
OntoPy: a framework to integrate different file types
Pedro Paulo Rezende Silva Domingos1, José Maria Parente de Oliveira1

1Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP, Brasil

Abstract
The OntoPy framework is introduced in this paper as a new solution for data integration through ontologies,
aiming to provide an accessible approach to integrating various types of data sources. OntoPy responds to
challenges in scenarios where organizations are structuring their data and seeking exploratory analyses to derive
insights for decision-making. Unlike existing tools such as Ontop, which focus on structured databases and
require commercial software and plugins, OntoPy leverages data science-friendly features of Python to simplify
the integration of unstructured data in formats like Parquet, CSV, and XLSX. This framework offers a more
versatile and efficient method for bridging the semantic heterogeneity of data and ontologies. By emphasizing
the relationship between ontology classes and properties and the attributes available in data sources, OntoPy
facilitates a seamless and effective data integration process. Initial tests with the framework have shown promising
results, with adequate performance in handling larger data volumes compared to other tools such as Morph-KGC.
OntoPy has been successfully applied in querying data for diesel-electric locomotive maintenance, handling
complex queries across heterogeneous data sources with good performance.

Keywords
Data integration, ontology, mapping, databases, framework, software engineering

1. Introduction

Data integration is considered a recurring problem in data management, and it is observed to be a
significant challenge today [1]. It is estimated that 50 to 80% of a data scientist’s time is dedicated to
manipulating, integrating, and preparing data for effective use [1]. In this context, the use of ontologies
emerges as an important tool for semantically modeling concepts and relationships in data domains
and integrating different data sources.

An ontology can be defined as a formal representation of a set of concepts within a domain and the
relationships between those concepts [2]. The Ontology-Based Data Access (OBDA) approach bridges
the semantics of ontologies and data heterogeneity, with mature and widely adopted solutions like
Ontop [3] to integrate different data sources.

However, the availability of data in various application scenarios is not always structured, often being
in files such as Parquet, CSV, and XLSX formats. In scenarios like these, structuring multiple files to
then use a framework like Ontop can result in unnecessary effort in data sources that may not be used
later on. It is possible to use Ontop through federated bases, accessing various types of files, but with
the need for commercial software and plugins, as well as additional complexity involved in establishing
this structure. Ontop is written in Java, not making use of data science-focused features as in languages
like Python. There is an opportunity to make the OBDA approach and the use of ontologies more
accessible, both in terms of application structure and programming language.

Regarding the most widespread mapping standards, it is noted that they require specific knowledge
for their development. Since the data scenario in question would be in the process of structuring, it is
understood that the use of ontologies for data integration would be at the same level. Thus, it is believed
that this process can become more accessible by focusing exclusively on the relationship between
classes and properties of the defined ontology and the available attributes in the data sources.

Thus, this paper presents the OntoPy framework, developed for integrating different types of data
sources through ontologies in an accessible manner. It addresses the scenario where an organization is

Proceedings of the Joint Ontology Workshops (JOWO) - Episode X: The Tukker Zomer of Ontology, and satellite events co-located
with the 14th International Conference on Formal Ontology in Information Systems (FOIS 2024), July 15-19, 2024, Enschede, The
Netherlands.
$ domingos@ita.br (P. P. R. S. Domingos); parente@ita.br (J. M. Parente de Oliveira)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:domingos@ita.br
mailto:parente@ita.br
https://creativecommons.org/licenses/by/4.0/deed.en


Table 1
Features among related frameworks

Frameworks Language File types Ontology and mapping
Ontop [4] Java RDB OWL e R2RML
MASTRO [5] Java RDB OWL e R2RML
Morph-KGC [6] Python RDB, CSV, TSV, XLSX, Parquet, Feather, JSON, XML, DataFrame Pandas e outros RML
Morph-CSV [7] Java RDB e CSV RML
Morph-RDB [8] Scala RDB e CSV RML
Morph-xR2RML [9] Scala RDB, CSV, XML, TSV, JSON e NoSQL RML
Owlready2 [10] Java - OWL
RMLMapper [11] Java RDB, CSV, XML, TSV, JSON e XLSX e ODS R2RML
Karma [12] Java RDB, CSV, XML, TSV e JSON K2RML
TripleWave [13] NodeJS JSON R2RML
SPARQL-Anything [14] Java RDB, CSV, XML, HTML, JSON e TXT R2RML
Optique [15] Java - -

in the process of structuring its data and seeking exploratory analyses to better understand the value
data can provide in decision-making processes.

2. Related works

Ontop is the most widespread tool when it comes to OBDA solutions. However, it is a solution that
deals with relational databases, either already structured or accessible through federated databases
generated by third-party applications. For the proposed framework, a greater versatility is sought, as it
relates to a scenario of structuring an organization’s data.

Through related works, it is observed that most of them operate on relational databases or files such
as CSV, JSON, XML, and RDF (Table 1). Among other solutions, Morph-KGC also stands out, mainly
because of its similarity to the method proposed in this present document. It can access various types of
different file systems, as well as pandas dataframes, generating results in this format as well. The main
difference from the present proposal is that this framework uses only the TTL file as input, focusing
on mapping, which may or may not contain additional statements from an ontology. By using only
a TTL file, some concepts and practices of using ontologies for data integration are not met, such as
reusability, sharing, and portability across multiple platforms, as well as increased maintainability and
reliability [16].

In the case of a dedicated file for ontology and another for mapping, such as in Ontop, MASTRO, and
the proposed OntoPy framework, the OWL file would be the same for all three solutions, requiring
adjustments only in the mapping. This complexity of adjustments becomes more evident, particularly
in extensive ontologies or when dealing with multiple different data sources.

3. OntoPy framework

The research method is primarily based on the development of the OntoPy framework for data integra-
tion. In order to develop the OntoPy framework, it must:

• Be developed in Python due to its widespread use for data science applications, its growing
community, and ongoing advancements;

• Load an ontology in OWL format, following W3C standards;
• Load a mapping file in JSON format, aiming to make this step more accessible to applications

where those involved are in the initial stages of learning how to use ontologies for data integration;
• Materialize data from different types of files based on the loaded ontology;
• Provide the materialized knowledge graph in execution memory for SPARQL queries.

The code was developed based on the Owlready2 library to access the ontology and convert the
loaded data into triples (Figure 1). Up to the current state of the framework, it is possible to load CSV,
XLSX, and Parquet files. Other file types will be considered in the future. However, OntoPy also operates



Figure 1: Architecture of the OntoPy framework

on databases running in pandas DataFrame objects. This capability allows the user to pre-load data
sources of other types through Python code in pandas DataFrame format and use them in Python. The
OntoPy framework, its proposal, and implementation case in a freight railway transportation company
are available on GitHub1.

4. The mapping file

The proposed framework for accessing different file systems also introduces a mapping file in JSON
format. The aim of this approach is to explore alternatives or propose a method that simplifies its
understanding for creation. The mapping file, in addition to serving as a guide for constructing triples,
defines which data should be used in the application. Therefore, even if a data source and the ontology
used have many attributes, the mapping file may only include the minimum necessary to form a triple.

Listing 1: Structure of the mapping files for OntoPy in JSON format
1 {
2 ‘‘test_database’’ :
3 {
4 ‘‘data_source_path’’: ‘‘C:\test.csv’’,
5 ‘‘separator’’: ‘‘;’’,
6 ‘‘decimal’’: ‘‘,’’,
7 ‘‘triples’’:
8 [
9 {

10 ‘‘subject’’:
11 {
12 ‘‘data_source_attribute_name’’: ‘‘Equipment’’,
13 ‘‘ontology_subject_name’’: ‘‘Locomotive’’
14 },
15 ‘‘predicates_and_objects’’:
16 [
17 {
18 ‘‘data_source_attribute_name’’: ‘‘Model’’,
19 ‘‘ontology_predicate_name’’: ‘‘hasModel’’,
20 ‘‘ontology_object_name’’: ‘‘Locomotive_model’’

1https://github.com/pedropdomingos/OntoPy



21 },
22 {
23 ...
24 }
25 ]
26 },
27 ...
28 ]
29 },
30
31 ...,
32 }

The mapping file follows the structure seen in Listing 1. Explaining each line index of the Listing 1:

• Index 2: Identifier for the mapped data source;
• Index 4: Path of the data source;
• Index 5: Character defining the column separation in CSV files;
• Index 6: Character defining the decimal separation in numerical values in CSV files;
• Index 12: Identification of the attribute in the data source treated as the subject;
• Index 13: Identification of the corresponding ontology class that the subject attribute refers to;
• Index 18: Identification of the attribute in the data source treated as the object;
• Index 19: Identification of the corresponding ontology property responsible for the relationship

between the subject and the object;
• Index 20: Identification of the corresponding ontology class that the object attribute refers to;
• Index 23: Next mapping of the predicate for the corresponding subject;
• Index 27: Next sequence of triples with the mapping of a subject and its predicates;
• Index 31: Next data source to be mapped.

5. Tests

It was decided to conduct a comparative test regarding performance with Morph-KGC precisely because
of the similarities with the proposed OntoPy framework. The idea was to choose a simple and easy-
to-use test from Morph-KGC’s Github and adapt it to OntoPy to compare the performance of the
frameworks. Among the available tests, there is one related to the number of Instagram followers
that is very accessible as it uses pandas DataFrames to integrate. To generate the data, a code was
developed that generates identifiers from zero to the desired amount, repeating data such as first name,
last name, and username on the platform, as well as random numbers for the number of followers. The
comparative test was limited to comparing the processing times for inserting data from databases into
the ontology or knowledge graph and the times for performing a simple SPARQL query. The query
executed was to return the user identifiers and their respective number of followers.

Table 2
Processing times in the integration test of pandas DataFrames proposed by Morph-KGC

Data Insert data (OntoPy) (s) Insert data (Morph) (s) SPARQL and iterate result (OntoPy) (s) SPARQL and iterate result (Morph) (s)
10000 2.53 3.71 0.17 0.55
100000 30.31 20.65 7.67 5.13
1000000 364.57 431.43 79.93 297.10

The initial tests of OntoPy have shown promissing. In the comparative test with Morph-KGC, OntoPy
excelled in performance in scenarios with a large volume of data, which is significant (Table 2). It is
under such conditions that the need for performance becomes more apparent. Both presented the same
results in the query, also demonstrating the reliability of the proposed approach.

The entire implementation in a real case of a company in the railway sector focused on diesel-electric
locomotives and the application of a query can be seen on the previously mentioned project’s GitHub.



6. Conclusion and results

OntoPy has been used for querying data in the domain of diesel-electric locomotive maintenance. It
has been possible to perform queries that are challenging due to the heterogeneity of the data sources,
both in terms of attributes and structures, and it has shown good performance. It is understood that
there is room for improvement, particularly in the stage of populating the materialized ontology with
instances, but the solution has already yielded consistent results.

There are possibilities for improving the efficiency of the framework by using threads and multipro-
cessing resources. Additionally, the use of the Owlready2 library should be re-evaluated in terms of
performance.

References

[1] G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, Using ontologies for semantic data
integration, A Comprehensive Guide Through the Italian Database Research Over the Last 25
Years (2018) 187–202.

[2] B. Dorneanu, S. Zhang, H. Ruan, M. Heshmat, R. Chen, V. S. Vassiliadis, H. Arellano-Garcia, Big data
and machine learning: A roadmap towards smart plants, Frontiers of Engineering Management 9
(2022) 623–639.

[3] D. Calvanese, D. Lanti, T. M. De Farias, A. Mosca, G. Xiao, Accessing scientific data through
knowledge graphs with ontop, Patterns 2 (2021) 100346.

[4] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro,
G. Xiao, Ontop: Answering sparql queries over relational databases, Semantic Web 8 (2017)
471–487.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati,
M. Ruzzi, D. F. Savo, The mastro system for ontology-based data access, Semantic Web 2 (2011)
43–53.

[6] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, O. Corcho, Morph-KGC: Scalable
knowledge graph materialization with mapping partitions, Semantic Web 15 (2024) 1–20. doi:10.
3233/SW-223135.

[7] D. Chaves-Fraga, L. Pozo-Gilo, J. Toledo, E. Ruckhaus, O. Corcho, Morph-csv: Virtual knowledge
graph access for tabular data., in: ISWC (Demos/Industry), 2020, pp. 11–16.

[8] F. Priyatna, O. Corcho, J. Sequeda, Formalisation and experiences of r2rml-based sparql to sql
query translation using morph, in: Proceedings of the 23rd international conference on World
wide web, 2014, pp. 479–490.

[9] F. Michel, L. Djimenou, C. F. Zucker, J. Montagnat, Translation of relational and non-relational
databases into rdf with xr2rml, in: 11th International Confenrence on Web Information Systems
and Technologies (WEBIST’15), 2015, pp. 443–454.

[10] L. Jean-Baptiste, Ontologies with Python: Programming OWL 2.0 Ontologies with Python and
Owlready2, Springer, 2021.

[11] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle, Rml: A generic
language for integrated rdf mappings of heterogeneous data., Ldow 1184 (2014).

[12] J. Slepicka, C. Yin, P. A. Szekely, C. A. Knoblock, Kr2rml: An alternative interpretation of r2rml
for heterogenous sources., in: Cold, 2015.

[13] A. Mauri, J.-P. Calbimonte, D. Dell’Aglio, M. Balduini, M. Brambilla, E. Della Valle, K. Aberer,
Triplewave: Spreading rdf streams on the web, in: The Semantic Web–ISWC 2016: 15th Inter-
national Semantic Web Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part II 15,
Springer, 2016, pp. 140–149.

[14] E. Daga, L. Asprino, P. Mulholland, A. Gangemi, et al., Facade-x: an opinionated approach to
sparql anything, Studies on the Semantic Web 53 (2021) 58–73.

http://dx.doi.org/10.3233/SW-223135
http://dx.doi.org/10.3233/SW-223135


[15] S. Kamm, N. Jazdi, M. Weyrich, Knowledge discovery in heterogeneous and unstructured data of
industry 4.0 systems: challenges and approaches, Procedia CIRP 104 (2021) 975–980.

[16] H. Li, Ontology-Driven Data Access and Data Integration with an Application in the Materials
Design Domain, Ph.D. thesis, Linköping University Electronic Press, 2022.


	1 Introduction
	2 Related works
	3 OntoPy framework
	4 The mapping file
	5 Tests
	6 Conclusion and results

