a t e in s e l f . s t a t e s :

s e l f . e n t e r _ s t a t e (s t a t e)
s e l f . e x e c u t e _ s t a t e (s t a t e)
s e l f . e x i t _ s t a t e (s t a t e)
[. . .]

[. . .]

The workflow in PyCRAM involves iterating over each state defined in the states list and
managing the lifecycle of each state using three methods: enter_state, execute_state, and
exit_state, with the following functionalities:

• enter_state(state): Prepares the system to enter a given state, potentially verifying
and establishing entry conditions.

• execute_state(state): Manages the actual operations defined for the state, such as
directing robotic actions, monitoring real-time data, and adjusting parameters based on
process_info, within the TransientState class.

• exit_state(state): Concludes the state’s operations, ensures all exit conditions are
met, and readies the system for the transition to the next stage or task completion.

7. Conclusion and Future Work

This work highlights the critical role of modelling transients in meal preparation tasks, using the
example of pancake making to elucidate the transient states between task start and completion.
By defining the logic of transients and proposing methods for their integration into robotic
reasoning through PyCRAM, we aim to enhance robotic performance in complex, sequential task
execution. We believe that the consideration of transients in the modelling of meal preparation
tasks is crucial for agents that are able to reason about objects, object states, and failures
during task execution. Including transients provides robots with a subtle understanding of task
processes, allowing for more adaptive and subtle responses to dynamic task conditions. This is
particularly important in tasks involving state or composition transformations, such as cooking,
where intermediate states significantly influence the final outcome.

Futureworkwill involve refining the integration of transients intomeal preparation ontologies
and enhancing the robotic action designators to more effectively incorporate and manage these
transient states. The potential for improving robotic interaction with dynamic environments
through a better understanding of transients presents an exciting frontier for cognitive robotics
and practical applications in everyday life.

Acknowledgments

The research reported in this paper has been partially supported by the German Federal Ministy
of Education and Research; Project-ID 16DHBKI047 “IntEL4CoRo - Integrated Learning Environ-
ment for Cognitive Robotics”, University of Bremen as well as the German Research Foundation
DFG, as part of Collaborative Research Center (Sonderforschungsbereich) 1320 “EASE - Every-
day Activity Science and Engineering”, University of Bremen (http://www.ease-crc.org/). The
research was conducted in subproject R04 “Cognition-enabled execution of everyday actions”.

References

[1] G. Kazhoyan, S. Stelter, F. K. Kenfack, S. Koralewski, M. Beetz, The robot household
marathon experiment, in: 2021 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 9382–9388.

http://www.ease-crc.org/

[2] M. Kümpel, J.-P. Töberg, V. Hassouna, P. Cimiano, M. Beetz, Towards a knowledge
engineering methodology for flexible robot manipulation in everyday tasks, in: Workshop
on Actionable Knowledge Representation and Reasoning for Robots (AKR3) at European
Semantic Web Conference (ESWC), 2024.

[3] M. Kümpel, Actionable Knowledge Graphs - How Daily Activity Applications can Benefit
from Embodied Web Knowledge, Ph.D. thesis, University of Bremen, 2024. doi:10.26092/
elib/2936.

[4] D. Beßler, R. Porzel, M. Pomarlan, A. Vyas, S. Höffner, M. Beetz, R. Malaka, J. Bateman,
Foundations of the socio-physical model of activities (soma) for autonomous robotic agents,
arXiv preprint arXiv:2011.11972 (2020).

[5] K. Dhanabalachandran, V. Hassouna, M. M. Hedblom, M. Küempel, N. Leusmann, M. Beetz,
Cutting events: Towards autonomous plan adaption by robotic agents through image-
schematic event segmentation, in: Proceedings of the 11th Knowledge Capture Conference,
2021, pp. 25–32.

[6] M. M. Hedblom, M. Pomarlan, R. Porzel, R. Malaka, M. Beetz, Dynamic action selection
using image schema-based reasoning for robots, in: Joint Ontology Workshops, 2021.

[7] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mösenlechner, D. Pangercic, T. Rühr,
M. Tenorth, Robotic roommates making pancakes, in: 2011 11th IEEE-RAS International
Conference on Humanoid Robots, IEEE, 2011, pp. 529–536.

[8] D. Danno, S. Hauser, F. Iida, Robotic cooking through pose extraction from human natural
cooking using openpose, in: International Conference on Intelligent Autonomous Systems,
Springer, 2021, pp. 288–298.

[9] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, L. Schneider, Sweetening ontologies with
dolce, in: International conference on knowledge engineering and knowledgemanagement,
Springer, 2002, pp. 166–181.

[10] V. Mascardi, V. Cordì, P. Rosso, et al., A comparison of upper ontologies., in: Woa, volume
2007, 2007, pp. 55–64.

[11] D. Dooley, M. Weber, L. Ibanescu, M. Lange, L. Chan, L. Soldatova, C. Yang, R. Warren,
C. Shimizu, H. K. McGinty, et al., Food process ontology requirements, Semantic Web
(2022) 1–32.

[12] J. Winkler, M. Tenorth, A. K. Bozcuoglu, M. Beetz, Cramm–memories for robots performing
everyday manipulation activities, Advances in Cognitive Systems 3 (2014) 47–66.

[13] S. Koralewski, G. Kazhoyan, M. Beetz, Self-specialization of general robot plans based on
experience, IEEE Robotics and Automation Letters 4 (2019) 3766–3773. doi:10.1109/LRA.
2019.2928771.

[14] G. Kazhoyan, A. Hawkin, S. Koralewski, A. Haidu, M. Beetz, Learning motion parameteri-
zations of mobile pick and place actions from observing humans in virtual environments,
in: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 9736–9743. doi:10.1109/IROS45743.2020.9341458.

[15] V. Hassouna, H. Alina, M. Beetz, Steps towards generalized manipulation action plans
- tackling mixing task, in: Workshop on Actionable Knowledge Representation and
Reasoning for Robots (AKR3) at European Semantic Web Conference (ESWC), 2024.

[16] M. Beetz, G. Kazhoyan, D. Vernon, The cram cognitive architecture for robot manipulation
in everyday activities, 2023.

http://dx.doi.org/10.26092/elib/2936
http://dx.doi.org/10.26092/elib/2936
http://dx.doi.org/10.1109/LRA.2019.2928771
http://dx.doi.org/10.1109/LRA.2019.2928771
http://dx.doi.org/10.1109/IROS45743.2020.9341458

	1 Introduction
	2 Related Work
	3 Logic of Transients
	4 Modelling Transients
	5 Benefits of Incorporating Transients into NEEMs
	6 Enabling Agents To Reason About Transients
	7 Conclusion and Future Work

