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Abstract
Global constraints are one of the features that make Constraint Programming an effective solution scheme.

The first global constraint, named alldifferent, is also one of the most used. In order to solve in Constraint

Programming routing problems, such as the Hamiltonian Circuit Problem, the Travelling Salesperson Problem

and many of their variants, an effective solution is to use a constraint model containing alldifferent and the circuit

constraint, necessary to avoid sub-circuits.

In this paper, we propose a combination of alldifferent and circuit that reuses the data structures of the

alldifferent constraint to perform further propagation for the circuit constraint. The new combination introduces

negligible overhead, and experimental results show that it can be effective when solving the Hamiltonian Circuit

Problem.
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1. Introduction

In the field of Constraint Programming (CP), global constraints such as alldifferent and circuit
play a crucial role in reducing the search space and improving the efficiency while solving a wide range

of Constraint Optimization Problems (COPs). These constraints are particularly relevant in complex

applications like scheduling, timetabling, vehicle routing, and problems in graph theory.

The alldifferent constraint is essential for ensuring that all variables within a set assume distinct

values. The circuit constraint enforces the existence of a Hamiltonian cycle within a graph.

Despite their practical utility, these constraints pose significant computational challenges, especially

when combined in problems such as the Hamiltonian Cycle Problem (HCP), a well-known NP-complete

problem. Achieving efficient constraint propagation while maintaining computational tractability of

the propagation is a core issue in CP.

While significant advances have been made in the propagation techniques for both the

alldifferent and circuit constraints individually, much less attention has been devoted to the

potential synergies between these constraints when combined. For example, in problems like the HCP,

both constraints are naturally present: the alldifferent constraint is used to ensure that each node

in the cycle has a unique successor, while the circuit constraint ensures that these successors form a

valid cycle without subtours.

In this paper, we propose a novel approach that integrates alldifferent and circuit constraints

more deeply, with a focus on achieving better pruning during propagation, which in turn leads to

improved overall performance. Our approach is motivated by the observation that by leveraging the

underlying structure of Hall sets, typically used in the propagation of alldifferent, we can obtain

additional pruning in the context of circuit constraint.
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We provide a theoretical overview that analyzes the computational complexity of the integrated

approach. Although it is well-known that the combination of alldifferent and circuit constraints

generates an NP-complete problem, we show a combined propagation that is polynomial and, although

it does not achieve Generalized Arc-Consistency, it provides an improvement in the solution time.

Finally, we provide an extensive experimental evaluation, comparing our integrated approach against

existing methods on a variety of problem instances of the HCP.

2. Preliminaries and notation

Definition 2.1. (Constraint Satisfaction Problem) A Constraint Satisfaction Problem (CSP) is a triple P =
⟨𝒳 ,𝒟, 𝒞⟩ where𝒳 is a set of decision variables {𝑥1, 𝑥2, . . . , 𝑥𝑛},𝒟 is a set of domains {𝐷1, 𝐷2, . . . , 𝐷𝑛}
and 𝒞 a set of constraints {𝑐1, 𝑐2, . . . , 𝑐𝑚}.

Each domain 𝐷𝑖 is the set of all possible values that can be assigned to the variable 𝑥𝑖. Each constraint

𝑐𝑖 consists of a pair ⟨𝑅𝑖, 𝑆𝑖⟩where𝑅𝑖 is a relation between the variables𝑆𝑖 participating in the constraint.

The set 𝑆𝑖 is called the scope of 𝑅𝑖. 𝑅𝑖 results in a subset of the cartesian product of the domain of the

variables in 𝑆𝑖.

Let 𝐺 = (𝑉,𝐸) be a graph, where 𝑉 is a set of nodes and 𝐸 is a set of edges. A path in 𝐺 is a

sequence 𝑝𝑣𝑠0-𝑣𝑠𝑘
= 𝑣𝑠0𝑒𝑠0,𝑠1𝑣𝑠1 . . . 𝑒𝑠𝑘−1,𝑠𝑘𝑣𝑠𝑘 such that

1. 𝑣𝑠0 , 𝑣𝑠1 , . . . , 𝑣𝑠𝑘 ∈ 𝑉 and are all distinct, and

2. 𝑒𝑠0,𝑠1 , . . . , 𝑒𝑠𝑘−1,𝑠𝑘 ∈ 𝐸.

Since a path is uniquely identified by the sequence of its nodes (or of its edges) in the proper order,

to simplify the notation we will often write paths as sequences of nodes. Given a path 𝑝𝑣𝑠0-𝑣𝑠𝑘
, the

sequence obtained by appending 𝑒𝑠𝑘,𝑠0 to a path 𝑝𝑣𝑠0-𝑣𝑠𝑘
is also called a circuit 𝑐.

Definition 2.2. Given a graph 𝐺, the HCP is the problem of finding a cycle in 𝐺 that passes through all
nodes, without taking twice the same edge.

2.1. State of the Art for alldifferent and circuit constraints

The alldifferent constraint is one of the most used constraints in Constraint Logic Programming

(CLP), and was subject of several works [2, 3, 4, 5, 6]. The works propose different tradeoffs between

the pruning power (stronger consistency of the propagation) and the computational complexity for

achieving it; a survey on the alldifferent constraint was published by Van Hoeve [7].

The first work on the alldifferent constraint [2] exploited graph-matching algorithms, and

achieved the strongest possible level of consistency for a (single) constraint, namely (Generalized)

Arc-Consistency.

Definition 2.3 (Generalized Arc-Consistency). A constraint 𝑐(𝑥1, . . . , 𝑥𝑛) is Generalized Arc-Consistent

(or Hyper-Arc Consistent) if for each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛} and for each value 𝑑𝑗 ∈ 𝐷𝑥𝑖 there exist
values

𝑑1 ∈ 𝐷𝑥1 , . . . , 𝑑𝑖−1 ∈ 𝐷𝑥𝑖−1 , 𝑑𝑖+1 ∈ 𝐷𝑥𝑖+1 , . . . , 𝑑𝑛 ∈ 𝐷𝑥𝑛

such that (𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑗 , 𝑑𝑖+1, . . . , 𝑑𝑛) ∈ 𝑐.

The complexity [2] was 𝑂(𝑛2.5), where 𝑛 is the number of variables. Further improvements [6] on

this version changed the implementation, but retaining the same computational complexity.

Leconte [8] proposed a faster propagation scheme, with complexity 𝑂(𝑛2), which achieved a lower-

level of consistency, named range-consistency. As for Arc-Consistency, the idea of range-consistency is

that each element in the domain of each variable 𝑥𝑖 should have supporting values in the domains of

the other variables; however, in Range-Consistency the supporting values are sought in the minimal

interval that encloses the domain, instead of the actual domain. This reduces the number of checks that

are necessary to enforce such level of consistency, as it is no longer necessary to check all values in



the domain, but only the extremes are considered. The downside is that Arc-Consistency can detect

inconsistency in more instances.

Definition 2.4 (Range-Consistency). A constraint 𝑐(𝑥1, . . . , 𝑥𝑛) is Generalized Range-Consistent if for
each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛} and for each value 𝑑𝑗 ∈ 𝐷𝑥𝑖 there exist values

𝑑1 ∈ [min(𝐷𝑥1),max(𝐷𝑥1)], . . . , 𝑑𝑖−1 ∈ [min(𝐷𝑥𝑖−1),max(𝐷𝑥𝑖−1)],
𝑑𝑖+1 ∈ [min(𝐷𝑥𝑖+1),max(𝐷𝑥𝑖+1)], . . . , 𝑑𝑛 ∈ [min(𝐷𝑥𝑛),max(𝐷𝑥𝑛)]

such that (𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑗 , 𝑑𝑖+1, . . . , 𝑑𝑛) ∈ 𝑐.

Puget [3] proposed a propagation algorithm with 𝑂(𝑛 log 𝑛) complexity, that achieved an even

weaker notion of consistency, named Bound-Consistency; in Bound-Consistency a support is sought

only for the bounds, i.e. the extreme elements in the domain of each variable:

Definition 2.5 (Bound-Consistency). A constraint 𝑐(𝑥1, . . . , 𝑥𝑛) is Generalized Bound-Consistent if for
each variable 𝑥𝑖 ∈ {𝑥1, . . . , 𝑥𝑛} and for each value 𝑑𝑗 ∈ {min(𝐷𝑥𝑖),max(𝐷𝑥𝑖)} there exist values

𝑑1 ∈ [min(𝐷𝑥1),max(𝐷𝑥1)], . . . , 𝑑𝑖−1 ∈ [min(𝐷𝑥𝑖−1),max(𝐷𝑥𝑖−1)],
𝑑𝑖+1 ∈ [min(𝐷𝑥𝑖+1),max(𝐷𝑥𝑖+1)], . . . , 𝑑𝑛 ∈ [min(𝐷𝑥𝑛),max(𝐷𝑥𝑛)]

such that (𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑗 , 𝑑𝑖+1, . . . , 𝑑𝑛) ∈ 𝑐.

Further works on this version [4, 5] were not able to improve on the computational complexity of

the algorithm, but they were able to improve on its speed in practice.

All the current implementations of alldifferent achieving Range or Bound-Consistency are based

on the Hall theorem [9]; before introducing it, we define the domain of a set of variables:

Definition 2.6 (Domain of a set of variables). Given a set of variables 𝑆, for each 𝑥 ∈ 𝑆 let 𝐷𝑥 be the
domain of variable 𝑥. We indicate with 𝒟𝑆 =

⋃︀
𝑥∈𝑆 𝐷𝑥.

Clearly, if there is a set of variables 𝐾 such that the number of variables in 𝐾 is higher than the

number of available values |𝒟𝐾 | for those variables, the alldifferent constraint is unsatisfiable; the

following theorem states that also the vice-versa holds:

Theorem 2.1 ([3], based on [9]). The constraint alldifferent([𝑋1, . . . , 𝑋𝑛]) has solutions iff for each
𝐾 ⊆ {𝑋1, . . . , 𝑋𝑛}, |𝐾| ≤ |𝒟𝐾 |.

The implementations of alldifferent based on Range or Bound-Consistency differ mainly on the

method used to find Hall intervals:

Definition 2.7 (Hall interval [3]). Given a constraint alldifferent([𝑋1, . . . , 𝑋𝑛]) and an interval 𝐼 , let
𝑣𝑎𝑟𝑠(𝐼) be the set of variables 𝑋𝑖 such that 𝐷𝑋𝑖 ⊆ 𝐼 . We say that 𝐼 is a Hall interval iff |𝑣𝑎𝑟𝑠(𝐼)| = |𝐼|.

Clearly, if there is a Hall interval 𝐼 , then the set of variables 𝑣𝑎𝑟𝑠(𝐼) absorbs all the values of 𝒟𝐼 ,

meaning that all values in 𝒟𝐼 can be safely removed from the domains of all other variables. This

is exactly the propagation used by the algorithms based on Range or Bound-Consistency for the

alldifferent constraint.

Also the algorithms that achieve Arc-Consistency [2, 6] identify sets of values 𝐼 whose cardinality

coincides with that of the set 𝑣𝑎𝑟𝑠(𝐼), however, such sets are not necessarily intervals; we will name

them Hall sets.

One of the most successful constraint models for the HCP is the successor representation. To each node

𝑥 of the graph, a variable Next𝑥 is associated; its domain is the set of nodes that can be reached in one

step from 𝑥. The intuitive meaning of this representation is that in a solution (i.e., in an Hamiltonian

cycle), the successor of the the node 𝑥 is the node assigned to Next𝑥.



The constraint model for the successor representation contains an alldifferent constraint on the

set of Next variables (since no two nodes can have the same successor in an Hamiltonian path) and

a circuit constraint [10] on the Next variables. The circuit constraint ensures that there are no

sub-tours.

One simple implementation of the circuit constraint (and, indeed, the implementation implemented

in the ECL
𝑖
PS

𝑒
Constraint Logic Programming language [11]) is based on the following reasoning: if in

a partial assignment, a path 𝑃 has already been assigned, starting from an initial node 𝑖 and ending in a

last node 𝑙, then Next 𝑙 ̸= 𝑖, i.e. the successor of the last node 𝑙 cannot be the initial node 𝑖. Clearly, this

condition is valid only for partial assignments, not for complete ones (i.e., not for complete solutions),

i.e. when the length of the partial path is strictly less than the number of nodes in the graph.

3. Related work

Caseau and Laburthe [12] propose a propagation technique for the circuit constraint through a simple

and effective rule called nocycle. This rule is applied to prevent intermediate cycles during the solving

of small Traveling Salesperson Problems (TSPs). Their method involves detecting paths of mandatory

edges with lengths of at most 𝑛− 1 and eliminating the edge between the two endpoints of such paths

to ensure circuit completeness. Additionally, they enhance the constraint-solving approach by utilizing

assignment-based and spanning tree relaxations to filter out infeasible values, demonstrating how these

techniques contribute to more effective propagation for the TSP and similar problems.

Kaya and Hooker [13] propose a new filtering approach to the circuit constraint based on separator

graphs. Their method focuses on removing non-Hamiltonian edges by identifying and analyzing

subgraphs using a vertex separator. To identify nonhamiltonian edges, Kaya and Hooker introduce a

flow-based method that constructs capacitated flow graphs. These graphs are built for both out-degree

and in-degree constraints, ensuring that each vertex in the Hamiltonian cycle has exactly one successor

and one predecessor. If the flow on a given edge is zero and there is no augmenting path, that edge

is nonhamiltonian and can be safely removed from the graph’s domain. Their algorithm achieves a

complexity of 𝑂(|𝑆|5) for each separator 𝑆.

Francis and Stuckey [14] further explore various propagation techniques for the circuit constraint in

the context of lazy clause generation solvers. They emphasize the importance of adding explanations and

they studied its effect on the circuit constraint and its variants. The technique involves transforming

each propagation step into a clause, which provides an explanation for domain reductions, helping

the solver avoid previously encountered conflicts. Their research highlights the trade-off between the

complexity of propagation algorithms and the reusability of explanations. While simpler algorithms

generate smaller explanations, more powerful algorithms, such as Strongly Connected Components

(SCC) based propagation, can yield significant performance gains by pruning the search space more

effectively.

Isoart and Régin [15, 16] propose to improve the propagation of the Weighted Circuit Constraint

(WCC) (a constraint tailored to solve the Travelling Salesperson Problem) by exploiting some properties

of Hamiltonian graphs (i.e., graphs that admit an Hamiltonian circuit) based on finding 𝑘-cutsets. More

precisely, a graph can be cut into two subgraphs by removing a set of edges, named a cutset; a cutset of

cardinality 𝑘 is called a 𝑘-cutset. In order for the graph to be Hamiltonian, there cannot exist a 1-cutset

(also called a bridge) as there would be two separate parts connected only by one edge. Isoart and Régin

develop efficient algorithm to detect cutsets of size up to three, and, reasoning on the cardinality of

a cutset, are able to detect mandatory edges (edges that must necessarily belong to any Hamiltonian

circuit) and edges that cannot belong to any Hamiltonian cycle.

4. Stronger interaction between circuit and alldifferent

Integrating the circuit and alldifferent constraints could unleash the possibility of further

pruning. On the other hand, it is worth noting that the problem consisting only of the alldifferent



and circuit constraints is known as the Hamiltonian Circuit problem, which is a well-known NP-

complete problem [17]. But if a problem consisting of only one constraint is NP-complete, then also

obtaining Generalized Arc-Consistency (GAC) of such a constraint is NP-complete [18]. This well-

known result strongly reduces the hope to find a polynomial algorithm for GAC propagation of such a

constraint. On the other hand, constraint propagation is executed in each node of the search space,

and usually, in order for a propagation to be effective, a strong requirement is that it is achieved in

polynomial time. For this reason, it is sensible to forego obtaining GAC of the hamiltonian constraint;

this does not mean that effective pruning cannot be obtained for such a constraint: indeed a constraint

is effective if the amount of pruning it performs (i.e., the reduction of the search space) compensates

for the time spent in reasoning. E.g., one of the most successful constraints in CP is the cumulative
constraint, for which there exist various implementations, none of which obtains GAC, since its cost

would be NP-hard.

All the implementations of alldifferent amount to finding Hall sets efficiently, possibly trading

speed for finding Hall sets with the number of Hall sets found.

Once these sets are known, it might be worthy to exploit them also for improving the propagation of

the circuit constraint.

Theorem 4.1. Let 𝐻 = {ℎ1, . . . , ℎ𝑘} be a set of nodes, Next𝐻 the corresponding variables in the successor
representation, and 𝒟Next𝐻 the corresponding domain. If 𝒟Next𝐻 = 𝐻 and |𝐻| < 𝑛, then the HCP has no
solution.

Proof. Edges from the set 𝐻 can only be connected to edges in the set 𝒟𝐻 , which coincides with 𝐻 , so

the set 𝐻 is isolated. As |𝐻| < 𝑛, the set 𝐻 does not contain all nodes in the graph, so there are nodes

that are unreachable from 𝐻 .

Note that a set satisfying Theorem 4.1 is, by definition, a Hall set.

Thus, it makes sense to exploit the efficient techniques developed in the literature to find Hall sets

to get also additional pruning for the circuit constraint. Moreover, those same techniques used to

find Hall sets are already embedded in the propagation algorithm of the alldifferent constraint,

that is usually employed together with circuit in the same constraint model. Stated otherwise, since

the alldifferent constraint already needs to search for Hall sets, it makes sense to get additional

pruning, due to the need to remove sub-circuits.

Once a Hall set satisfying the condition of Theorem 4.1 is found, a proof is obtained that the current

branch of the search tree does not lead to any solution, so a failure is raised. While failing early can

save a lot of computation time, the CLP on Finite Domains (CLP(FD)) philosophy encourages to delete

inconsistent values from the domains in order to focus the search on the promising parts of the search

tree.

The following theorem provides a mean for eliminating values from domains before a failure.

Of course, the starting point of a circuit is unimportant.

Theorem 4.2. Let 𝐻 = {ℎ1, . . . , ℎ𝑘} be a set of nodes with cardinality 𝑘 < 𝑛 such that 𝒟Next𝐻 (the
domain of the corresponding variables) is a Hall set. Assume that |𝐻 ∖ 𝒟Next𝐻 | = 1; let ℎ𝑠 be the only
element in 𝐼 = 𝐻 ∖𝒟Next𝐻 . Since 𝒟Next𝐻 is a Hall set, |𝐻| = |𝒟Next𝐻 |, so there will be only one element
in 𝑂 = 𝒟Next𝐻 ∖𝐻 ; let 𝑣𝑒 be that element.

Then, there is no Hamiltonian Circuit of the graph 𝐺 = (𝑉,𝐸) such that the successor of 𝑣𝑠 is 𝑣𝑒.

Proof. Let 𝐽 = 𝐻∩𝒟Next𝐻 ; by the assumptions in the theorem, 𝐻 = 𝐽 ∪{ℎ𝑠} and𝒟Next𝐻 = 𝐽 ∪{𝑣𝑒}.
By definition of 𝒟Next𝐻 , the successor of each node in 𝐻 is one element in 𝒟𝐻 = 𝐽 ∪ {𝑣𝑒}. Since no

two nodes can have the same successor, the successor of ℎ𝑠 cannot be 𝑣𝑒, otherwise the successors of

all the elements in 𝐽 would be other elements in 𝐽 , making the set 𝐽 an isolated subset (see Figure 1).



𝐼 𝐽 𝑂

Figure 1: Division of nodes into the three sets as in Theorem 4.2, and possible pruning that can be obtained.
Picture drawn with ASPECT [19].

Theorem 4.3. Let 𝐻 = {ℎ1, . . . , ℎ𝑘} be set of nodes with cardinality 𝑘 < 𝑛, and let 𝒟Next𝐻 be a Hall
set.

Let 𝐽 = 𝐻 ∩ 𝒟Next𝐻 , 𝐼 = 𝐻 ∖ 𝒟Next𝐻 and 𝑂 = 𝒟Next𝐻 ∖𝐻 .
Then, in any Hamiltonian Circuit:

1. The successor of an element in 𝐼 is either an element in 𝐽 or in 𝑂.
2. The successor of an element in 𝐽 is either en element in 𝐽 or in 𝑂.
3. The successor of an element in 𝑉 ∖𝐻 is in 𝑉 ∖𝐻 or in 𝐼 .

Proof. Note that since 𝒟Next𝐻 is a Hall set, the successor of each element in 𝑉 ∖𝐻 cannot be in the

set 𝒟Next𝐻 (this is exactly the propagation performed by the alldifferent constraint); this proves

item 3.

Items 1 and 2 follow immediately from the definition of 𝒟Next𝐻 .

A possible propagation algorithm of the hamiltonian constraint could be summarised as follows:

1: ℱ ← alldifferent ◁ execute the alldifferent propagator; such propagator also returns a

family ℱ of Hall sets.

2: if |ℱ| > 1 then
3: for all 𝐻 ∈ ℱ do
4: 𝐼 ← 𝐻 ∖ 𝒟Next𝐻

5: if |𝐼| = 1 then
6: 𝑂 ← 𝒟Next𝐻 ∖𝐻
7: let 𝐼 = {𝑖}
8: let 𝑂 = {𝑜}
9: Next 𝑖 ̸= 𝑜

10: end if
11: end for
12: end if

The complexity of this propagator is dominated by the invocation of the alldifferent constraint,

that amounts at 𝑂(𝑛2.5) or 𝑂(𝑛 log 𝑛) depending on the achieved level of consistency. The set dif-

ferences 𝐻 ∖ 𝒟𝐻 and 𝒟𝐻 ∖ 𝐻 can be computed in linear time, if the sets 𝐻 and 𝒟𝐻 are sorted, so

the complexity of the hamiltonian constraint does not increase with respect to the alldifferent
constraint.

A second level of pruning can be obtained in the same situation (i.e., when |𝐻 ∖ 𝒟Next𝐻 | = 1 and 𝐻
is a Hall set) by considering that from the initial node one cannot get to the final node of a Hall set

unless all the nodes in the set are visited. The propagator can be implemented in a similar way to the

circuit constraint: when a partial path inside the Hall set 𝐻 has been assigned (i.e., a sequence of

variables have become ground and they represent a partial path), reaching the final node is forbidden

unless all the nodes in 𝐻 have been visited. The following pseudo-code depicts the algorithm performed

by the propagator; it is invoked with 𝑐𝑖𝑟𝑐𝑢𝑖𝑡_𝑖𝑛_𝐻𝑎𝑙𝑙_𝑠𝑒𝑡_𝑝𝑟𝑜𝑝(𝑖, 𝑜, 0, 𝐻,Next), where 𝑖 is the initial

node in the Hall set (as in the previous algorithm), 𝑜 is the output node.



1: function circuit_in_Hall_set_prop(𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑, 𝐿𝑒𝑛,𝐻,Next )
2: if Next𝑆𝑡𝑎𝑟𝑡 is ground then
3: circuit_in_Hall_set_prop(Next𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑, 𝐿𝑒𝑛+ 1, 𝐻,Next )
4: else if 𝐿𝑒𝑛 < |𝐻| then
5: remove 𝐸𝑛𝑑 from Dom(Next𝑆𝑡𝑎𝑟𝑡)
6: suspend waiting for Next𝑆𝑡𝑎𝑟𝑡 to become ground

7: else
8: return 𝑡𝑟𝑢𝑒
9: end if

10: end function

5. Experimental Evaluation

In this section, we present the experiments conducted on the integration of the alldifferent and

circuit constraints, as previously introduced.

The experiments focus on evaluating the performance of three different constraint models:

alldiff_circuit, and two variants of the newly proposed constraint, namely hcc_nopath, and

hcc_path, for solving the Hamiltonian Cycle Problem. All algorithms are implemented in the ECL
𝑖
PS

𝑒

CLP language [11].

The three constraint models differ in their approach as follows:

• alldiff_circuit: this model uses the alldifferent and circuit constraints from the

ECL
𝑖
PS

𝑒
libraries. Specifically, the alldifferent implementation is the one inspired by the

algorithm proposed by Régin [2] and is provided by the ic_global library, while the implemen-

tation of the circuit constraint is from the ic library;

• hcc_nopath: this variant also applies the circuit constraint from the ic library but it im-

plements, in the alldifferent constraint from the ic_global library, the pruning strategy

introduced in the previous section;

• hcc_path: this model builds on hcc_nopath by adding path-based pruning within

the alldifferent constraint, specifically within Hall sets, as detailed in the

𝑐𝑖𝑟𝑐𝑢𝑖𝑡_𝑖𝑛_𝐻𝑎𝑙𝑙_𝑠𝑒𝑡_𝑝𝑟𝑜𝑝 function.

All tests were run on ECL
𝑖
PS

𝑒
v. 7.1beta, build #13, on AMD EPYC 9454 running at 2.75GHz, using

only one core and with 4GB of reserved memory. The ECL
𝑖
PS

𝑒
Constraint Programming System is

distributed as open-source software
1
.

We evaluated the effectiveness of the proposed constraints on two types of graph: uniform and

clustered. In uniform graphs, a fixed number of nodes, denoted as 𝑁 , and a connection probability 𝑝 are

specified. For each pair of distinct nodes, a directed edge is established between them with probability

𝑝, excluding self-loops, meaning no edge connects a node to itself. Clustered graphs, on the other hand,

are characterized by the number of clusters 𝐶 . Nodes are equally distributed among the clusters, with

each cluster consisting of 𝑁/𝐶 nodes. Within each cluster, nodes are interconnected by directed edges

with probability 𝑝. Additionally, each cluster is connected to two other clusters by exactly four directed

edges, two edges for each cluster, ensuring a cyclic structure.

The values used for 𝑁 ranged from 100 to 1000, in increments of 100, while for 𝑝, ranged from 0.05 to

0.95 in increments of 0.05. For each combination of these parameters, 20 random graphs were generated,

for a total of 3,800 uniform graphs. For the clustered graphs, we tested four different values of 𝐶: 5,

10, 20 and 30 that is added to the combinations of 𝑁 and 𝑝 of uniform graphs. In this way, the total

number of clustered graphs tested was 15,200.

Results for uniform graph are shown in Figure 2. The 𝑥-axis represents the probability threshold 𝑝,

which affects the graph’s density. The 𝑦-axis is divided into two metrics: the difference in the number

of solved instances relative to the reference algorithm alldiff_circuit (shown with bars - higher

1

https://eclipseclp.org/

https://eclipseclp.org/


is better), and the CPU time required for execution measured in seconds (shown with lines - lower is

better). Each point on the lines represents the geometric mean of the solving time of the instances

generated with that specific probability threshold.

The reference algorithm, alldiff_circuit, consistently performs with slightly lower execution

times compared to the two new variants hcc_nopath and hcc_path, across most of the probability

thresholds. The number of successfully solved instances also does not differ drastically among the

algorithms, though alldiff_circuit leads by a small margin. This performance difference may

be attributed to the absence of conditions under which the constraint propagation of hcc_nopath
and hcc_path can be effectively performed. This could be due to the structure of the uniform graphs

themselves, or the variable selection (the variable with the smallest domain size is selected first) and

value selection (values are tried in increasing order) strategies employed, which may not favor the

propagation conditions necessary for optimization.

This hypothesis is supported by the results obtained on the clustered graphs, presented in Figure 3. The

analysis was conducted in a manner consistent with that used for uniform graphs to ensure comparability.

As the probability threshold increases, both our variants achieve similar and significant reductions in

solving time, ranging from 20% to 28%, compared to the reference algorithm alldiff_circuit. This

decrease in solving time is accompanied by a higher number of solved instances, with a 5% increase

when 𝑝 = 0.95.

Among our two variants, no significant differences are observed in their solving times as both exhibit

comparable improvements with respect to alldiff_circuit. However, while both demonstrate

better performance, the hcc_nopath variant shows a slightly smaller increase in the number of solved

instances.

Finally, we examined the behavior of our algorithms as the number of clusters in the graph varied.

The results, shown in Figure 4, focus on instances with a probability 𝑝 > 0.5, given their relevance

assessed from previous analyses. The data shows a clear trend where fewer clusters result in a 26%

reduction in average solving time. However, as the number of clusters increases, approximating the

structure of a uniform graph, the effectiveness of our constraints decreases.
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Figure 2: Comparison of the performance of the reference algorithm alldiff_circuit and the two new
variants (hcc_nopath, and hcc_path) on uniform graphs, varying the connection probability 𝑝. The y-axis
includes two metrics: the number of additional solved instances compared to alldiff_circuit (bars, higher
is better) and the CPU time in seconds (lines, lower is better).
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Figure 3: Comparison of the performance of the reference algorithm alldiff_circuit and the two new
variants (hcc_nopath, and hcc_path) on clustered graphs, varying the connection probability 𝑝. The y-axis
includes two metrics: the number of additional solved instances compared to alldiff_circuit (bars, higher
is better) and the CPU time in seconds (lines, lower is better).
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Figure 4: Comparison of the performance of the reference algorithm alldiff_circuit and the two new
variants (hcc_nopath, and hcc_path) on clustered graphs, varying the number of clusters 𝐶 . The y-axis
includes two metrics: the number of additional solved instances compared to alldiff_circuit (bars, higher
is better) and the CPU time in seconds (lines, lower is better).

6. Conclusions

In this paper, we proposed a combination of the famous alldifferent and circuit constraints that

reuses the data structures used to propagate the alldifferent in order to obtain further pruning

for the circuit constraint. The negligible overhead makes it a viable combination to improve the

propagation.

Experimental results on the Hamiltonian Circuit Problem show that several instances are more



efficiently solved by the combination than by the two separate constraints; the speedup is more

significant in instances having a clustered structure.

In future work, we plan to investigate other types of integrations in routing problems; particularly

promising could be the integration with constraints tailored to improve the pruning of Euclidean

Travelling Salesperson problems [20, 21]. We also plan to extend the experimentation, compare with

other implementations of the two constraints considered in this research, and study how the search

strategy influences the effectiveness of the solution process.
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