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Abstract
In the Ontology Based Data Access (OBDA) framework, users access a relational data source by querying
a domain ontology, whose classes and properties are connected to the data via declarative mappings.
OBDA is adopted for data management in various sectors, notably healthcare, where confidentiality of
information is a key concern that requires data to be properly protected from unauthorized accesses.
Controlled Query Evaluation (CQE) is a framework for privacy-preserving query answering in the presence
of an ontology. In CQE, policies are used to represent the information that should be kept confidential,
and the aim is to devise from policy specifications suitable censors that enforce data protection. Therefore,
it is desirable to integrate CQE in OBDA to obtain a robust privacy-aware data management framework.
This has been done in the recently proposed Policy-Protected OBDA (PPOBDA) framework, which ensures
the integration of CQE within OBDA by embedding policies into mappings. In this paper, we present
an open-source solution that implements PPOBDA and a simplified algorithm for policy embedding,
compared to previously proposed ones. This facilitates the adoption of PPOBDA using any OBDA query
engine capable of translating SPARQL queries into SQL. In our implementation, we rely on Ontop, a
state-of-the-art open-source OBDA tool.
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1. Introduction

Within the Ontology-Based Data Access (OBDA) framework [1, 2], illustrated in the left part
of Figure 1, an ontology encapsulates relevant domain knowledge and provides to users a
vocabulary of classes and properties over which they can formulate queries. In OBDA, domain
knowledge is typically expressed in OWL 2 QL, a profile (i.e., fragment) of the Web Ontology
Language OWL 2, standardized by the W3C [3], while the actual data is stored in a relational
source, which is linked to the ontology through declarative mappings, expressed in the R2RML
mapping language [4]. Intuitively, mapping assertion specify how to populate the classes and
properties of the ontology by means of data retrieved through SQL queries over the source.

Guaranteeing the privacy of information represents a challenge across all data management
systems, especially in those cases where sensitive data, such as medical records, need to be
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Figure 1: OBDA vs Policy-Protected OBDA

manipulated. This holds in particular for OBDA, where the main objective is to efficiently and
effectively answer queries posed by users over the ontology, but transferring the necessary
data from the underlying data source requires suitable privacy preserving methods that prevent
any unauthorized disclosure of sensitive data. Recently, Controlled Query Evaluation (CQE) has
emerged as a promising privacy-preserving framework for query answering in the presence of
ontologies [5, 6, 7]. In CQE, policies represent confidential information and a censor protects these
policies from being violated, by suitably modifying query answers. Therefore, the inclusion of
CQE within OBDA would help in improving data confidentiality, reducing risks of unauthorized
data access, and ensuring compliance with regulatory privacy frameworks.

Building upon the foundational principles of CQE and of OBDA, the Policy-Protected OBDA
(PPOBDA) framework was introduced in [8]. In PPOBDA, policies are denial assertions for-
mulated as first-order logic (FOL) formulas. These policies are then integrated into mapping
assertions, thus establishing new mappings that are policy-protected, i.e., they ensure that
policies are not violated when answering queries over the ontology by accessing the underlying
data source (cf. Fig. 1). This framework has showcased promising results, and its first implemen-
tation highlights its potential to enhance privacy preservation in the OBDA settings. However,
this initial implementation of PPOBDA relied on closed-source software, specifically the Mastro
system [9], as the underlying OBDA query engine, which represents a limitation towards the
wide adoption of PPOBA and the experimentation with such a framework.

To address this limitation, our ongoing research implements PPOBDA using the open-source
OBDA engine Ontop [10, 11], by relying on its query rewriting functionalities for realizing most
of the functions needed for PPOBDA. In this paper, we present the technical challenges that we
faced in the implementation process. We also propose a simplified algorithm for embedding
policies into mappings, with respect to the one presented in [8].

2. Preliminaries

In this section, we present the technical preliminaries that are necessary to understand the
remaining part of the paper. Specifically, we introduced Description Logics, the logical-based
formalism providing the underpinning for the OWL 2 language, and present the formalization
of OBDA, and the query language used to express both queries in OBDA and policies in CQE.
Finally, we introduce the open-source system Ontop, on which we rely for query reformulation.

We make use of countably infinite pairwise disjoint alphabets Σ𝑅 of relation names, Σ𝑂 of
unary and binary ontology predicates, and Σ𝐶 of constants.



2.1. Description Logics

Description Logics (DLs) [12] are a family of logics widely adopted in knowledge representation
and reasoning. A DL can be considered as a decidable fragment of FOL, typically restricted
to unary and binary predicates, respectively called concepts and roles. Concepts denote sets
of objects, while roles denote binary relationships between objects. In a DL, knowledge is
represented in a knowledge base (or ontology) 𝒦 = ⟨𝒯 ,𝒜⟩, which consists of two components:
a TBox 𝒯 , used to represent intensional knowledge, and an ABox 𝒜, used to represent facts
about individual objects. In OBDA, ontologies are typically expressed in some variant of
DL-Lite, which is a family of lightweight DLs that are specifically tailored towards efficient
data access. Specifically, we adopt DL-Liteℛ [13], which provides the logical underpinning for
the OWL 2 QL profile of OWL 2 [3]. In DL-Liteℛ, a TBox 𝒯 consists of axioms of the form:

𝐵1 ⊑ 𝐵2 (concept inclusion)
𝑄1 ⊑ 𝑄2 (role inclusion)

𝐵1 ⊑ ¬𝐵2 (concept disjointness)
𝑄1 ⊑ ¬𝑄2 (role disjointness)

Here and in the following, we use 𝑄 (possibly with a subscript) to denote either an atomic
role (i.e., a role name 𝑅/2 ∈ Σ𝑂), or an inverse role 𝑅−, and 𝐵 (possibly with a subscript) to
denote either an atomic concept (i.e., a concept name 𝐶/1 ∈ Σ𝑂) or an unqualified existential
restriction, which is a concept of the form ∃𝑄. An ABox 𝒜 is a finite set of ground atoms,
comprising assertions of the form 𝐶(𝑐) or 𝑅(𝑐, 𝑐′), where 𝐶/1, 𝑅/2 ∈ Σ𝑂 , and 𝑐, 𝑐′ ∈ Σ𝐶 .

The semantics of DL-Liteℛ is given in terms of FOL interpretations, where an interpretation
ℐ = ⟨∆ℐ , ·ℐ⟩, consists of a domain ∆ℐ , and a function ·ℐ that assigns to each concept name
𝐶 ∈ Σ𝑂 a set 𝐶ℐ ⊆ ∆ℐ of objects, to each role name𝑅 ∈ Σ𝑂 a binary relation𝑅ℐ ⊆ ∆ℐ×∆ℐ ,
and to each constant 𝑐 ∈ Σ𝐶 a domain element 𝑐ℐ ∈ ∆ℐ . We make the unique name assumption,
i.e., 𝑐 ̸= 𝑐′ implies 𝑐ℐ ̸= 𝑐′ℐ . Concept and role expressions are interpreted as follows:

(𝑅−)ℐ = {(𝑜′, 𝑜) | (𝑜, 𝑜′) ∈ 𝑅ℐ}
(∃𝑄)ℐ = {𝑜 | ∃𝑜′ ∈ ∆ℐ s.t. (𝑜, 𝑜′) ∈ 𝑄ℐ}

¬𝐵ℐ = ∆ℐ ∖𝐵ℐ

¬𝑄ℐ = (∆ℐ ×∆ℐ) ∖𝑄ℐ

We say that ℐ satisfies a concept/role inclusion/disjointness 𝐸1 ⊑ 𝐸2, if 𝐸ℐ
1 ⊆ 𝐸ℐ

2 , and
it satisfies an ABox assertion 𝐶(𝑐) (resp., 𝑅(𝑐, 𝑐′)) if 𝑐ℐ ∈ 𝐶ℐ (resp., (𝑐ℐ , 𝑐′ℐ) ∈ 𝑅ℐ ). An
interpretation that satisfies all axioms and assertions in 𝒦 (resp., 𝒯 , 𝒜) is called a model of 𝒦
(resp., 𝒯 , 𝒜).

2.2. Ontology Based Data Access

In OBDA, users can query a data source through an ontology TBox, which is connected to the
data source via declarative mappings [1, 2]. We formalize this through the notion of OBDA
specification, which is a triple𝒪 = ⟨𝒯 ,𝒮,ℳ⟩, where 𝒯 denotes a DL-Liteℛ TBox, 𝒮 a relational
database (DB) schema over the alphabet Σ𝑅, andℳ a mapping between 𝒯 and 𝒮 . The mapping
ℳ is a finite set of mapping assertions from 𝒮 to 𝒯 , where each mapping assertion 𝑚 has
form 𝜙(𝑥⃗)⇝ 𝜓(IRI(𝑥⃗)). Here, 𝜙(𝑥) denotes a FOL (or SQL) source query over 𝒮 with answer
variables 𝑥⃗. Instead, 𝜓(IRI(𝑥⃗)), called the head of 𝑚, is an ABox atom over the variables in 𝑥⃗
and so-called IRI-templates IRI(𝑥⃗). Each IRI-template iri(𝑥⃗) in IRI(𝑥⃗) is a term that concatenates
string values and the answer variables in 𝑥⃗, and is used to construct object identifiers (i.e., IRIs)
from the DB values returned by the source query 𝜙(𝑥⃗). A concrete mapping language that
provides such form of mappings is R2RML, standardized by the W3C [4].



Given an OBDA specification𝒪 = ⟨𝒯 ,𝒮,ℳ⟩ and a DB instance𝒟 for𝒮 , the pair𝒥 = ⟨𝒪,𝒟⟩
is called an OBDA instance. The retrieved ABox for 𝒥 , denoted ret(𝒥 ), consists of all facts
𝜓(IRI(𝑡⃗)), where 𝜙(𝑥⃗) ⇝ 𝜓(IRI(𝑥⃗)) is a mapping assertion inℳ, and 𝑡⃗ ∈ eval(𝜙(𝑥⃗),𝒟) is
a tuple of constants in the evaluation of the mapping source query over 𝒟. Notice that the
fact 𝜓(IRI(𝑡⃗)) contains IRIs of the form iri(𝑡⃗) constructed from the answer tuple 𝑡⃗ using the IRI
template iri(𝑥⃗) in the mapping head. Hence, ret(𝒥 ) is an ABox over constants in the set ∆𝒥
consisting of (i) all DB values in 𝒟 and (ii) all possible IRIs iri(𝑡⃗) constructed from some tuple 𝑡⃗
of values in 𝒟 and some IRI template iri(𝑥⃗) in some mapping assertion inℳ. Then, a model of
the OBDA instance 𝒥 is defined as a model of the knowledge base ⟨𝒯 , ret(𝒥 )⟩. We denote the
set of models of 𝒥 by Mod(𝒥 ), and we say that 𝒥 is inconsistent if Mod(𝒥 ) = ∅. Moreover,
𝒥 |= 𝛼, indicating that 𝒥 entails a sentence 𝛼, holds if 𝛼 is true in every model in Mod(𝒥 ).

We make here the standard name assumption, i.e., given ⟨𝒪,𝒟⟩, we consider interpretations
over a fixed domain ∆ containing ∆𝒥 and such that all values in ∆𝒥 are interpreted as
themselves. Notice that the standard name assumption implies the unique name assumption.

2.3. Queries

We consider queries, expressed as FOL formulas, over DB and OBDA instances. A query 𝑞
over an OBDA instance 𝒥 is formulated over the ontology predicates, and we are interested
in the certain answers cert(𝑞,𝒥 ) to 𝑞, which are defined as those answers that hold over
all models of 𝒥 , i.e., 𝑡⃗ ∈ cert(𝑞,𝒥 ) iff 𝒥 |= 𝑞(𝑡⃗). A conjunctive query (CQs) has the form
𝑞(𝑥⃗) = ∃𝑦⃗.𝛼1(𝑥⃗, 𝑦⃗) ∧ · · · ∧ 𝛼𝑛(𝑥⃗, 𝑦⃗), where each 𝛼𝑖 is a DB/ontology predicate. A Boolean CQ
(BCQ) is a CQ 𝑞() without answer variables, i.e., of zero arity, which returns either the empty
tuple {()} (i.e., true), or the empty set ∅ (i.e., false). A ground atom (GA) is a BCQ with only one
atom and no variables. CQ denotes the language of BCQs, and GA the language of GAs.

2.4. The OBDA System Ontop

We make use here of the state-of-the-art open-source OBDA system Ontop [10, 11], which
implements query answering over an OBDA instance, by adopting a query transformation
approach and advanced query optimization techniques. Specifically, an Ontop installation
operates over an OBDA specification 𝒪 = ⟨𝒯 ,𝒮,ℳ⟩, where 𝒯 is an OWL 2 QL TBox, ℳ
an R2RML [4] mapping, and 𝒮 a relational schema with constraints. It is able to efficiently
answer SPARQL queries1 [14] over the OBDA instance ⟨𝒪,𝒟⟩, where 𝒟 is a DB instance for
𝒮 , according to the OWL 2 QL entailment regime [15]. Ontop is compliant with all relevant
W3C standards, and supports all major commercial and free relational DB engines (and also
several data federation tools, such as Denodo, Dremio, and Teiid, which expose a collection of
heterogeneous data sources via a single relational DB schema).

Ontop implements query answering by rewriting, i.e., it computes the certain answers to
SPARQL queries over the OBDA instance, by reformulating them into SQL queries expressed
over 𝒮 , which then get executed by the underlying DB engine. To do so, Ontop first performs
some off-line tasks, in which it pre-processes 𝒯 , 𝒮 , andℳ (e.g., by saturatingℳ w.r.t. 𝒯 ), in

1We can consider SPARQL as a concrete syntax for CQs, although SPARQL features additional constructs not present
in CQs (e.g., OPTIONAL and aggregations), and adopts a different semantics for existentially quantified variables.



order to be then more efficient during query answering. At query answering time, it transforms
a given SPARQL query 𝑞 into a logically equivalent (w.r.t. 𝒪) SQL query 𝑞SQL and optimizes
such query by taking into account mapping information and the DB constraints in 𝑆.

Ontop’s toolkit encompass a Plugin for the widely adopted Protégé ontology editor, facilitating
the development of OBDA specifications. Moreover, it allows for setting up a SPARQL endpoint,
via a command line interface, with which users can interact by issuing queries via HTTP requests.
In our work, we have used Ontop as a blackbox to exploits its query rewriting functionalities.

3. Encoding a Policy into a Mapping

To create a privacy-preserving OBDA setting, one can proceed in three ways: (i) the ontology
can be modified by adjusting TBox axioms based on policy requirements [16]; (ii) the answers
of queries can be modified through a censor, leading to Controlled Query Evaluation, which is
an extensively explored topic [6, 17]; (iii) mappings can be modified according to policies, user
authorization rights, or so that instances are anonymized. We follow here the third approach,
on the one hand because of the promising outcomes demonstrated by the existing PPOBDA
framework, e.g., for query evaluation over the NPD Benchmark [8], on the other hand because
of the flexibility that manipulating mappings gives to introduce more privacy aspects.

To introduce formally the PPOBDA setting, we first define a denial (assertion) as a FOL
sentence of the form ∀𝑥⃗.𝜙(𝑥⃗)→ ⊥, such that ∃𝑥⃗.𝜙(𝑥⃗) is a BCQ. Given a set𝒪 of FOL sentences
(e.g., a TBox) and a denial 𝛿, we have that 𝒪 ∪ {𝛿} is consistent if 𝒪 ̸|= ∃𝑥⃗.𝜙(𝑥⃗). Following [8],
we define a PPOBDA specification as a 4-tuple ℰ = ⟨𝒯 ,𝒮,ℳ,𝒫⟩, such that ⟨𝒯 ,𝒮,ℳ⟩ is an
OBDA specification and 𝒫 a policy, i.e., a finite set of denials over the signature of 𝒯 , such
that 𝒯 ∪ 𝒫 is consistent. The semantics of a PPOBDA specification coincides with that of the
underlying OBDA specification, and we naturally extend to PPOBDA also all other notions
(source DB 𝒟, instance ⟨ℰ ,𝒟⟩, retrieved ABox ret(⟨ℰ ,𝒟⟩), and set Mod(⟨ℰ ,𝒟⟩) of models).

For a query language ℒ (e.g., CQ or GA), let ℒ(𝒯 ) be the restriction of ℒ to the predicates in
𝒯 , and ℒ𝒟 the formulas in ℒ mentioning only constants in 𝒟. An optimal censor for ℰ in query
language ℒ is a function cens(·) that, for each source DB 𝒟 for ℰ , returns a set cens(𝒟) ⊆ ℒ𝒟
such that (i) ⟨⟨𝒯 ,𝒮,ℳ⟩,𝒟⟩ |= 𝜙, for each 𝜙 ∈ cens(𝒟), and (ii) 𝒯 ∪𝒫 ∪ cens(𝒟) is consistent.
ℒ is called the censor language. We are interested in optimal censors, i.e., that return as much
formulas as possible. The set of all optimal censors in ℒ for a PPOBDA specification ℰ is denoted
ℒ-OptCensℰ .

To obtain a notion of censor that allows for embedding a policy into the mapping, [8] have
defined censors that approximate censors for ℰ in GA, the language of ground atoms [7].

Definition 1 (IGA censor [8]). Given a PPOBDA specification ℰ = ⟨𝒯 ,𝒮,ℳ,𝒫⟩, the inter-
section GA (IGA) censor for ℰ is the function censIGA(·) such that, for every DB instance 𝒟 for
𝒮 , censIGA(𝒟) =

⋂︀
cens∈GA-OptCensℰ

cens(𝒟). ▷

Hence, an IGA censor, when applied to a DB instance 𝒟 for source schema 𝒮 of ℰ , returns the
intersection of the sets of ground atoms computed by all optimal censors.

In [8], an algorithm, called PolicyEmbed is presented, that embeds a policy 𝒫 into a OBDA
mappingℳ and generates a new mappingℳ′. Such mapping has the property that all answers



Algorithm 1: EncodeMapping
Input: a DL-Liteℛ TBox 𝒯 , a mappingℳ, a policy 𝒫 .
Output: a mappingℳ0.

1 Let 𝒫 ′ be the expansion of the policy 𝒫 w.r.t. 𝒯 ;
2 ℳ0 ← ∅;
3 for each atomic concept 𝐶 do
4 𝜓 ← addConstraints(𝐶(𝑥),𝒫 ′);
5 ℳ′ ←ℳ′ ∪ {(unfold(rewrite(𝜓, 𝒯 ),ℳ)⇝ 𝐶(𝑥)}
6 for each atomic role 𝑅 do
7 𝜓 ← addConstraints(𝑅(𝑥, 𝑦),𝒫 ′);
8 ℳ′ ←ℳ′ ∪ {(unfold(rewrite(𝜓, 𝒯 ),ℳ)⇝ 𝑅(𝑥, 𝑦)}
9 returnℳ′

returned to queries posed over the ontology and processed by an OBDA engine making use
of ℳ’ automatically comply to 𝒫 according to an IGA censor. We present in Algorithm 1
EncodeMapping, a streamlined version of that algorithm that reduces the number of calls to a
DL-Liteℛ query rewriting procedure. We discuss its functioning on the following example:

𝒯 = { Reviewer ⊑ Student , ∃ReviewsProject− ⊑ Student },
ℳ = {𝑚1 : ∃𝑦.student(𝑥, 𝑦)⇝ Student(𝑥)

𝑚2 : student(𝑥, ’review’)⇝ Reviewer(𝑥)
𝑚3 : project(𝑥, 𝑦)⇝ ReviewsProject(𝑥, 𝑦) }

𝒫 = { Reviewer(𝑥) ∧ ReviewsProject(𝑥, 𝑦) ∧ Student(𝑦)→ ⊥ }

Here, the TBox 𝒯 specifies that reviewer students (concept Reviewer ) are special kinds of
students (concept Student ), and that projects of students are being reviewed (inverse of role
ReviewsProject ). The policy says that the fact that a reviewer reviews a project of a student is
a confidential information (to protect the information regarding who graded whom).

Following the definition of the IGA censor, the target is to remove the facts that belong to
at least one minimal ABox 𝒜 such that 𝒯 ∪ 𝒜 ∪ 𝒫 is inconsistent. Identifying such facts is
facilitated when we can analyze each denial independently. This requires that the policy 𝑃
exhibits the following property: for every denial 𝛿 in 𝒫 , every minimal ABox𝒜where 𝛿∪𝒯 ∪𝒜
is inconsistent must also be minimal when 𝒫 ∪ 𝑇 ∪ 𝒜 is inconsistent.

To achieve this, [8] introduces the concept of an extended denial, formulated as ∀𝑥.𝜙(𝑥) ∧
¬𝜋(𝑥)→ ⊥, where ∃𝑥.𝜙(𝑥) forms a BCQ and 𝜋(𝑥) is a disjunction of conjunctions of equality
atoms. The extended policy is a finite set of extended denials, enabling the transformation of
the initial policy into an updated policy 𝒫 satisfying the above mentioned property.

In Step 1, we use the perfectRef(𝒫, 𝒯 ) algorithm of DL-Liteℛ to expand policy𝒫 with respect
to 𝒯 [13]. The existing policy expands as follows:

𝑝1 : Reviewer(𝑥) ∧ ReviewsProject(𝑥, 𝑦) ∧ Student(𝑦)→ ⊥
𝑝2 : Reviewer(𝑥) ∧ ReviewsProject(𝑥, 𝑦) ∧ Reviewer(𝑦)→ ⊥
𝑝3 : Reviewer(𝑥) ∧ ReviewsProject(𝑥, 𝑦)→ ⊥



Figure 2: Workflow for PPOBDA implementation

Since 𝑝3 implies 𝑝1 and 𝑝2, we discard 𝑝1 and 𝑝2 and 𝒫 ′ = {𝑝3}.
Then, one mapping assertion is constructed for each ontology predicate.
At Step 4, for each concept 𝐶 of the ontology, addConstraints(𝐶(𝑥),𝒫 ′) transforms 𝐶(𝑥)

into a formula ensuring that the conditions leading to a policy violation cannot be satisfied, when
retrieving data from the source through the mapping. Specifically, assume that all denials in 𝒫 ′

containing an atom that unifies with𝐶(𝑥) are ∀𝑥, 𝑦⃗𝑖.(𝐶(𝑥)∧𝛼𝑖(𝑥, 𝑦⃗𝑖))→ ⊥, for 𝑖 ∈ {1, . . . , 𝑘}.
Then addConstraints(𝐶(𝑥),𝒫 ′) returns 𝐶(𝑥)∧

⋀︀
1≤𝑖≤𝑘 ¬∃𝑦⃗𝑖.𝛼𝑖(𝑥, 𝑦⃗𝑖). Similarly, at Step 7, for

each role 𝑅 of the ontology. For instance, assume that 𝒫 ′ contains the denials ∀𝑥.(𝐶(𝑥) ∧
𝐷(𝑥))→ ⊥ and ∀𝑥, 𝑦.(𝐶(𝑥)∧𝑅(𝑥, 𝑦)∧𝐸(𝑦))→ ⊥. Then, addConstraints(𝐶(𝑥),𝒫 ′) returns
𝐶(𝑥)∧¬𝐷(𝑥)∧¬∃𝑦.(𝑅(𝑥, 𝑦)∧𝐸(𝑦)). For predicates that are not present in the policy 𝒫 ′, we
do not apply the transformation, as they pose no threat to the policy. In our running example,
Student(𝑥) is not transformed, while

addConstraints(Reviewer(𝑥),𝒫 ′) = Reviewer(𝑥) ∧ ¬∃𝑦.ReviewsProject(𝑥, 𝑦)
addConstraints(ReviewsProject(𝑥, 𝑦),𝒫 ′) = 𝑅𝑒𝑣𝑖𝑒𝑤𝑠𝑃𝑟𝑜𝑗𝑒𝑐𝑡(𝑥, 𝑦) ∧ ¬Reviewer(𝑥)

Steps 5 and 8 invoke rewrite(𝜓, 𝒯 ), which rewrites each of the transformed predicates w.r.t.
the TBox 𝒯 . Notice that 𝜓 might contain negated atoms, and for this step we rely on the
capability of the query rewriting engine to correctly deal with SPARQL queries containing the
MINUS operator. The resulting expression is then unfolded with respect to the original mapping
ℳ [1], to obtain the source query of the new mappingℳ′ for the concept 𝐶 or role 𝑅. For
this, we again rely on the OBDA engine.

In our running example, EncodeMapping(𝒯 ,ℳ,𝒫) returns the following mappingℳ′:

𝑚′
1 : ∃𝑦.student(𝑥, 𝑦) ∨ student(𝑥, ’review’) ∨ ∃𝑦.project(𝑦, 𝑥)⇝ Student(𝑥)

𝑚′
2 : 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥,

′ 𝑟𝑒𝑣𝑖𝑒𝑤′) ∧ ¬∃𝑦.project(𝑥, 𝑦))⇝ Reviewer(𝑥)
𝑚′

3 : project(𝑥, 𝑦) ∧ ¬student(𝑥, ’review’)⇝ ReviewsProject(𝑥, 𝑦)

4. Implementation in the Ontop System

To implement the EncodeMapping algorithm, we need to exploit the query answering capabili-
ties of an OBDA engine, and specifically both query rewriting with respect to an OWL 2 QL
TBox, and query unfolding with respect to R2RML mappings. The original implementation of
the PPOBDA framework described in [8] relied on the Mastro system [9]. That tool is, however,



a proprietary software that is not openly accessible, therefore the implementation described
in [8] is not available for experimentation and for possible extensions. For this reason, we have
reimplemented the PPOBDA framework from scratch, by relying on an open-source OBDA
engine, and specifically on the Ontop system [10, 11]. The workflow we followed for our
implementation is depicted in Fig. 2.

The initial step of expanding the policy w.r.t. the TBox 𝒯 relies on the query rewriting
functionality. Since for optimization purposes, Ontop combines the steps of query rewriting
and of unfolding w.r.t. the mapping, it requires the existence of a relational data source and
of mappings even to perform only query rewriting. To address this, we have developed a
Direct Mapping Generator, which simulates a data source with unary and binary relations
corresponding directly to the concepts and roles names in the ontology, and establishes direct
(one-to-one) mappings from this dummy DB to the ontology. The Policy Expander function
exploits this setup to activate the Ontop query reformulation functionality over the denials in
the policy 𝒫 as queries to be expanded. Given that the mappings are one-to-one, they have no
impact on the outcome of the reformulation.

The rewritten queries, serving as policies expanded w.r.t. the ontology, are then provided
as input to the addConstraints algorithm, which redefines each predicate as a SPARQL query.
These SPARQL queries, along with the ontology, the original mapping, and the DB schema
are then processed by the Policy Embed function, which converts them into SQL queries using
Ontop for query reformulation. Subsequently, a new mapping is created with these SQL queries
as the source parts for the respective predicates, which appear in the target part of the mapping
assertions. This process effectively generates mappings that embed the policy constraints.

5. Conclusions

We have described an ongoing research effort that aims at extending the OBDA framework
so as to incorporate privacy policies expressed as denials, in line with the Controlled Query
Evaluation (CQE) approach. Following an approach in the literature, we have provided an
initial implementation in a prototype system that builds on the open-source OBDA system
Ontop. Our implementation is available as an open-source project2. We rely on our prototype
implementation in our ongoing research, which aims at analyzing privacy requirements in
real-world scenarios, and at assessing the adequacy of the CQE approach to capture them.
We also plan to investigate how the approach we have presented for embedding policies into
mappings impacts performance of query evaluation in OBDA, specifically when compared to
the original approach proposed in [8].
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