
A domain reference ontology for design science research
knowledge bases

Jean Paul Sebastian Piest1,*,†, Victor Benoiston Jales de Oliviera2,†, Patrício de Alencar
Silva2,†, Manoel Ricardo da Cunha Junior2,† and Marten van Sinderen1

1 University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
2 Federal University of the Semi-Arid Region (UFERSA), Mossoró, RN – Brazil

Abstract
Knowledge bases play an important role in Design Science Research (DSR). Although some related work
exists, no domain reference ontology is available for reuse and cumulative development of design
knowledge. This paper presents a domain reference ontology for DSR knowledge bases using the SABiO
methodology. The domain reference ontology is designed in Visual Paradigm based on the UFO and
represented in OntoUML. Stakeholders have verified the results and syntactic consistency has been checked
using the OntoUML plugin in Visual Paradigm. An operational ontology was designed and implemented in
a DSR project in OWL using WebProtégé. The ontology was populated and validated using competency
questions and expert opinion. The domain reference ontology provides a blueprint for DSR knowledge
bases and a conceptual foundation to develop operational ontologies to support the cumulative
development of design knowledge. Current work aims to evaluate the use of the operational ontology
within operational systems and implement an interactive website for online collaboration. A user group
and working group will be established to manage the lifecycle, which is open for interested scholars and
professionals to join.

Keywords
design science research, knowledge bases, domain reference ontology, operational ontology, SABiO, UFO,
OntoUML, OWL1

1. Introduction

The field of Information Systems (IS) is concerned with “the use of information-technology artifacts
in human-machine systems” [1]. Design Science Research (DSR) is an established research paradigm
in the field of IS, focusing on “the design and investigation of artifacts in context” [2]. Knowledge Bases
(KBs) are essential in DSR [3-5]. On the one hand, KBs inform DSR with existing and helpful
knowledge. On the other hand, DSR produces novel artifacts, design knowledge, and design theory
that contribute to advancing KBs.

Design knowledge lies scattered across literature and disciplines [1,3]. While DSR typically
combines knowledge from different disciplines, developing an integrated KB requires thorough
literature reviewing and integration of potentially conflicting positions and perspectives regarding
ontology and epistemology [3,4,6]. Although related work exists [3,4,6,7], no domain reference
ontology is readily available for DSR KBs. This hinders the reuse and cumulative development of
design knowledge [5,6].

Building upon [8], this paper presents a domain reference ontology for DSR KBs based on the
Systematic Approach for Building Ontologies (SABiO) [9].

Proceedings of the Joint Ontology Workshops (JOWO) - Episode X: The Tukker Zomer of Ontology, and satellite events co-
located with the 14th International Conference on Formal Ontology in Information Systems (FOIS 2024), July 15-19, 2024,
Enschede, The Netherlands.
∗ Corresponding author.
† These authors contributed equally.

 j.p.s.piest@utwente.nl (J.P.S. Piest)
 0000-0002-0995-6813 (J.P.S. Piest); 0009-0000-7026-6929 (V. B. J. de Oliviera) ; 0000-0001-6827-1024 (P. de A. Silva);

0009-0009-9167-8469 (M. R. da C. Junior)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

This paper is structured as follows. Section 2 discusses related work. Section 3 is concerned with
the methodology. Section 4 presents the domain reference ontology for DSR KBs. Section 5 discusses
the operational ontology. Section 6 contains a description of supporting processes. Section 7
concludes the paper.

2. Related work

This section discusses related work regarding Design Science Research (DSR) and its relationship
with Knowledge Bases (KBs).

2.1. Design science research

The field of IS produced several DSR methodologies to support the development and evaluation of
artifacts in context [2, 10-12]. A distinct feature of DSR is its connection to KBs and the application
environment, respectively focusing on rigor and relevance [11]. In DSR, design knowledge
contributions are informed by formal theories and rigorously evaluated.

The role of theory in IS and design theorizing in DSR are much-debated topics [1,13,14]. Important
related work exists regarding the nature of theory in IS [1], different theory types [1,3,13], the
relation between theory types and the design process [12], theory building in DSR [1,5,13,14], and
the anatomy of a design theory [15]. These related works should be incorporated into a domain
reference ontology for DSR KBs.

DSR projects typically result in different artifacts and outputs, which can be assessed, amongst
other criteria, by the level of abstraction, completeness, and knowledge maturity: (1) situated
implementations of artifacts, (2) nascent design theory, and (3) well-developed design theory about
embedded phenomena [4]. Moreover, the artifact (in development) is subject to verification,
validation, and evaluation by stakeholders in a specific application environment or broader context
[15].

2.2. Knowledge bases in design science research

Related work investigated the structure and contents of KBs in IS and DSR [3] and provided a DSR
KB framework [4]. In the context of IS and DSR, KBs contain descriptive and prescriptive knowledge
[3,4]. The former mainly consists of formal theories originating from natural and social sciences [3].
The latter involves design knowledge in constructs, models, methods, instantiations (abstract or
situated artifacts), and design theories [3,4]. Although there is consensus that theories should inform
DSR, there is no consensus regarding the role of justification knowledge in KBs [3]. DSR utilizes one
or multiple KBs to consume and produce descriptive and prescriptive knowledge [3,4]. The
framework of [5] differentiates six modes for using KBs to support design theorizing and -processing
in DSR projects and provides principles for cumulative development of design knowledge.

3. Ontology engineering methodology

The SABiO methodology [9] was adopted to guide the development of the domain reference ontology
and operational ontology for DSR KBs, as shown in Figure 1.

Figure 1: Overview of the SABiO development- and support processes, adapted from [9].

The SABiO prescribes a development process that consists of five phases: 1) purpose identification
and requirements elicitation, 2) ontology capture and formalization, 3) design, 4) implementation, and
5) testing [9]. The development process is supported by processes for knowledge acquisition,
documentation, configuration management, evaluation, and reuse [9]. The authors used the SABiO
guidelines for each phase and online collaborative modeling to complete the required activities. The
first two phases related to the domain reference ontology are documented in Section 4. The
remaining three phases are discussed in Section 5. The support processes are described in Section 6.

4. Domain reference ontology

This section presents the developed domain reference ontology for DSR KBs.

4.1. Phase 1: Ontology requirements

Phase 1 of the SABiO aims at specifying four required aspects: 1) purpose, 2) intended uses, 3)
requirements, and 4) Competency Questions (CQs), which together result in an Ontology
Requirements Specification Document (ORSD). Table 1 presents the ORSD.

Table 1
ORSD.

Component Description
Purpose and aim The primary purpose is to develop an interactive KB system that

supports (1) researchers, (2) designers, (3) developers, (4) end-users, and
(5) system users with activities related to design theorizing and design

Component Description
processing in DSR projects. More specifically, the domain reference
ontology for DSR KBs aims to create a common language and
vocabulary, classify types of knowledge, and provide a foundation for
conceptual modeling.

Intended uses Use 1a: Researchers periodically review scientific databases and
organize descriptive and prescriptive knowledge in the KB.
Use 1b: Researchers create design knowledge maps by interrelating
problem- and solution spaces, available technologies and alternatives,
and evaluation in empirical research studies.
Use 1c: Researchers initiate DSR projects, informed by the KB, to
cumulatively develop design knowledge and verify, validate, and
evaluate contributions with designers, developers, and end-users.
Use 1d: Researchers review design knowledge contributions of fellow
researchers from DSR projects for inclusion in the KB.
Use 1e: Researchers review artifacts and design knowledge
contributions of designers and developers from empirical research
studies for inclusion in the KB.
Use 2a: Designers search the KB for reusable design knowledge for the
design of applications.
Use 2b: Designers produce solution designs for applications to
address/solve problems using the KB.
Use 2c: Designers submit design artifacts and design knowledge
contributions for review and inclusion in the KB.
Use 3a: Developers search the KB for reusable artifacts and design
knowledge for the construction and implementation of applications.
Use 3b: Developers construct and instantiate applications (based on
solution designs of designers in 2b) using the KB.
Use 3c: Developers submit reusable applications, including related
artifacts and implementation details, and design knowledge
contributions for review and inclusion in the KB.
Use 4a: End-users search the KB for existing applications and, if
available, related case studies and empirical research studies.
Use 4b: End-users participate in DSR projects and empirical research
studies for verification, validation, and evaluation.
Use 5a: Scientific databases provide publication data and meta-data (in
.ris format) to include in the KB.
Use 5b: Scientific databases provide APIs for automated data exchange
with the KB.
Use 6a: System users query the KB for inquiry (e.g., explore
knowledge, search), analytical purposes (e.g., bibliometric analysis),
and the development of software agents (e.g., recommender or assistant
to support users 1-4).
Use 6b: System users can integrate via APIs (e.g., to synchronize
scientific databases).
Use 7: All actors add their perspectives and ontological and
epistemological positions in the KB.

Non-Functional
Requirements

NFR1: The ontology must comply with, integrate, and reuse existing
vocabularies as much as possible, if relevant for the purpose/scope.
NFR2: The ontology distinguishes general concepts from
task/application-specific concepts.

4.2. Phase 2: Ontology capture

In phase 2 of the SABiO, the domain reference ontology for DSR KBs is captured and formalized
based on the ORSD. The SABiO recommends identifying and modeling concepts and relations based
on a foundational ontology [9]. The selected representation language for conceptual modeling is
OntoUML [17], which is grounded in the Unified Foundational Ontology (UFO) [18]. The relevant
concepts and relations were identified and organized using conceptual modeling in online sessions
as part of a DSR project [8]. Table 2 presents the four conceptual models that were developed.

Table 2
Overview and description of the developed conceptual models.

The SABiO prescribes a dictionary of terms and definitions and use of informal and formal axiom
definitions [9]. Our dictionary is based on the UFO [17], the ISO/IEC 2382:2015(en) Information
Technology — Vocabulary [19], and disciplinary terms and definitions used in DSR (see Section 2).
The classes (e.g., (sub-)kind, category, mixin, mode, quality) and relationships (e.g., characterization,
mediation, materialization) were modeled using UFO and OntoUML stereotypes. Each conceptual
model will be described and justified in a separate subsection.

4.2.1. Agent taxonomy and DSR projects

Figure 2 depicts an agent taxonomy and representation of the concepts in DSR projects.

Component Description
NFR3: The ontology allows specializations and extensions.
NFR4: The ontology allows deep modeling, thus connecting
metamodels to instantiations.
NFR5: The ontology must be at least available in the English language.
NFR6: The ontology must be open-access.
NFR7: The ontology must be based on FAIR principles.

Technical
requirements

TR1: The ontology is represented in OntoUML.
TR2: The ontology is implemented in OWL and instantiated using
(Web)Protégé.
TR3: The ontology is automatically checked for consistency and
correctness.
TR4: The ontology can be queried (e.g., using SPARQL).

CQs CQ1: What constitutes a DSR project?
CQ2: Which theory types and knowledge are used in DSR projects?
CQ3: How are design theory and knowledge created in DSR projects?
CQ4: Which applications and situated artifacts are built in DSR
projects?

CQ Conceptual model Description Knowledge acquisition
1 Agent taxonomy and

DSR projects
Taxonomy of involved agents
concerning the problem-solution
space(s) in DSR projects

[4,5,6,10-12]

2 Types of knowledge Classification of types of design
knowledge

[1,3,4,8,13]

3 Design theorizing Epistemological view on design
theorizing

[3,5,13-15]

4 Cases and
applications

Conceptual model to classify case
studies and applications

[5,8]

Figure 2: OntoUML model representing the agents in DSR projects.

Different agents work together in DSR projects to develop knowledge contributions and artifacts
[4,5]. Improvements, extensions, and exaptations are knowledge contributions [4]. Human agents
have different positions and perspectives related to epistemology or ontology [6]. The core DSR
activities are related to research (in both the problem and solution space) using appropriate research
methods and applying the intertwined activities to build, instantiate, and evaluate artifacts [5]. DSR
projects leverage existing knowledge as a foundation [9-11]. Input knowledge informs both the
problem- and solution space [5]. The three components of design knowledge include problem,
solution, and evaluation [5]. More specifically, the context of the problem space is detailed using
domain, stakeholder, time, and space [5]. Four goodness criteria are related to the problem [5].
Conversely, the solution space is represented as an array of alternatives and, if known, routine
designs to solve a (part of) the problem [4]. The projectability of the problem space, the solution
fitness (for use and evolution), and the evaluation form the basis for a design knowledge map [5].

4.2.2. Types of knowledge

Figure 3 classifies types of knowledge that agents use within DSR projects.

Figure 3: OntoUML model representing types of knowledge.

Following the DSR KB framework [4,8], knowledge is classified into descriptive and prescriptive
knowledge [3,4]. Gaß et al. [3] consider conceptual knowledge as a kind of knowledge to represent
abstract forms of knowledge, which can be incorporated explicitly in a DSR project. Descriptive
knowledge is based on causality and informs the development of prescriptive knowledge through
formal theories [1,3,13]. Prescriptive knowledge is divided into product and process-related
knowledge and further refined based on the adopted classification [4]. Concepts can be classified and
combined in a (conceptual) framework. A construct is a set of concepts with relationships. Constructs
can be incorporated as part of a model or a method. Methods can be algorithms, techniques, or
technical procedures. Processes can be business processes or workflows. Prescriptive knowledge can
confirm or refine formal theories by linking facts (based on measurements) to hypotheses [13].
Design theory is discussed in a separate conceptual model (see Figure 4).

4.2.3. Design theorizing

The conceptual model depicted in Figure 4 builds upon Figure 3 to develop an epistemological view
of design theorizing. Formal theories inform the development of design theories [3,13,15]. A design
theory consists of scope, construct (which can be part of a model or method), testable propositions,
principles (e.g., form, function, implementation), and artifact mutability (e.g., state changes),
eventually resulting in an expository instantiation [14]. The conceptual model of [13] is selected to
interrelate design theorizing with the classification of theory types (e.g., formal theories, mid-range
theories, practitioner-in-use theories, and design theories) and their qualities (e.g., explanation
power, prediction power, and generalizability). The knowledge measures are related to verification,
validation, and evaluation in DSR [5]. Justification knowledge is defined as an unverified form of
knowledge [13].

Figure 4: OntoUML model representing design theorizing.

4.2.4. Case studies and applications

Figure 5 contains a conceptual model to represent case studies and applications.

Figure 5: OntoUML model representing case studies and applications.

This conceptual model relates DSR projects to publications, empirical research studies, and
applications [8]. The project repository will contribute to making the results of the DSR project FAIR
and contribute to the reuse and cumulative development of design knowledge [5]. Case studies are
categorized by type and can be a single, multiple or cross case study. An application has a goal, use
case(s), and context of use. A use case is characterized by intended use(s).

4.2.5. Verification

Using the ex-ante evaluation criteria of [16], a stakeholder opinion survey (N=7) was conducted
among three researchers, two designers, and two developers. Here, the stakeholders’ appreciation of

the solution approach and feasibility of solving identified problems were evaluated. Furthermore, the
relevant roles, intended future use, and contribution were assessed. The ex-ante evaluation provided
support for the solution approach and input for the refinement of the conceptual models. After
completing the conceptual modeling, each conceptual model was syntactically verified for
consistency using the OntoUML plugin in Visual Paradigm. All four conceptual models are
syntactically consistent with OntoUML.

5. Operational ontology

This subsection documents the development of an operational ontology in a DSR project [8].

5.1. Phase 3: Design

Phase 3 of the SABiO methodology is related to the design of an operational ontology and comprises
the definition of the implementation environment, a high-level architecture design description, and
a detailed design description.

Following the SABiO recommendation [9], OWL was selected to develop the implementation
environment. For the implementation phase, WebProtégé was selected to satisfy most requirements.
WebProtégé is a free, open-source, lightweight, web-based ontology editor supporting OWL
ontologies. The primary limitations, compared to the desktop version of Protégé, are related to
querying (WebProtégé uses web-based queries, the desktop version supports SPARQL) and
integrations (WebProtégé provides webhooks and no APIs). Moreover, WebProtégé does not offer
embedded reasoners.

Upon the UFO and OntoUML, WebProtégé can automatically generate an operational OWL
ontology based on OntoUML, which can contribute to shortening the implementation phase.
Another advantage of WebProtégé is that it facilitates online collaboration. Furthermore,
WebProtégé offers several options for downloading ontologies to import into the desktop version of
Protégé or other tools.

As part of detailed design, among other challenges, the problem of lower expressivity in
operational languages needs to be assessed and resolved [9]. Three important design decisions were
made: 1) Trim the “leaves” of the ontology to reduce the size and complexity of the ontology, 2)
Rename all stereotypes relations to unique relations, and 3) Implement publication (meta)data as data
properties. Most trimmed leaves were recreated in the operational ontology using object and data
properties.

5.2. Phase 4: Implementation

Phase 4 of the SABiO is concerned with the implementation [9]. Based on the selected
implementation environment, an application cooperation view was created in ArchiMate 3.2 [19], as
depicted in Figure 6.

Figure 6: Application cooperation view.

Building upon the OntoUML models in Visual Paradigm, the gUFO export option generated a .ttl
file. This file was imported into desktop Protégé and used to create an OWL ontology. Next, the OWL
ontology was imported into WebProtégé, as shown in Figure 7.

Figure 7: Screenshot of WebProtégé implementation.

For each class, the relationships were checked with the OntoUML models. Next, the domain and
ranges of object properties were set. Following, data properties were created.

5.3. Phase 5: Testing

In phase 5 of the SABiO, the operational ontology is tested. The SABiO prescribes CQ-driven testing
of the ontology [9].

The CQ-driven testing approach of the SABiO was adopted. First, the ontology was populated
using the SLR results from 176 studies [8]. Second, the CQs needs were transformed into machine-
readable query languages (e.g., SPARQL). The SPARQL queries are included in Appendix A. Third, a
finite set of test cases was defined based on the ORSD. These test cases were related to the intended
uses and address NFRs and TRs. One integration test case was described to test the interoperability
of the OWL ontology. Fourth, a test document was created to guide the testing process and report
the results. This document includes the test cases and documented the results in tables (e.g., input-
output of queries to answer CQs). The test results are available at [21].

Laptop

User interface Desktop Protégé Import / export

OntoUML plugin

Visual Paradigm
(community

edition)
Verify / export

webprotege.stanford.edu

User account -
WebProtégé

Create project
from fileOntology editor

5.3.1. Validation and evaluation

The operational ontology was instantiated in WebProtégé, populated based on a DSR project [8],
validated using the CQs and queries, and evaluated using expert opinion.

A single-case mechanism experiment was conducted in WebProtégé using the CQs. All four CQs
can be answered based on the populated OWL ontology using WebProtégé queries. The quality of
the answers was low because WebProtégé uses a form-based approach. SPARQL queries were
developed and validated in desktop Protégé based on the populated OWL ontology. This resulted in
better answers. Regarding the NFRs, six out of the seven NFRs have been satisfied. Satisfying the
NFR related to deep modeling requires additional case study research. In terms of TRs, all four
requirements were satisfied.

The integration test case evaluated the reuse of the OWL ontology by downloading the populated
OWL ontology from WebProtégé and importing it into desktop Protégé. Importing and exporting
the results from Visual Paradigm into desktop Protégé functioned. Exporting the OWL ontology from
desktop Protégé and importing the OWL ontology in WebProtégé functioned as well. Lastly, the
populated OWL ontology was downloaded from WebProtégé and imported into desktop Protégé.
The structure was imported correctly. However, there were issues regarding object and data property
names. These issues were reported and resolved through manual renaming.

Finally, an expert opinion evaluation was conducted using the ex-post criteria of [16]. The main
improvement according to the expert was to make an explicit connection between the dictionary and
the developed OntoUML models and OWL ontology. This is included in the documentation [21].
Additionally, the expert recommended to develop guidelines for the practical use of the OWL
ontology. More specifically, the expert advised to focus on the implementation of the operational
ontology within an operational system. Based on the export opinion evaluation results, the decision
was made to release the current version in beta to evaluate the use of the domain reference ontology
and operational ontology in operation systems and multiple DSR projects.

6. Support processes

The SABiO prescribes support processes, including documentation, configuration management,
evaluation, and reuse [9]. The support processes contribute to the implementation of FAIR principles
regarding the domain reference ontology and operational ontology for DSR KBs.

The SABiO recommends creating an online project repository to publish the source code, naming
conventions, and rules for commenting on the code [9]. The Visual Paradigm project, containing the
four OntoUML models, is made available with the populated OWL ontology [21]. Desktop Protégé
provides functionality to generate interactive documentation as an OWL Doc. The generated OWL
Doc is also available at [21].

The lifecycle of the domain reference ontology for DSR KBs and selected operational ontologies
will be managed using major and minor releases, including new versions, changes, and supporting
documentation. The release plan will be detailed based on the evaluation and feedback of
stakeholders in DSR projects and made available at [21].

Initial verifications, validations, and evaluations have been conducted. The developed domain
reference ontology and operational ontology will be available in beta for a broader community
evaluation. A user group will be formed to evaluate the use within operational systems in multiple
DSR projects using the evaluation framework and ex-post evaluation criteria (e.g., effectiveness,
efficiency, external consistency) of [16].

A working group will be formed to translate the evaluation results into an official release and
product roadmap in parallel with user evaluation. The working group will include the involved
researchers and is open for interested scholars and IS professionals to join. After the official release,
comments are registered using the comment function in WebProtégé and registered in the releases
and documentation pages at [20].

After the official release, the WebProtégé project will also be made publicly available. The domain
reference ontology can then be downloaded from WebProtégé in the OWL format for reuse and
extended in operational ontologies. Guidelines will be defined to (re)use the domain reference
ontology for DSR KBs in DSR projects.

7. Conclusion

This paper presented a domain reference ontology and operational ontology for DSR KBs.
The domain reference ontology is developed using the SABiO and based on an ORSD. The domain

reference ontology for DSR KBs is represented in OntoUML, which is grounding in the UFO, and
implemented as an operational ontology in OWL. Seven stakeholders verified the domain reference
ontology using ex-ante evaluation criteria. Four OntoUML models have been designed and
syntactically verified in Visual Paradigm. Next, an operational ontology has been instantiated using
WebProtégé as part of a DSR project. The operational ontology was validated using CQs and expert
opinion using ex-post evaluation criteria. The developed domain reference ontology is available in
beta for community evaluation. It provides a blueprint to develop DSR KBs and a conceptual
foundation to develop operational ontologies to support DSR projects.

Some limitations need to be addressed. The operational ontology has been implemented in
WebProtégé, which has some limitations compared to the desktop version regarding querying,
integration, and reasoners. Another limitation is that the domain reference ontology and the
operational ontology have not been used and evaluated in operational systems.

We currently work on the latter limitation and implement an interactive website for online
collaboration. Future research may contribute to developing methods and techniques for analyzing
DSR KBs, for instance, to measure their current maturity, completeness, and quality. In addition,
experimental software agents can be developed for augmenting DSR activities with support from our
operational ontology for DSR KBs.

References

[1] Gregor, S. (2006). The nature of theory in Information Systems. MIS Quarterly: Management
Information Systems, 30(3), 611–642. DOI: https://doi.org/10.2307/25148742.

[2] Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Springer Berlin, Heidelberg. DOI: https://doi.org/https://doi.org/10.1007/978-3-
662-43839-8.

[3] Gaß, O., Koppenhagen, N., Biegel, H., Mädche, A., & Müller, B. (2012). Anatomy of Knowledge
Bases Used in Design Science Research: A Literature Review. In DESRIST. Advances in Theory
and Practice. 2012. Lecture Notes in Computer Science, vol 7286. Springer, Berlin, Heidelberg.
(pp. 328–344). DOI: https://doi.org/https://doi.org/10.1007/978-3-642-29863-9_24.

[4] Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for
maximum impact. MIS Quarterly: Management Information Systems, 37(2), 337–355. DOI:
https://doi.org/10.25300/MISQ/2013/37.2.01.

[5] Vom Brocke, J., Winter, R., Hevner, A., & Maedche, A. (2020). Special issue editorial –
accumulation and evolution of design knowledge in design science research: A journey through
time and space. Journal of the Association for Information Systems, 21(3), 520–544. DOI:
https://doi.org/10.17705/1jais.00611.

[6] Nguyen, A., Gardner, L., & Sheridan, D. (2019). Towards Ontology-Based Design Science
Research for Knowledge Accumulation and Evolution. In Proceedings of the 52nd Hawaii
International Conference on System Sciences (pp. 5755-5764). DOI:
http://hdl.handle.net/10125/60011.

[7] Weigand, H., Johannesson, P., & Andersson, B. (2021). An artifact ontology for design science
research. Data & Knowledge Engineering, 133, 101878. DOI:
https://doi.org/10.1016/j.datak.2021.101878.

[8] Piest, J.P.S. (2024). Towards a Knowledge Base and Design and Action Theory for Intelligence
Amplification. In: Sales, T.P., de Kinderen, S., Proper, H.A., Pufahl, L., Karastoyanova, D., van
Sinderen, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2023 Workshops.
Lecture Notes in Business Information Processing, vol 498. Springer, Cham. DOI:
https://doi.org/10.1007/978-3-031-54712-6_24.

[9] De Almeida Falbo, R. (2014). SABiO: Systematic Approach for Building Ontologies. In CEUR
Workshop Proceedings (Vol. 1301). Retrieved from https://ceur-ws.org/Vol-
1301/ontocomodise2014_2.pdf.

[10] Nunamaker, J. F., Chen, M., & Purdin, T. D. M. (1990). Systems Development in Information
Systems Research. Journal of Management Information Systems, 7(3), 89–106. DOI:
https://doi.org/https://www.jstor.org/stable/40397957.

[11] Hevner, A. R., Ram, S., March, S. T., & Park, J. (1996). Design science in Information Systems
Research. AI and Society, 10(2), 199–217. DOI: https://doi.org/10.1007/BF01205282.

[12] Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal of MIS, 24(3), 45–77. DOI:
https://doi.org/10.2753/MIS0742-1222240302.

[13] Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research:
Anatomy of a research project. European Journal of Information Systems, 17(5), 489–504. DOI:
https://doi.org/10.1057/ejis.2008.40.

[14] Venable, J. R. (2006). The Role of Theory and Theorising in Design Science Research. In
Proceedings of the 1st International Conference on DESRIST (pp. 1–18). DOI:
https://doi.org/10.1.1.110.2475.

[15] Jones, D., & Gregor, S. (2007). The anatomy of a design theory. Journal of the Association for
Information Systems, 8(5), 312–335. DOI: https://doi.org/10.17705/1jais.00129.

[16] vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to Design Science Research,
(November), 1–13. DOI: https://doi.org/10.1007/978-3-030-46781-4_1.

[17] OntoUML - OntoUML Specification Documentation. Available online:
https://ontouml.readthedocs.io/en/latest/intro/ontouml.html.

[18] Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. Retrieved from:
http://www.loa.istc.cnr.it/Guizzardi/SELMAS-CR.pdf

[19] Available online: https://www.iso.org/obp/ui/en/#iso:std:iso-iec:2382:ed-1:v2:en.
[20] The Open Group (N.d.). ArchiMate ® 3.2 Specification. Available online:

https://pubs.opengroup.org/architecture/archimate3-doc/.
[21] GitHub. DSR KB. Available online: https://github.com/SebastianPiest/dsr-kb.

A. SPARQL Queries

CQ 1: What constitutes a DSR project?

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX : <http://www.dsr_knowledge_base#>

SELECT DISTINCT ?dsrProject ?artifact ?agent ?contribution ?solution ?problem
?researchActivity
WHERE {
 # Match instances of DSRProject
 ?dsrProject rdf:type :DSRProject .

 # Optional: Fetch artifacts that the DSR Project concerns
 OPTIONAL { ?dsrProject :concerns ?artifact . }

 # Optional: Fetch agents involved in the DSR Project
 OPTIONAL { ?dsrProject :involves ?agent . }

 # Optional: Fetch the contributions aimed by the DSR Project
 OPTIONAL { ?dsrProject :aimsTo ?contribution . }

 # Optional: Fetch the solutions proposed by the DSR Project
 OPTIONAL { ?dsrProject :proposes ?solution . }

 # Optional: Fetch the problems addressed by the DSR Project
 OPTIONAL { ?dsrProject :addresses ?problem . }

 # Optional: Fetch the research activities initiated by the DSR Project
 OPTIONAL { ?dsrProject :initiates ?researchActivity . }
}

This query fetches the concepts that are directly related to DSR Projects and can be extended to
include other concepts.

CQ 2: Which theory types and knowledge are used in DSR projects?

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.dsr_knowledge_base#>

SELECT DISTINCT ?theory ?theoryType ?relatedKnowledge ?knowledgeType
WHERE {
 # Step 1: Match theories and their types
 {
 ?theory rdf:type ?theoryType . # Match theories and their types
 FILTER(?theoryType = :FormalTheory) # Filter for FormalTheory
 }
 UNION
 {
 ?theory rdf:type ?theoryType . # Match theories and their types
 FILTER(?theoryType = :MRT) # Filter for MRT
 }
 UNION
 {

 ?theory rdf:type ?theoryType . # Match theories and their types
 FILTER(?theoryType = :PTiU) # Filter for PTiU
 }

 # Step 2: Optional matching of related knowledge
 OPTIONAL {
 {
 ?theory :confirmedBy ?relatedKnowledge . # Match theories confirmed by related
knowledge
 ?relatedKnowledge rdf:type ?knowledgeType . # Match related knowledge types
 FILTER(?knowledgeType = :Fact || ?knowledgeType = :Hypothesis) # Filter for Fact or
Hypothesis
 }
 UNION
 {
 ?theory :generates ?relatedKnowledge . # Match theories generating related knowledge
 ?relatedKnowledge rdf:type ?knowledgeType . # Match related knowledge types
 FILTER(?knowledgeType = :Fact || ?knowledgeType = :Hypothesis) # Filter for Fact or
Hypothesis
 }
 }
}

CQ 3: How is design theory and knowledge created in DSR projects?

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.dsr_knowledge_base#>

SELECT DISTINCT ?dsrProject ?designTheory ?formalTheory ?scope ?construct
?testableProposition ?principle ?artifactInstantiation
WHERE {
 # Match instances of DSRProject and its relation to DesignTheory
 ?dsrProject rdf:type :DSRProject .
 ?designTheory rdf:type :DesignTheory .
 ?dsrProject :cumulativelyDevelops ?designTheory .

 # Optional: Match Formal Theories that inform the development of Design Theories
 OPTIONAL { ?formalTheory :informsDevelopmentOf ?designTheory . }

 # Optional: Fetch characteristics of a Design Theory
 OPTIONAL { ?designTheory :hasBoundarySetBy ?scope . }
 OPTIONAL { ?designTheory :theorizes ?construct . }
 OPTIONAL { ?designTheory :isTestedBy ?testableProposition . }
 OPTIONAL { ?designTheory :isPrescribedBy ?principle . }
 OPTIONAL { ?designTheory :isIllustratedBy ?artifactInstantiation . }
}

Design Theory Instances: The query starts by selecting instances of DesignTheory using the
type relationship rdf:type and the related DSR projects in which knowledge was cumulatively
developed. After that, how the design theory was created.

Formal Theories Related to Design Theories: It retrieves any FormalTheory that contributes
to the development of a DesignTheory. The predicate :informsDevelopmentOf links FormalTheory
to DesignTheory.

Characteristics of Design Theories: :hasBoundarySetBy: Retrieves the scope that sets the
boundaries of the design theory. :theorizes: Fetches the constructs, which can be part of models or
methods within the theory. :isTestedBy: Gets testable propositions linked to the theory, indicating
elements that are empirically testable. :isPrescribedBy: Obtains principles that might define form,
function, implementation strategies, etc. :isIllustratedBy: Retrieves artifact instantiations, which are
practical demonstrations or exemplars of the theory.

CQ 4: Which applications and situated artifacts are built in DSR projects?

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX : <http://www.dsr_knowledge_base#>

SELECT DISTINCT ?dsrProject ?artifact ?application ?agent ?designTheory
?applicationGoal ?designRepresentation ?description ?requirement ?useCase
WHERE {
 # Match DSR projects
 ?dsrProject rdf:type :DSRProject .
 # Match Artifacts concerned by DSR projects
 OPTIONAL {
 ?dsrProject :concerns ?artifact .
 ?artifact rdf:type :Artifact .

 # Optional: Match agents that design the artifact
 OPTIONAL { ?agent :designs ?artifact . }

 # Optional: Match design theories that abstract the artifact
 OPTIONAL { ?designTheory :abstracts ?artifact . }
 }
 # Match Applications studied by DSR projects
 OPTIONAL {
 ?dsrProject :studies ?application .
 ?application rdf:type :Application .
 # Optional: Match ApplicationGoal that directs the application
 OPTIONAL { ?applicationGoal :canDirect ?application . }

 # Optional: Retrieve data properties for the application
 OPTIONAL { ?application :hasApplicaitonDesignRepresentation ?designRepresentation . }
 OPTIONAL { ?application :hasApplicationDescription ?description . }
 OPTIONAL { ?application :hasApplicationRequirement ?requirement . }

 # Optional: Match UseCase associated with the application
 OPTIONAL { ?application :usedFor ?useCase . }
 }
}

DSR Projects as the Central Focus: The query starts by identifying instances of DSRProject.
Fetching Artifacts and Applications Related to DSR Projects: The query retrieves any artifacts

that are "concerned" by these DSR projects using the relationship ?dsrProject :concerns ?artifact.
This identifies the artifacts that are being developed or utilized within these projects. Similarly, the
query retrieves applications that are "studied" by the DSR projects using the relationship ?dsrProject
:studies ?application. This fetches applications that are either the focus of these research projects or
are being developed as part of them.

Optional Details for Artifacts and Applications: For artifacts, it optionally fetches the agents
who design them (?agent :designs ?artifact) and the design theories that abstract them
(?designTheory :abstraction ?artifact). For applications, it optionally retrieves various descriptors
such as the application's goal (?applicationGoal :can_Direct ?application), design representation,
description, requirements, and use cases. The use of OPTIONAL clauses ensures that the query will
still return DSR projects even if some information about related artifacts or applications is missing.
This means the query is robust against incomplete data.

