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Abstract

In the last two decades, both Alternating-time Temporal Logic (ATL) and Strategy Logic (SL) has been proved to be
very useful in modeling strategic reasoning for Multi-Agent Systems (MAS). However, these logics struggle to
capture the bounded rationality inherent in human decision-making processes. To overcome these limitations,
Natural Alternating-time Temporal Logic (NatATL) and Natural Strategy Logic (NatSL) have been recently intro-
duced. As respectively extensions of ATL and SL, these natural variants incorporate bounded memory constraints
into agents’ strategies, which allows to resemble human cognitive limitations. In this paper, we discuss a novel ver-
ification implementation for NatATL and NatSL specifications, both for memoryless strategies and strategies with
recall. This research project aims to transform theoretical advancements into a practical verification framework,
enabling comprehensive analysis and validation of strategic reasoning in complex multi-agent environments.
Our novel tool paves the way for applications in areas such as explainable Al and human-in-the-loop systems,
highlighting both NatATL and NatSL substantial potential.
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1. Introduction

Multi-Agent Systems (MAS) have gained significant attention in recent years due to their ability to
model and analyze complex systems composed of multiple interacting agents [2, 3]. These agents can
be either human or artificial, and their interactions can range from cooperative to adversarial. Strategic
reasoning plays a crucial role in understanding and predicting agent behavior and in designing systems
that exhibit desired properties [4].

Over the past twenty years, formal verification works on MAS have flourished, with practical
applications developed by both theorists and practitioners [5]. One of the most successful logics for
representing agent conduct is Alternating-time Temporal Logic (ATL) [6], which uses a strategic operator
{(A)) ¢ to indicate that a coalition of agents A has a strategy capable of enforcing ¢ regardless of the
actions of all other agents.

Recently, NatATL [7] has been introduced as a logic to better capture how humans naturally strategize.
NatATL is a variant of ATL that updates the strategic operator ((A))¢ with a bounded version ((A)<F ¢,
where k£ € N denotes the complexity bound. NatATL has the potential to be useful in various Al
applications, such as human-in-the-loop systems and explainable Al Despite the potential of NatATL, it
has never been implemented in a tool.

Building on the success of NatATL, a more expressive logic called Natural Strategy Logic (NatSL) 8]
has been proposed. NatSL extends traditional Strategy Logic (SL) by allowing the explicit quantification
of strategies for both existential and universal agents. This logic enables the verification of both
cooperative and adversarial strategies, while incorporating bounded natural strategies, which reflect
more realistic constraints such as memory limitations [9]. As well as is intended in NatATL and NatSL,
strategies are structured as lists of condition-action rules, mimicking the decision-making process of
agents with limited resources. This extension allows for reasoning about scenarios where agents adopt
human-like, simple strategies, striking a balance between complexity and expressive power. As a result,
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NatSL is particularly well-suited for verifying strategic behaviors in complex multi-agent systems where
both memory and computational resources are constrained.

So, both NatATL and NatSL aim to provide frameworks that better capture human-like decision-
making and strategy formulation, making them particularly relevant for real-world applications such
as human-centered Al and autonomous systems. These logics are powerful tools in the ongoing
effort to bridge the gap between formal strategic reasoning and practical applications in multi-agent
environments.

This paper discusses an ongoing work on practical verification design for NatATL and NatSL logics,
both in the context of agents’ strategies with or without recall. Our NatATL verification segment
has already been successfully integrated into VITAMIN [10], an open-source model checker designed
for verifying MAS that supports a variety of specifications, including Alternating-time Temporal
Logic (ATL) [6], ATL with Fuzzy functions (ATLF) [11], Resource-Bounded ATL (RB-ATL) [12, 13],
Resource Action-based Bounded ATL [14], Capacity ATL (CapATL) [15], Obstruction Logic (OL) [16],
and Obstruction ATL (OATL) [17].

The implementation of NatATL model checking includes the following features: (i) Strategies Gener-
ation: The first step involves generating all strategies for each coalition whose complexity does not
exceed a fixed value; (ii) Model Pruning: This phase involves projecting the strategies generated in
the previous phase to simplify the model; (iii) Model Checking CTL: Since the pruning phase has made
the problem independent from the coalition due to the projection of the strategy coalition, it is now
possible to use CTL model checking. This approach allows the synthesis of optimal strategies that lead
to a solution.

In addition to NatATL, we discuss novel approaches for the implementation of model checking in
NatSL. The key innovation of NatSL lies in its ability to verify strategies that involve both existential
and universal quantifiers over agents’ behaviors, accounting for both cooperation and adversarial
settings. Our implementation supports two distinct approaches: (i) Alternated Strategy Generation:
In this approach, we first generate natural strategies for existential agents. If no solution is found,
we proceed by generating all possible strategies for universal agents, iterating between the two until
a solution is reached. This approach ensures a thorough exploration of the strategic space but may
introduce computational overhead. This approach significantly reduces space computational complexity.
(ii) Sequential Strategy Generation: This approach involves first generating all strategies for existential
agents. Only if no solution is found we generate strategies for universal agents in a single step,
allowing early termination when no further solutions are possible. This method significantly reduces
time computational complexity by minimizing redundant strategy generation and verification steps.
These approaches extend the capabilities of NatSL, enabling the verification of more intricate agent
interactions and providing a robust framework for handling both cooperative and adversarial behaviors
in multi-agent systems.

Outline. The rest of the paper is organized as follows. Section 2 recalls the main notions of natural
strategies, NatATL and NatSL. Section 3 presents the novel engineering contribution of our tool. Finally,
we conclude in Section 4.

2. Background

Concurrent Game Structure. Formally, a CGS consists of a tuple S = (Agt, Q, AP, 7,d, d) with
the following components: (i) Agt > 1 is a natural number indicating the number of agents; (ii) ) is a
finite set of states; (iii) AP is finite set of propositions; (iv) 7 is a labelling function such that for each
state ¢, (q) C AP is a set of true propositions at ¢; (v) d(a, ¢) indicates for each agent a and state ¢,
the set of actions available in the state ¢ for a. A move vector at q consist of a tuple (j1,...,j4q:) such
that j, € d(a, q) for each agent a; (vi) 0 is a transition function that for each state ¢ and each move
vector, returns a state that results from ¢ if each agent a chooses the move in the vector.



Natural Strategies. Given a CGS S and a set of agents, a general strategy for an agent in a MAS
is a function that determines a move for each agent based on every finite prefix of a computation.
For a specific state ¢, a coalition A, and a set of strategies for A, the outcomes from g are all possible
future sequences of states from ¢ that the coalition A can enforce by following their strategies. Natural
strategies are expressed using a rule-based system, where each rule comprises a condition and an action.
A memoryless strategy (nr-strategy) differs from a strategy with recall (nR-strategy) in that the former
defines its conditions using Boolean formulas over AP—considering current state information only.
In contrast, the latter describes its conditions through regular expressions over AP, incorporating
the history of states (i.e., the sequence of states that has occurred so far). The complexity of natural
strategies is gauged by the overall size of the conditions’ representation.

NatATL. Natural Alternating-time Temporal Logic (NatATL)[9] is a logic for natural strategic ability
that enhances ATL by integrating human reasoning constraints, thereby expanding its applicability
and effectiveness. NatATL effectively addresses usability issues related to the functional requirements
of reactive systems. It considers situations where multiple agents, each with their own goals and
capabilities, can take actions concurrently. NatATL syntax derives from substituting the modality ((A))
in ATL with the bounded strategic modality ((A))<*. Intuitively, ((A))<*~ says that a coalition of agents
(A C Agt) has a collective natural strategy of size at most k to enforce property . Similar to ATL,
NatATL formulas predicate over a set of atomic propositions AP and uses classical temporal operators.
Therefore, the NatATL language can be delineated by the following grammar:

@ u=p|op|loAp| (AVFXo| (AYF Ul (AY=F o Ry

where p is an atomic proposition, k is the complexity bound, ¢ is a composed formula and, X, U, and
R are temporal operators and stand for “next", “until", and “release", respectively. For a coalition A, s 4
denotes a collective natural strategy. The complexity of a natural collective strategy is the sum of the
individual strategies’ complexities. For further insights into the semantics and theoretical aspects, refer

to [9].

NatSL. The NatSL extension adds a new layer of strategic reasoning by differentiating between
existential and universal agents in the logical formula [8]. In essence, the formula now consists of two
types of quantifiers: existential quantifiers (denoted by J) and universal quantifiers (denoted by V).
Each quantifier is associated with a set of agents and their corresponding strategies. The goal of NatSL
verification is to ensure that the existential agents can find a winning strategy, taking into account
that the universal agents may counteract with their strategies. The syntax of Natural Strategy Logic
(NatSL) extends standard Strategy Logic by incorporating natural strategies and their complexities. The
formula syntax can be defined as follows:

@ u=p|-p|pAp|IFs.0| V500 (a,50) 0| X | Up|p Ry

The intuitive reading of the operators is as follows: 355, means that there exists a strategy with
complexity less or equal than & for agent a such that ¢ holds; (a, s, )¢ means that when strategy s, is
assigned to agent a, ¢ holds; X, U, and R are the usual temporal operators.

3. Current Implementation

The implementation chapter of our work focuses on the development of a module designed to enhance
the verification capabilities of both NatATL and NatSL formal logics within MAS, considering both
cases with and without recall. This module operates within the VITAMIN framework of an existing
verification tool and integrates various components to process and evaluate models representing systems
of agents, states, and actions. The module’s primary function is to verify strategic properties expressed in
a logical formalism by transforming the input model and applying standard model checking techniques.



3.1. NatATL System Architecture

The architecture of the tool is built around three core components: strategy generation, model transfor-
mation, and model checking. These components interact in a pipeline, ensuring that the input model is
progressively refined through each stage of the process. The input consists of a representation of the
system as a graph, where nodes correspond to states and edges represent possible transitions based
on actions taken by agents. Additionally, a logical formula that encapsulates the desired property is
provided for verification.

The tool begins by generating possible strategies for the agents involved. These strategies determine
how agents may act collectively or individually in the given system. Once a strategy is selected, the
model is pruned—this means removing transitions that are not compatible with the chosen strategy,
effectively simplifying the model for further analysis. This pruned model is then subjected to the
verification of the logical formula using model checking algorithms. A comprehensive overview of the
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entire NatATL verification process is shown in Fig. 1.
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Figure 1: NatATL verification process

Strategy Generation. The generation of strategies is essential for exploring the behavior of agents
within the system. This process is highly complex due to the number of possible strategies that agents
can adopt, depending on their actions and the states they occupy. To manage this complexity, the
system incrementally generates strategies, prioritizing those with lower complexity before expanding
to more involved strategies if necessary. This ensures computational efficiency and streamlines the
verification process by focusing on strategies that are more likely to produce a result.

Model Transformation. Once a strategy is selected, the system undergoes a transformation process
where the original model is pruned. This involves removing transitions that do not align with the current
strategy, which simplifies the system’s structure and reduces the number of states and transitions that
need to be considered during verification. This transformation can be performed for different types of
strategies, including memoryless natural strategies, where actions depend solely on the current state,
and natural strategies with recall, where actions can depend on the history of states. For strategies
with recall, the system is transformed into a tree structure, which better represents the history of states
and transitions. This allows the model to capture more complex behaviors over time and enables more
accurate verification of strategies that rely on past information.

Model Checking. The final step involves verifying whether the pruned model satisfies the given
logical formula. The system employs a tree-based structure to evaluate the formula, breaking it down
into smaller components that can be checked independently. Standard CTL model checking algorithms
are used to determine whether the formula holds in the pruned model. If the formula is satisfied, the
system identifies the set of states that meet the formula’s requirements. If not, the system iterates
through additional strategies, repeating the pruning and verification process until a solution is found or
all strategies are exhausted.

Computational Considerations. The complexity of the overall process is governed by both the
strategy generation and the model checking phases. The strategy generation involves a combinatorial
explosion of possible actions, but optimizations are applied to mitigate this issue by focusing on simpler



strategies first. The model transformation and pruning are computationally efficient, operating within
the constraints of the system’s size, while the model checking algorithm leverages well-established
techniques with polynomial complexity. This ensures that the system can handle reasonably large
models without excessive computational overhead.

3.2. NatSL System Architecture

The implementation of NatSL is currently in its early stages, particularly in comparison to the more
mature implementation of NatATL. At present, the approach focuses on a limited case where strategies
target only a single goal, and quantifiers over existential and universal agents are not alternated. This
simplification allows us to concentrate on the foundational elements of NatSL, while ensuring that the
core verification process is feasible.

In its current form, the implementation primarily handles scenarios where the existential agents aim
to achieve a specific goal, while the universal agents act in opposition, trying to prevent the goal from
being reached. This non-alternating quantifier setup simplifies the strategy generation process, as it
removes the need to consider more complex, nested strategies that arise when existential and universal
quantifiers are alternated.

Despite these limitations, the NatSL implementation is designed to provide a foundation for future
extensions. We plan to gradually expand its scope to handle more intricate agent interactions and
alternating quantifiers. As a first step, we introduce two distinct approaches for strategy generation
and verification, each offering different trade-offs in terms of computational efficiency.

Approach 1: Alternated Strategy Generation. The first approach to NatSL verification proceeds
in an alternated manner:

1. Existential Strategy Generation: The system first generates a natural strategy for the existential
agents, similar to how it operates in NatATL. If the generated strategy passes model checking
(i.e., the model satisfies the logical formula after pruning the model based on the strategy), the
process terminates, and the system returns true.

2. Universal Strategy Generation: If no winning strategy is found for the existential agents, the system
pauses further existential strategy generation and shifts to generating all possible strategies for
the universal agents. The universal agents’ strategies are then applied, and the system checks if
any of these strategies lead to a false result after pruning and model checking. If any universal
strategy results in false, the process returns to generating the next existential strategy.

3. Iterative Process: This iterative process continues, alternating between generating existential
strategies and verifying them against all possible universal strategies. The process stops once
either a valid existential strategy is found, or all strategies have been exhausted.

This approach, while simple, is less efficient in terms of computational time complexity because
it requires generating and verifying all universal strategies after each existential strategy. The back-
and-forth nature of this process increases the computational load, especially as the number of agents
and strategies grows. The diagram below (Fig. 2) will visualize how the system alternates between
generating strategies for existential and universal agents in this approach.

Approach 2: Sequential Strategy Generation. The second approach improves time computational
efficiency by restructuring the strategy generation process. The key idea is to first complete the entire
NatATL verification before moving to universal strategy generation:

1. Complete Existential Strategy Generation: The system generates all existential strategies first,
performing pruning and model checking for each strategy. By the way, if a winning existential
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Figure 2: NatSL verification process

strategy is found, the whole process terminates with true, stopping further analysis, as the rest of
existential strategies are not generated.

2. Universal Strategy Generation: If no existential strategy leads to a solution, the system generates
all strategies for the universal agents in a single step. The universal strategies are then applied to
the pruned models. If any universal strategy fails (i.e., results in false after pruning and model
checking), the process terminates early with false, analyzing the next pruned tree - if there is any,
otherwise the process is finished.

3. Exit Condition: The key time-efficiency gain in this approach is the early exit condition in the
analysis of existential strategies. In fact, as soon as a solution is found in the existential analysis,
the algorithm terminates without generating further universal strategies. This drastically reduces
the computational time overhead compared to the first approach.

To better illustrate this approach, a diagram is included to the reader below (Fig. 3) showing how
this technique streamlines the first approach process by separating its strategy generation phases.
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Figure 3: NatSL verification process

Computational Considerations. From an engineering standpoint, Approach 2 is more timely-
efficient because it requires fewer strategy generations and model checks. By generating all existential
strategies upfront and only generating universal strategies if no solution is found for the existential
ones, this approach minimizes unnecessary recomputation and reduces the overall time complexity of
the verification process. However, during the generation of existential strategies, it must store each
pruned model to use it later when universal strategies are invoked. This results in higher memory
usage, making this approach less suitable in terms of memory-space compared to the first approach,
which, although slower, is more space-efficient (as each pruned model is used on the fly).



4. Conclusions

In this paper, we discussed a practical implementation for NatATL and NatSL, along with methods
for efficiently generating natural strategies, both for memoryless strategies and strategies with recall.
Our tool enhances strategic reasoning in MAS by addressing the limitations of traditional ATL and
SL in capturing human decision-making processes. For NatATL, we have successfully integrated
the verification module into the VITAMIN model checker, optimizing both space and computational
complexity by employing a strategy generation process that progresses from minimal complexity and
only increases when necessary. This segmentation significantly improves performance, particularly
in complex systems where strategies with recall are required. Similarly, our proposed approaches for
NatSL focus on optimizing both memory usage and computational time. The two approaches, Alternated
Strategy Generation and Sequential Strategy Generation, offer different trade-offs between space and
time efficiency. The former ensures comprehensive exploration of strategic possibilities, while the latter
minimizes overhead by reducing redundant strategy generation. These techniques are designed to
handle both cooperative and adversarial agent behaviors, paving the way for broader applications of
natural strategies in practical settings.

While our implementation of NatATL represents a fully integrated solution in an existing model
checker, the development of NatSL is still a work in progress. Several steps remain before a complete
integration of NatSL into a verification tool can be achieved. Future work will focus on refining the
current approaches to improve both time and memory efficiency and ensuring compatibility with large-
scale multi-agent systems. Additionally, we aim to extend the functionality of the tool to support the
entire NatSL logic and ensuring more complex agent interactions. By continuing to optimize NatSL and
enhancing its integration into practical verification tools, we hope to advance the capabilities of strategic
reasoning in MAS, with potential applications spanning areas such as Al-driven decision-making and
human-centered autonomous systems.
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