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Abstract
In this paper, we develop a many-valued semantics for the description logic 𝐿𝑇𝐿𝒜ℒ𝒞 , a temporal extension of
description logic 𝒜ℒ𝒞, based on Linear-time Temporal Logic (LTL). We add a typicality operator to represent
defeasible properties, and discuss the use of the (many-valued) temporal conditional logic and of weighted KBs
for explaining the dynamic behaviour of a network.
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1. Introduction

Preferential extensions of Description Logics (DLs) allow for reasoning with exceptions through the
identification of prototypical properties of individuals or classes of individuals. Defeasible inclusions
are allowed in the knowledge base, to model typical, defeasible, non-strict properties of individuals.
Their semantics extends DL semantics with a preference relation among domain individuals, along
the lines of the preferential semantics introduced by Kraus, Lehmann and Magidor [2, 3] (KLM for
short). Multi-preferential extensions of DLs have been developed, to provide a semantics for ranked and
weighted knowledge bases with typicality [4, 5, 6].

Temporal extensions of Description Logics are very well-studied in DLs literature [7, 8]. Preferential
extensions of Linear Time Temporal Logic (LTL) with defeasible temporal operators have been recently
studied [9, 10] to enrich temporal formalisms with non-monotonic reasoning features. On a different
route, a preferential extension of the temporal description logic LTLT

𝒜ℒ𝒞 has been proposed in [11],
extending LTL𝒜ℒ𝒞 [7] with a typicality operator T, which selects the most typical instances of a
concept, to represent defeasible temporal properties of concepts, i.e., temporal properties which admit
exceptions.

It is proven that the preferential extension ofLTLT
𝒜ℒ𝒞 can be polynomially encoded intoLTL𝒜ℒ𝒞 , and

this approach allows borrowing decidability and complexity results from LTL𝒜ℒ𝒞 . A similar encoding
can be given for a multi-preferential extension of LTLT

𝒜ℒ𝒞 , by allowing a concept-wise preferential
semantics, where different preferences are associated to different concepts.

In this short paper, an abridged version of [12], we describe a many-valued extension of LTL𝒜ℒ𝒞
with typicality, making it possible to represent concept inclusions such as
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∃lives_in.Town ⊓Young ⊑ T(♢Granted_Loan),

(meaning that people living in town and being young, normally are eventually granted a loan), where
the interpretation of some concepts (such as, Young) may be non-crisp.

This many-valued temporal extension of 𝒜ℒ𝒞 builds on many-valued DLs, which are widely studied
in the literature, both for the fuzzy case [13, 14, 15] and for the finitely-valued case [16, 17]. We then
add a typicality operator, to get a many-valued temporal extension of 𝒜ℒ𝒞 with typicality.

We briefly discuss the definition of a closure construction for weighted knowledge bases with
typicality [5, 18, 19] in the temporal case. The formalism allows for a finer grained representation of the
prototypical properties of a concept, including temporal properties, by assigning weights to typicality
properties. It is also discussed how the many-valued preferential temporal logic can be used to provide
a logical interpretation of the transient behavior of recurrent neural networks.

2. Fuzzy 𝒜ℒ𝒞
Fuzzy description logics have been widely studied in the literature for representing vagueness in DLs
[13, 14, 15] based on the idea that concepts and roles can be interpreted as fuzzy sets. Formulas in
Mathematical Fuzzy Logic [20] have a degree of truth in an interpretation rather than being true or
false; similarly, axioms in a fuzzy DL have a degree of truth, usually in the interval [0, 1]. The finitely
many-valued case is also well studied for DLs [16, 17]. We breifly recall the semantics of a fuzzy
extension of 𝒜ℒ𝒞, following [15]; then we consider the finitely-valued case.

Let 𝑁𝐶 be a set of concept names, 𝑁𝑅 a set of role names and 𝑁𝐼 a set of individual names. The set
of 𝒜ℒ𝒞 concepts (or, simply, concepts) is defined inductively from concept names and the ⊤ and ⊥
concepts, using intersection 𝐶 ⊓𝐷, union 𝐶 ⊔𝐷, negation ¬𝐶 , as well as universal and existential
restrictions ∀𝑟.𝐶, ∃𝑟.𝐶 .

A fuzzy interpretation 𝐼 , given a non-empty domain Δ, assigns to each individual name 𝑎 ∈ 𝑁𝐼 an
element 𝑎𝐼 ∈ Δ; to each concept name 𝐴 ∈ 𝑁𝐶 a function 𝐴𝐼 : Δ → [0, 1]; and to each role name
𝑟 ∈ 𝑁𝑅 a function 𝑟𝐼 : Δ×Δ → [0, 1]. That is, an element 𝑥 ∈ Δ belongs to the extension of 𝐴 to
some degree in [0, 1], i.e., 𝐴𝐼 is a fuzzy set; and similarly for roles. The interpretation function ·𝐼 is
extended to other concepts as follows:

⊤𝐼(𝑥) = 1 ⊥𝐼(𝑥) = 0 (¬𝐶)𝐼(𝑥) = ⊖𝐶𝐼(𝑥)

(𝐶 ⊓𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊗𝐷𝐼(𝑥) (𝐶 ⊔𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊕𝐷𝐼(𝑥)

(∃𝑟.𝐶)𝐼(𝑥) = sup𝑦∈Δ 𝑟𝐼(𝑥, 𝑦)⊗ 𝐶𝐼(𝑦) (∀𝑟.𝐶)𝐼(𝑥) = inf𝑦∈Δ 𝑟𝐼(𝑥, 𝑦)▷ 𝐶𝐼(𝑦)

where 𝑥 ∈ Δ, and ⊗, ⊕, ▷ and ⊖ are arbitrary but fixed t-norm, s-norm, implication function, and
negation function, chosen among the combination functions of some fuzzy logic. In particular, in
Gödel logic 𝑎 ⊗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎 ⊕ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}, 𝑎 ▷ 𝑏 = 1 if 𝑎 ≤ 𝑏 and 𝑏 otherwise; ⊖𝑎 = 1 if
𝑎 = 0 and 0 otherwise. In Łukasiewicz logic, 𝑎 ⊗ 𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1, 0}, 𝑎 ⊕ 𝑏 = 𝑚𝑖𝑛{𝑎 + 𝑏, 1},
𝑎▷ 𝑏 = 𝑚𝑖𝑛{1− 𝑎+ 𝑏, 1} and ⊖𝑎 = 1− 𝑎. Following [15], we do not commit to a specific choice of
combination functions,

A fuzzy 𝒜ℒ𝒞 knowledge base 𝐾 is a pair (𝒯 ,𝒜) where 𝒯 is a fuzzy TBox and 𝒜 is a fuzzy ABox.
A fuzzy TBox is a set of fuzzy concept inclusions of the form 𝐶 ⊑ 𝐷 𝜃 𝑛, where 𝐶 ⊑ 𝐷 is an 𝒜ℒ𝒞
concept inclusion axiom, 𝜃 ∈ {≥,≤, >,<} and 𝑛 ∈ [0, 1]. A fuzzy ABox 𝒜 is a set of fuzzy assertions
of the form 𝐶(𝑎)𝜃𝑛 or 𝑟(𝑎, 𝑏)𝜃𝑛, where 𝐶 is an 𝒜ℒ𝒞 concept, 𝑟 ∈ 𝑁𝑅, 𝑎, 𝑏 ∈ 𝑁𝐼 , 𝜃 ∈ {≥, ≤, >,<}
and 𝑛 ∈ [0, 1]. Following Bobillo and Straccia [21], we assume that fuzzy interpretations are witnessed,
i.e., the sup and inf are attained at some point of the involved domain. The interpretation function ·𝐼 is
also extended to axioms as follows:

(𝐶 ⊑ 𝐷)𝐼 = inf 𝑥∈Δ𝐼𝐶𝐼(𝑥)▷𝐷𝐼(𝑥) (𝐶(𝑎))𝐼 = 𝐶𝐼(𝑎𝐼)

This allows defining the satisfiability of fuzzy concept inclusions, 𝐼 |= 𝐶 ⊑ 𝐷 𝜃𝛼 if (𝐶 ⊑ 𝐷)𝐼 𝜃𝛼;
while, for fuzzy assertions, 𝐼 |= 𝐶(𝑎) 𝜃𝛼 if 𝐶𝐼(𝑎𝐼) 𝜃𝛼, and 𝐼 |= 𝑟(𝑎, 𝑏) 𝜃 𝑛 if 𝑟𝐼(𝑎𝐼 , 𝑏𝐼)𝜃 𝑛. If 𝐼 |= Γ,



we say that 𝐼 satisfies Γ or that 𝐼 is a model of Γ (for Γ being an axiom, a set of axioms, or a KB),
meaning that 𝐼 satisfies all the axioms in Γ.

For the finitely many-valued case, we assume the truth space 𝒮 to be equipped with a preorder
relation ≤𝒮 , a bottom element 0𝒮 , and a top element 1𝒮 . We denote by <𝒮 and ∼𝒮 the related strict
preference relation and equivalence relation. In the following we assume 𝒮 to be the unit interval [0, 1]
or the finite set 𝒞𝑛 = {0, 1

𝑛 , . . . ,
𝑛−1
𝑛 , 𝑛𝑛} for an integer 𝑛 ≥ 1 [16, 17], and that ⊗, ⊕, ▷ and ⊖ are a

t-norm, an s-norm, an implication function, and a negation function in some well known system of
many-valued logic. In particular, in the following we restrict to continuous t-norms.

3. A many-valued semantics for 𝐿𝑇𝐿𝒜ℒ𝒞

Temporal extensions of DLs, their complexity and decidability are very well-studied in the literature
(see, e.g., [7, 8]). The temporal Description Logic 𝐿𝑇𝐿𝒜ℒ𝒞 extends 𝒜ℒ𝒞 with LTL operators ○ (next),
𝒰 (until), ♢ (eventually) and □ (always); the set of temporally extended concepts is the following:

𝐶 ::= 𝐴 | ⊤ | ⊥ | 𝐶 ⊓𝐷 | 𝐶 ⊔𝐷 | ¬𝐶 | ∃𝑟.𝐶 | ∀𝑟.𝐶 | ○𝐶 | 𝐶𝒰𝐷 | ♢𝐶 | □𝐶

where 𝐴 ∈ 𝑁𝐶 , and 𝐶 and 𝐷 are temporally extended concepts.
While we refer to [7] for the two-valued semantics of 𝐿𝑇𝐿𝒜ℒ𝒞 , we develop a many-valued semantics

for 𝐿𝑇𝐿𝒜ℒ𝒞 , by interpreting, at each time point, all concepts and role names over a truth degree set 𝒮 .
A many-valued temporal interpretations for 𝐿𝑇𝐿𝒜ℒ𝒞 is a pair ℐ = (Δℐ , ·ℐ), where Δℐ is a non-

empty domain; ·ℐ is an interpretation function that maps each concept name 𝐴 ∈ 𝑁𝐶 to a function
𝐴ℐ : N×Δℐ → 𝒮 , each role name 𝑟 ∈ 𝑁𝑅 to a function 𝑟ℐ : N×Δℐ ×Δℐ → 𝒮 , and each individual
name 𝑎 ∈ 𝑁𝐼 to an element 𝑎ℐ ∈ Δℐ . For simplicity, following [7], we assume individual names to
be rigid, i.e., having the same interpretation at any time point 𝑛. Given a time point 𝑛 ∈ N and a
domain element 𝑑 ∈ Δℐ , the interpretation 𝐴ℐ of a concept name 𝐴 assigns to the pair (𝑛, 𝑑) a value
𝐴ℐ(𝑛, 𝑑) ∈ 𝒮 representing the degree of membership of 𝑑 in concept 𝐴 at time point 𝑛; and similarly for
roles. By adapting the formulation of the semantics of temporal operators from [22], the interpretation
function ·𝐼 is extended to complex concepts as follows:

⊥ℐ(𝑛, 𝑥) = 0 ⊤ℐ(𝑛, 𝑥) = 1 (¬𝐶)ℐ(𝑛, 𝑥) = ⊖𝐶ℐ(𝑛, 𝑥)

(𝐶 ⊓𝐷)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛, 𝑥)⊗𝐷ℐ(𝑛, 𝑥) (𝐶 ⊔𝐷)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛, 𝑥)⊕𝐷ℐ(𝑛, 𝑥)

(∃𝑟.𝐶)ℐ(𝑛, 𝑥) = 𝑠𝑢𝑝𝑦∈Δ 𝑟ℐ(𝑛, 𝑥, 𝑦)⊗ 𝐶ℐ(𝑛, 𝑦) (○𝐶)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛+ 1, 𝑥)

(∀𝑟.𝐶)ℐ(𝑛, 𝑥) = 𝑖𝑛𝑓𝑦∈Δ 𝑟ℐ(𝑛, 𝑥, 𝑦)▷ 𝐶ℐ(𝑛, 𝑦) (♢𝐶)ℐ(𝑛, 𝑥) =
⨁︀

𝑚≥𝑛 𝐶
ℐ(𝑚,𝑥)

(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) =
⨁︀

𝑚≥𝑛(𝐷
ℐ(𝑚,𝑥)⊗

⨂︀𝑚−1
𝑘=𝑛 𝐶ℐ(𝑘, 𝑥)) (□𝐶)ℐ(𝑛, 𝑥) =

⨂︀
𝑚≥𝑛 𝐶

ℐ(𝑚,𝑥)

The semantics of ♢, □ and 𝒰 requires a passage to the limit. Following [22], bounded versions for ♢, □
and 𝒰 can be introduced, using additional temporal operators ♢𝑡 (eventually in the next 𝑡 time points),
□𝑡 (always within 𝑡 time points) and 𝒰𝑡, with the interpretation:

(♢𝑡𝐶)ℐ(𝑛, 𝑥) =
⨁︀𝑛+𝑡

𝑚=𝑛 𝐶
ℐ(𝑚,𝑥) (□𝑡𝐶)ℐ(𝑛, 𝑥) =

⨂︀𝑛+𝑡
𝑚=𝑛 𝐶

ℐ(𝑚,𝑥)

(𝐶𝒰𝑡𝐷)ℐ(𝑛, 𝑥) =
⨁︀𝑛+𝑡

𝑚=𝑛(𝐷
ℐ(𝑚,𝑥)⊗

⨂︀𝑚−1
𝑘=𝑛 𝐶ℐ(𝑘, 𝑥))

so that (♢𝐶)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(♢𝑡𝐶)ℐ(𝑛, 𝑥) and (□𝐶)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(□𝑡𝐶)ℐ(𝑛, 𝑥) and
(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(𝐶𝒰𝑡𝐷)ℐ(𝑛, 𝑥). The existence of the limits is ensured by the fact that
(♢𝑡𝐶)ℐ(𝑛, 𝑥) and (𝐶𝒰𝑡𝐷)ℐ(𝑛, 𝑥) are increasing in 𝑡, while (□𝑡𝐶)ℐ(𝑛, 𝑥) is decreasing in 𝑡.

Here, we have not considered the additional temporal operators (“soon”, “almost always”, etc.)
introduced by Frigeri et al. [22] for representing vagueness in the temporal dimension. As a consequence,
for the case 𝒮 = [0, 1], the semantics above is an extension to 𝒜ℒ𝒞 of the FLTL (Fuzzy Linear-time
Temporal Logic) semantics by Lamine and Kabanza [23] and, for all concepts 𝐶 and 𝐷, and time points
𝑛, the following properties hold:

(♢𝐶)ℐ(𝑛, 𝑥) = 𝐶𝐼(𝑛, 𝑥)⊕(♢𝐶)ℐ(𝑛+1, 𝑥) (□𝐶)ℐ(𝑛, 𝑥) = 𝐶𝐼(𝑛, 𝑥)⊗(□𝐶)ℐ(𝑛+1, 𝑥)

(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) = 𝐷𝐼(𝑛, 𝑥)⊕ (𝐶𝐼(𝑛, 𝑥)⊗ (𝐶𝒰𝐷)ℐ(𝑛+ 1, 𝑥))



Although we have considered a constant domain Δℐ , for a many-valued preferential temporal interpre-
tation ℐ , expanding domains could be considered, as for LTL𝒜ℒ𝒞 in the two-valued case [7].

For simplicity, we consider knowledge bases with non-temporal TBox and ABox, where a non-
temporal TBox 𝒯 is a set of concept inclusions 𝐶 ⊑ 𝐷, where 𝐶,𝐷 are temporally extended concepts,
and no temporal operator is applied in front of concept inclusions themselves. The notions of satisfiability
and model of a knowledge base can be easily generalized to a many-valued LTL𝒜ℒ𝒞 knowledge base
with non-temporal ABox and TBox. The assertions in a non-temporal ABox 𝒜 are evaluated at time
point 0. Concept inclusions in the non-temporal TBox 𝒯 are evaluated by considering all time points 𝑛.

Given a many-valued temporal interpretation ℐ = ⟨Δℐ , ·ℐ⟩, the interpretation function ·𝐼 is extended
to inclusion axioms as follows:

(𝐶 ⊑ 𝐷)𝐼 = inf 𝑥∈Δ𝐼 ,𝑛∈N(𝐶
𝐼(𝑛, 𝑥)▷𝐷𝐼(𝑛, 𝑥))

Let 𝐾 be an LTL𝒜ℒ𝒞 knowledge base 𝐾 = (𝒯 ,𝒜) with non-temporal ABox and TBox. Given a
many-valued temporal interpretation for ℐ = ⟨Δℐ , ·ℐ⟩, satisfiability of an axiom in ℐ is defined as:

• ℐ |= 𝐶 ⊑ 𝐷 𝜃𝛼 if (𝐶 ⊑ 𝐷)ℐ 𝜃𝛼;
• ℐ |= 𝐶(𝑎) 𝜃𝛼 if 𝐶ℐ(0, 𝑎ℐ) 𝜃𝛼;
• ℐ |= 𝑟(𝑎, 𝑏) 𝜃 𝛼 if 𝑟ℐ(0, 𝑎ℐ , 𝑏ℐ)𝜃 𝛼.

The interpretation ℐ is a model of 𝐾 = (𝒯 ,𝒜) if ℐ satisfies all concept inclusions in 𝒯 and all assertions
in 𝒜. A knowledge base 𝐾 = (𝒯 ,𝒜) is satisfiable in the many-valued extension of LTL𝒜ℒ𝒞 if a
many-valued temporal model ℐ = ⟨Δℐ , ·ℐ⟩ of 𝐾 exists.

4. A many-valued 𝐿𝑇𝐿𝒜ℒ𝒞 with Typicality
As in the two-valued case [11], the language of a many-valued 𝐿𝑇𝐿𝒜ℒ𝒞 can be extended with typicality
concepts of the form T(𝐶) representing the set of typical instances of concept 𝐶 . The typicality operator
T may occur both in concepts of TBox and ABox, but it cannot be nested. Extended concepts can be
built by combining the concept constructors in LTL𝒜ℒ𝒞 with the typicality operator, by allowing T(𝐶)
as a concept. They can freely occur in concept inclusions as in:

T(Professor) ⊑ (∃teaches.Course)𝒰Retired
∃lives_in.Town ⊓Young ⊑ T(♢Granted_Loan)

Inclusions of the form T(𝐶) ⊑ 𝐷 correspond to conditionals 𝐶 |∼ 𝐷 in KLM preferential logics [2, 3].
While the semantics in [11] was two-valued, in this example, the interpretation of some concepts, e.g.,
Young and Granted_Loan , may have a non-crisp value in [0, 1]. Indeed, being young is a fuzzy concept
and in place of Granted_Loan we could have Gets_Positive_Loan_Evaluation , the non-binarized
outcome of some classifier.

Given a temporal interpretation ℐ = ⟨Δℐ , ·ℐ⟩ over a truth degree set 𝒮 , a preference relation ≺𝑛
𝐶 on

Δℐ is induced by the many valued interpretation of 𝐶 in ℐ , at time point 𝑛, as follows: for all 𝑥, 𝑦 ∈ Δℐ ,

𝑥 ≺𝑛
𝐶 𝑦 if and only if 𝐶ℐ(𝑛, 𝑦) <𝒮 𝐶ℐ(𝑛, 𝑥),

where 𝑥 ≺𝑛
𝐶 𝑦 means that 𝑥 is preferred to 𝑦 with respect to 𝐶 at time point 𝑛.

The many-valued temporal semantics introduced in the previous section easily extends to the language
with typicality (see below). We regard typical 𝐶-elements (at time point 𝑛) as the domain elements 𝑥
which are preferred with respect to ≺𝑛

𝐶 among all domain elements (and such that 𝐶ℐ(𝑥) ̸= 0𝒮 ). Note
that this semantics is inherently multi-preferential. The interpretation of typicality concepts T(𝐶) can
be defined as follows:

Definition 1. Given an interpretation ℐ = ⟨Δℐ , ·ℐ⟩, for all 𝑛 ∈ N, 𝑥 ∈ Δℐ , (T(𝐶))ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛, 𝑥),
if there is no 𝑦 ∈ Δℐ such that 𝑦 ≺𝑛

𝐶 𝑥; (T(𝐶))ℐ(𝑛, 𝑥) = 0𝑆 , otherwise.



When (T(𝐶))ℐ(𝑥) > 0𝒮 , 𝑥 is said to be a typical 𝐶-element in ℐ . Note that, when ≤𝒮 is a total preorder
(as it is in the cases 𝒮 = [0, 1] and 𝒮 = 𝒞𝑛), relation ≺𝑛

𝐶 is an irreflexive, transitive and modular
relation over Δℐ , like ranked preference relations in KLM-style rational interpretations by Lehmann
and Magidor [3]. For finitely-many truth values, ≺𝑛

𝐶 is also well-founded.
For 𝐿𝑇𝐿𝒜ℒ𝒞 with typicality, the notion of satisfiability of an axiom in a multi-preferential temporal

interpretation ℐ and the notion of model of a KB, are as in Section 3.
In the following, we denote with LTL𝒜ℒ𝒞

𝑛T the many-valued extension of 𝐿𝑇𝐿𝒜ℒ𝒞 with typicality
with truth degree set 𝒮 = 𝒞𝑛, for 𝑛 ≥ 1, and with 𝐿𝑇𝐿𝒜ℒ𝒞

FT the fuzzy extension of 𝐿𝑇𝐿𝒜ℒ𝒞 with
typicality (where 𝒮 = [0, 1]).

4.1. Weighted temporal knowledge bases

Besides a set of strict concept inclusions in the TBox, weighted KBs also allow a set of typicality inclusions
(or defeasible inclusions), each one with a weight. Weighted typicality inclusions for a concept 𝐶𝑖 have the
form (T(𝐶𝑖) ⊑ 𝐷𝑗 , 𝑤𝑖𝑗), and describe the prototypical properties of 𝐶𝑖-elements (where 𝐷𝑗 is a concept,
and the weight 𝑤𝑖𝑗 is a real number). The concepts 𝐶𝑖 for which weighted typicality inclusions are
provided are called distinguished concepts.

A weighted temporal knowledge base is a tuple ⟨𝒯 ,𝒟,𝒜⟩, where the (strict) TBox 𝒯 is a set of strict
inclusions, the defeasible TBox 𝒟 is a set of weighted typicality inclusions, and 𝒜 is a set of assertions.

Consider the weighted LTL𝒜ℒ𝒞
𝑛T knowledge base 𝐾 = ⟨𝒯 ,𝒟, 𝒜⟩, over the set of distin-

guished concepts {Student ,Employee,Person, . . .}, with 𝒯 containing, for instance, the inclusion
Student ⊑ Person ≥ 1 . and 𝒟 containing the following weighted typicality inclusions, describing the
prototypical properties of concept Student:

(T(Student) ⊑ Has_Classes , +50), (T(Student) ⊑ Active ,+35) ,
(T(Student) ⊑ ∃has_Boss.⊤, -70),

That is, a student normally has classes and is active, but she usually does not have a boss (negative
weight). Accordingly, a student having classes, but not a boss, is more typical than an active student
having classes and a boss. In the two valued case, one can evaluate how typical are two domain
individuals mary and tom as students, by considering their weight with respect to concept Student ,
i.e., by summing the (positive or negative) weights of the defeasible inclusions satisfied by mary and
tom , and comparing them. The higher the weight, the more typical is the individual. In the many-value
case, in defining the weight of a domain element 𝑥 with respect to a distinguished concept 𝐶𝑖, we have
to consider that, in an interpretation ℐ , at time point 𝑛, element 𝑥 may belong to other concepts to
some degree (e.g., at time point 𝑛, mary may be active with degree 0.8, i.e., Activeℐ(𝑛,mary) = 0.8).

The many-valued temporal interpretation ℐ = ⟨Δℐ , ·ℐ⟩ with 𝒮 = [0, 1] or a subset of it, the weight
of 𝑥 ∈ Δℐ in ℐ with respect to a distinguished concept 𝐶𝑖 at time point 𝑛 is given by

𝑊 ℐ
𝑖,𝑛(𝑥) =

∑︀
(T(𝐶𝑖)⊑𝐷𝑗 ,𝑤𝑖𝑗)∈𝒟 𝑤𝑖𝑗 𝐷

ℐ
𝑗 (𝑛, 𝑥).

Intuitively, the higher the value of 𝑊 ℐ
𝑖,𝑛(𝑥), the more typical is 𝑥 as an instance of 𝐶𝑖), at time point

𝑛 (considering the defeasible properties of 𝐶𝑖). Here, the membership degree 𝐷ℐ
𝑗 (𝑛, 𝑥) of 𝑥 in each

concept 𝐷𝑗 at time point 𝑛 is considered.
For LTL𝒜ℒ𝒞

𝑛T and 𝐿𝑇𝐿𝒜ℒ𝒞
FT, the notions of faithful, coherent and 𝜙-coherent semantics in-

troduced for many-valued weighted KBs in [5, 6, 19] can be smoothly extended to the temporal case.
Generalizing from the non-temporal case, we expect the membership degree of a domain element 𝑥 in
a concept 𝐶𝑖 at a time point 𝑛 to be in agreement with the weight of 𝑥 with respect to concept 𝐶𝑖, at
the same time point 𝑛. Different agreement conditions at different time points 𝑛 can also be considered
(see [12]); one is 𝜙-coherence at 𝑛, imposing that for all 𝑥 ∈ Δℐ , 𝐶ℐ

𝑖 (𝑛, 𝑥) = 𝜙𝑖(𝑊
ℐ
𝑖,𝑛(𝑥))).

A many-valued temporal interpretation ℐ can be regarded as a sequence 𝐽0, 𝐽1, 𝐽2, . . . of many-
valued preferential interpretations (as those considered in [19]), for each time point. Different notions of
agreement at different time points can then be combined to give rise to different semantics of a temporal
weighted KB, and different notions of entailment (based on different closure constructions). In particular,



a notion of transient 𝜙-coherence at 𝑛 (i.e., for all 𝑥 ∈ Δℐ , 𝐶ℐ
𝑖 (𝑛+ 1, 𝑥) = 𝜙𝑖(𝑊

ℐ
𝑖,𝑛(𝑥))) is introduced

in [12] to provide a logical characterization of the transient behavior of a recurrent multilayer network.

4.2. Temporal weighted KBs and the transient behaviour of a neural network

In [19] it has been shown that many-valued weighted KBs with typicality can provide a logical in-
terpretation to some neural network model. Specifically, the 𝜙-coherent semantics allows to capture
the stationary states of multilayer networks as well as of networks with cyclic dependencies. In this
subsection, we are interested in the transient behavior of a network.

Let us consider a trained network 𝒩 . We do not put restrictions on the topology the network.
Following the approach in [19], 𝒩 can be mapped into a (non-temporal) weighted conditional knowledge
base 𝐾𝒩 [5, 19], by regarding the units in the network as concept names and the synaptic connections
between units as weighted inclusions. If 𝐶𝑘 is the concept name associated to unit 𝑘 and 𝐶𝑗1 , . . . , 𝐶𝑗𝑚

are the concept names associated to units 𝑗1, . . . , 𝑗𝑚, whose output signals are the input signals for
unit 𝑘, with synaptic weights 𝑤𝑘,𝑗1 , . . . , 𝑤𝑘,𝑗𝑚 , then unit 𝑘 can be associated a set 𝒯𝐶𝑘

of weighted
typicality inclusions: T(𝐶𝑘) ⊑ 𝐶𝑗1 with 𝑤𝑘,𝑗1 , . . . , T(𝐶𝑘) ⊑ 𝐶𝑗𝑚 with 𝑤𝑘,𝑗𝑚 .

It has been proven that the input-output behavior of a multilayer network 𝒩 can be captured by a
preferential interpretation 𝐼Δ𝒩 built over a set of input stimuli Δ (e.g., the test set), through a simple
construction, which exploits the activity level of units for the input stimuli.

This approach allows for the verification of conditional properties of the network (of the form
T(𝐶) ⊏ 𝐷 ≥ 𝜃) by model checking over the preferential interpretation 𝐼Δ𝒩 , or by using entailment
from the conditional knowledge base 𝐾𝒩 (e.g., in an ASP encoding for finitely-valued semantics [18]).
Both the model checking and entailment approach have been used in the verification of properties of
feedforward neural networks for the recognition of basic emotions [24, 19].

When we consider a temporal preferential model ℐ of the weighted knowledge base 𝐾𝒩 , we can
represent different states of the network at different time points. When ℐ is 𝜙-coherent at time point
𝑛, the coherence condition above imposes that the (non-temporal) interpretation 𝐽𝑛 at time point 𝑛
represents a stationary state of network 𝒩 . In such a case, 𝜙𝑖 plays the role of the activation function,
and the sum

∑︀
ℎ𝑤𝑖ℎ 𝐷ℐ

ℎ(𝑛, 𝑥) plays the role of the induced local field.
The temporal formalism also allows to capture the dynamic behavior of the network beyond stationary

states. When the network 𝒩 is recurrent, the knowledge base 𝐾𝒩 contains cyclic dependencies in
DBox. By imposing the condition that ℐ is a transient 𝜙-coherent interpretation at all time points 𝑛,
one can enforce that the interpretations 𝐽0, 𝐽1, 𝐽2, . . . at successive time points describe the dynamic
evolution of the activity of units in the network (where the activity of each unit at time point 𝑛+ 1
depends on the activity of incoming units at time point 𝑛). The temporal formalism provides a semantics
for capturing the trajectories of the network state, as well as time delayed feedback connections.

5. Conclusions

In this paper, we develop a many-valued, temporal description logic with typicality, extending 𝐿𝑇𝐿𝒜ℒ𝒞
to deal with defeasible reasoning. Our extension of LTL𝒜ℒ𝒞 builds, on the one hand, on fuzzy and
many-valued DLs, and, on the other hand, on preferential DLs with typicality. We have first developed
a many-valued semantics for LTL𝒜ℒ𝒞 , and then added to the language a typicality operator, based on a
(multi-) preferential semantics. Finally, we have defined an extension of weighted knowledge bases
with typicality to the temporal many-valued case, for representing prototypical properties of different
concepts in the temporal case.

On a different route, preferential extensions of LTL with defeasible temporal operators have been
recently studied by Chafik et al. [9, 10] to enrich temporal formalisms with non-monotonic reasoning
features, by considering defeasible versions of the LTL operators.

Much work has been recently devoted to the combination of neural networks and symbolic reasoning
[25, 26, 27]. While conditional weighted KBs have been shown to capture (in the many-valued case)
the stationary states of a neural network (or its finite approximation) [5, 19], and allow for combining



empirical knowledge with elicited knowledge for reasoning and for post-hoc verification, adding a
temporal dimension opens to the possibility of verifying properties concerning the dynamic behaviour
of the network, based on a model checking approach or an entailment based approach.

An interesting direction for future work, is an extension to the temporal case of the model-checking
approach developed in Datalog [24, 19] for the verification of conditional properties of a network, for
post-hoc verification.
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