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Abstract
The growth of the textile sector worldwide, coupled with the extensive utilisation of synthetic polymers,
is exacerbating challenges related to the global plastic waste problem. To effectively tackle this problem,
a crucial aspect during recycling is the accurate identification of the composition of textiles, to allow the
most appropriate chemical and mechanical treatments to separate natural fibres from synthetic ones.
In this work, we present preliminary results achieved by leveraging machine learning approaches on
spectrophotometry information extracted from textile samples to identify cotton and polyester samples.
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1. Introduction

The textile industry has been rapidly expanding over recent years. Thanks to globalisation,
clothing can be made at increasingly low prices, thus encouraging a fast-fashion mindset in
consumers where clothing is considered disposable [2]. The growth in production of the textile
industry is posing significant challenges to the environment. Currently the textile industry
is responsible for producing 10% of global carbon emissions1. Furthermore, over 92 Million
tonnes of textile waste are produced each year worldwide, with this expected to grow to 134
Million tonnes by 2030 [3].

Synthetic polymers in textile waste are a major contributor to the global plastic waste problem.
As an example, in 2017, 438 Million tonnes of plastic were produced worldwide; 62 Million
tonnes were used in the textile industry and 158 Million tonnes in plastic packaging [4]. While
plastic packaging has attracted attention and concern for some time, textile waste has only
become prominent recently, in part because recycling textile waste is a highly challenging task.

AI4CC-IPS-RCRA-SPIRIT 2024: International Workshop on Artificial Intelligence for Climate Change, Italian Workshop
on Planning and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving problems with
combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy. November
25-28th, 2024, Bolzano, Italy [1].
∗Corresponding author.
Envelope-Open m.robinson2@hud.ac.uk (M. Robinson); s.ghosh3@hud.ac.uk (S. Ghosh); p.goswami@hud.ac.uk (P. Goswami);
m.vallati@hud.ac.uk (M. Vallati)
GLOBE http://www.mvallati.net (M. Vallati)
Orcid 0000-0002-4052-1746 (M. Robinson); 0000-0003-1488-409X (P. Goswami); 0000-0002-8429-3570 (M. Vallati)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://shorturl.at/cEEdS

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:m.robinson2@hud.ac.uk
mailto:s.ghosh3@hud.ac.uk
mailto:p.goswami@hud.ac.uk
mailto:m.vallati@hud.ac.uk
http://www.mvallati.net
https://orcid.org/0000-0002-4052-1746
https://orcid.org/0000-0003-1488-409X
https://orcid.org/0000-0002-8429-3570
https://creativecommons.org/licenses/by/4.0
https://shorturl.at/cEEdS


A 2016 UK survey showed that the destinations of textile waste are landfills 55%, incineration
26% and recycling/reusing 16% [5], with less than 1% textile waste used to generate new raw
materials to be used for producing new clothing.
Garment waste is often complex and made up of more than one polymer. This could be

exemplified by PET-Cotton t-shirts. Processes to recycle synthetic polymers from textile waste
are gaining traction, with growing attention being posed on the use of chemical approaches to
remove natural fibres, in order to allow the separation and re-use of the synthetic ones [6]. The
automated sorting of the textile waste can play a pivotal role in fostering the recycling of the
increasing amount of complex textile waste generated world-wide. Despite some initial work in
the field, recycling facilities are still relying on human operators for the sorting process, leading
to significant problems associated with cost and accuracy [7, 8]. Manual sorting is laborious,
requiring months of training to understand the major and minor difference among the materials
for accurate sorting.
As part of the EPSRC UK “Textile waste refinery for the production of recycled plastic,

cellulose and dye” project, that looks into prototyping the complete process of recycling plastic
from textile waste, we are investigating the use of machine learning techniques to sort post-
consumer textiles according to their fibre type automatically. In this preliminary work, we report
on the progress made in automatically classifying fabrics made either of cotton or polyester by
training AI models on data extracted using spectrophotometric analysis. Spectrophotometry is a
method to measure light absorption of a material, and the analysis of a sample can be performed
in a matter of seconds, hence making this approach ideal for deployment.

2. Complexity of Textile Sorting

Automated textile sorting is a significant challenge due to the inherent complexity of textiles.
Accurate fibre identification is hindered by the differences in physical and chemical properties
among various fibres and the presence of fibre blends. In a yarn, different fibre types can be
blended together to obtain a required fibrous architecture. Contaminants, such as buttons,
zippers, and labels, introduce further complexities, as these elements are of very different
material composition and are challenging to be removed. Similarly, garments often comprise of
layers of textile fabric, which can be composed of different fibre types. A well-known example
of this can come from jackets, with inset pockets, collar, and internal lining often made with
fibres and patterns that are different from those of the external surface.

Additionally, there is also to consider colour variations within the same fibre type, while the
diverse range of fabric structures impacts material properties. Furthermore, textiles can present
varying conditions such as stains, tears, and wear.

When it comes to the development of AI-based solutions for textile sorting, the lack of high-
quality, labelled data must also be taken into account. Moreover, there is also to consider the
potential of noisy data when it comes to labelling of garment: on the one hand, indicated
composition can be inaccurate and, on the other hand, the composition can be non-uniform
throughout the different parts of the garment.



Figure 1: The benchtop spectrophotometer utilised in our experiments.

3. Methodology

We rely on features extracted by a benchtop spectrophotometer Datacolor Spectro 1000, shown
in Figure 1. It is a precision instrument employed in analytical chemistry to quantitatively
determine the concentration of a substance in solution or the absorbance of a solid sample by
measuring its light absorption or reflectance spectrum. It operates by illuminating the sample
with a polychromatic light source and analysing the intensity of light transmitted through or
reflected from the sample as a function of wavelength.
The underlined hypothesis for using the spectrophotometer is that the data collected using

this analytical tool could distinguish between natural and synthetic fibres. This is because the
even structure of manmade fibres allows for higher reflectance due to their surface geometry
compared to the uneven shape of natural fibres. Specular reflection occurs when light is reflected
from a smooth surface at a specific angle, while diffuse reflection happens when light is scattered
in multiple directions by rough surfaces (see Figure 2 for an example) [9]. The geometry of
manmade fibres, which typically have a more uniform and smooth structure, tends to produce
greater specular reflection. In contrast, the irregular and uneven geometry of natural fibres
results in more diffuse reflection, leading to a different distribution of light [10]. However,
reflectance is also a function of the colour of the material analysed, hence the need to consider
a wide range of colours in the analysis. Using the considered spectrophotometer, the analysis
of a sample requires at most 5 seconds to be completed and is therefore suitable to be used in



Figure 2: Specular and diffuse reflection.

real-world deployment.
Measuring both specular reflection and gloss is crucial for evaluating the reflectance of

natural and manmade fibres because it provides a comprehensive understanding of their optical
properties. Specular reflection reveals how light interacts with smooth surfaces, while gloss
indicates the overall sheen and surface quality. Understanding these characteristics could be
essential for differentiating between manmade and natural fibres during the automatic sorting
process using a spectrophotometer, ensuring optimal performance in various settings. With
this in mind, from the set of features that can be extracted from the spectrophotometer, we
consider in our preliminary analysis a set of 40 features as this is expected to provide useful
information on the reflectance nature of the material. The features provide ways to quantify
the colour and reflectance characteristics of the sample.
For the following experiments we consider an initial set of 10 textile samples, 6 100% RFD

(ready for dyeing) polyester and 4 100% cotton fabric with a combination of bleached and grey
(details provided in Table 1). The fabric samples have different weave structures, that differ
between samples, and do not include any impurity or contamination. For further analysis, the
fabric samples were dyed using disperse and reactive dyes for polyester and cotton respectively
on small sections (7cm X 7cm) from the original samples.

For the cotton samples, Reactive Red 01 dye was used, resulting in a total of 8 cotton samples
including undyed fabrics. The dyeing process was done using the specific dye amounts (2% omf),
55 gdm−3 of NaCl, 5 gdm−3 of Na2CO3 and 0.5 gdm−3 of NaOH with 25:1 liquor ratio at 80°C
for 60 minutes. After dyeing, the samples were rinsed in hot water two times for 30 seconds,
followed by a cold-water rinse for 30 seconds to remove the unreactive dye. The samples were
finally left to hang dry. Some of the cotton samples are shown in Figure 3.
For the polyester, 4 different dyes (Disperse Red 60, Disperse Orange 30, Disperse yellow

114, Disperse Blue 56) were used to prepare 5 different colour (red, orange, yellow, green, blue),
resulting in a total of 36 polyester samples. In the case of dyeing PET, a 0.1M (8.2g) solution of



Cotton Polyester
Fabric Name Weave GSM Fabric Name Weave GSM
Plain Cotton White Plain 156 PET Empress White Plain 74
Denim Cotton Heavy Natural Twill 394 PET Satin Kent White Satin 156
Raised Natural Cotton Plain 250 PET Taffeta White Plain 65
Cotton Drill Heavy White Twill 393 PET Suedette Solarno White Suedette 280

Recycled PET Venus White Plain 65
Recycled PET Satin White Satin 216

Table 1
Details of the considered fabric samples. GSM indicates the grams per square metre, which refers to the
weight of the fabric.

sodium acetate was added to a 0.1M (6.0g) acetic acid solution in a 50:50 mixture ratio, creating
a buffer at pH 4.5 in a 1-litre solution. The buffer solution was heated to 60°C and gdm−3

of Univadine TOP was added. The specific dye amounts (2% omf) were added to each dye
tube, followed by adding the correct amount of buffer solution (10 times fabric weight in ml
– approx 80 ml), and the RFD fabric. The dyeing was carried forward for 60 minutes. After
dyeing, reduction clearing is done for the removal of unfixed dyes and auxiliaries from the
fabric surface being a prerequisite of quality assurance and the ease of subsequent processes.
Samples were placed into 400ml of reductive clearing solution (1.5 gdm−3 of sodium carbonate 2
gdm−3 of sodium dithionite (Na2S2O4)) and heated at 65°C for 20 minutes with regular stirring.
Once complete, the samples were rinsed in hot water for two times for 30 seconds. Finally, the
samples were washed for 10 minutes in 1.5L of soaping solution (1 gdm−3 of Ultravon JUN)
before being rinsed in hot water for 30 seconds, followed by a cold-water rinse for 30 seconds.
The samples were then finally left to hang dry.

It is worth noting that, as a result of the initial samples and of the dyeing processes, the final
dataset of samples is imbalanced with a bias towards the polyester class.
For use with machine learning models to distinguish between cotton and polyester, the full

collection of measurements was split into separate datasets based on colours. First, we consider
a dataset including all the samples. Then, further datasets are created containing the red and
white/natural samples together, just the white/natural samples, and just the red samples. This
is done to shed some light into how colour and dye affects the classification process. We focus
on red colours because they are present in both cotton and polyester samples.

Due to the small number of samples, the datasets are augmentedwith simulatedmeasurements
to provide an idea of the results possible with a larger dataset. Perturbations of between 0 - 5%
were applied to each sample. This was repeated four times per sample, creating four new data
points per original sample.

We consider four well-knownmachine learning techniques: logistic regression, random forest
(RF), support vector machine (SVM) and K-Nearest Neighbours (KNN), that are tasked with the
binary classification of a given sample either as cotton or polyester. Results are presented using
cross-validation.



Figure 3: Example of cotton samples in white/natural colour (left) and in red (right).

Data split Log. reg. RF SVM KNN
All samples 89.77% 85.23% 93.18% 89.77%

Red and white 87.5% 85% 87.5% 97.5%
White 90% 90% 90% 90%
Red 100% 100% 100% 100%

Table 2
Accuracy results achieved on the different data splits, for the considered machine learning approaches.
Best results per data slit are in bold.

4. Preliminary Results

First, we turn our attention to the ability of the trained models to distinguish between cotton
and polyester. Results presented in Table 2 show that the considered features can be informative,
particularly when used for textiles within the same class of colours. In particular, support
vector machines and KNN tend to deliver the best results across all classes, with accuracy
results consistently above 90%. While the presented results are promising for all the considered
learning techniques, it is worth reminding that the considered set of samples is small, hence it
can be the case that results do not generalise well on larger and more variegated benchmarks.

As there are only two colours of cotton samples (red and white/natural) but six polyesters (red,
orange, yellow, green, blue, white/natural), it is possible that a model including all data could
be biased towards the colour information, and nothing else. In other words, considering the
fact that extracted features focus on the characteristics of colours and reflectance, it is plausible
that the imbalanced dataset is allowing the learning models to rely only on colour-related
characteristics, ignoring the rest of the data. To test this, models trained using only the red and
white/natural samples (with augmented data included) were presented with the other coloured
polyester samples as a test set. The results are shown in Table 3.



Model Accuracy
Log. reg. 50%

RF 25%
SVM 41.67%
KNN 29.17%

Table 3
Accuracy results achieved by the considered machine learning models training on red/white samples
and tested on coloured polyester samples.

Results presented in Table 3 provide a more concerning figure when it comes to the per-
formance of the trained models. First, results show that the models do not generalise well on
previously unseen colours. Second, as the colours on the cotton and polyester samples used in
the training are not the same, it can also suggest that models are indeed learning the colour of
the sample, rather than a pattern of features that can identify the composition. To rectify the
first point, as many colours of sample as possible need to be included in training if they are
to be used for predictions at a later stage. This can be complicated in the presence of textiles
presenting complex design patterns. An increased size of the data sets would also be beneficial
for ensuring that colours are not considered as a valuable indicator of textile fibres by the
learning models.

5. Discussion and Conclusion

In this paper we presented the preliminary results of the use of machine learning methods for
automatically sorting textile samples by leveraging on data extracted by a spectrophotometer.
Spectrophotometry is suitable to analyse textile samples due to its speed and its ability to
identify reflectance properties of a material. Based on optical principles, synthetic fibres
tend to reflect more light than natural fibres due to their uniform geometry, which facilitates
specular reflection. As a result, reflection occurs at specific angles, making this type of analysis
particularly advantageous. In the empirical evaluation we trained four well-known machine
learning approaches on data sets composed of pure cotton or polyester samples in a limited range
of colours, and achieved promising results. However, the limited size of the benchmark and the
observed generalisability issues require the use of larger data sets to confirm the usability of
the approach in real settings. Future work will also investigate the capabilities of the proposed
approach in the presence of blended fibres, where recycling issues are exacerbated.
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