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Abstract 
Land cover mapping is critical for monitoring global land use patterns, assessing ecosystem health, and 
supporting conservation efforts. However, challenges persist in handling large satellite imagery datasets 
and acquiring specialized aerial datasets for deep-learning models. To address these challenges, this study 
introduces a methodology for semantic segmentation of land cover in agricultural regions, specifically 
tailored to the wine-growing region of Franciacorta, Italy. We present the "Land Cover Aerial Imagery" 
(LICAID) dataset and employ the advanced deep learning model DeepLabV3 with various pre-trained 
backbones (ResNet, DenseNet, and EfficientNet) for comparative analysis. The dataset comprises eleven 
land cover classes: grasslands, arable land, herb-dominated habitats, hedgerows, vineyards, tree-dominated 
man-made habitats, olive groves, wetlands, lines of planted trees, small anthropogenic forests, and others. 
Results demonstrate significant performance improvements in land cover classification using deep learning 
with pre-trained networks, providing a scalable and cost-effective approach to land cover mapping that 
supports environmental monitoring and conservation. 
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1. Introduction 

Accurate and timely land cover mapping is essential for understanding the complex interactions 
of land use patterns and their profound impact on global ecosystems [2]. This is particularly 
important in agricultural regions, where land management practices directly influence biodiversity, 
ecosystem services, and the overall sustainability of food production systems [3, 4, 5, 6, 7]. Inaccurate 
or outdated land cover data can have widespread impacts, affecting policy decisions related to 
resource allocation, environmental protection, and agricultural planning. Effective land management 
strategies rely on accurate land cover assessments to maximize resource utilization, minimize 
environmental risks, and promote sustainable agricultural practices. For example, accurate 
identification of various crop types enables targeted interventions to improve yields and reduce the 
need for chemical inputs. Similarly, accurate mapping of natural habitats within agricultural 
landscapes is crucial for biodiversity conservation and the maintenance of ecosystem services such 
as pollination and pest control. 

Traditional land cover classification methods, such as support vector machines and random 
forests [8, 9, 10, 11, 12, 13], often struggle to effectively process the high-resolution images readily 
available from modern remote sensing platforms. These methods face challenges in handling the 
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large datasets generated by modern sensors, leading to computational limitations and increased 
processing times [14, 15, 16, 17]. Furthermore, the inherent complexity of agricultural landscapes 
characterized by significant spatial diversity and subtle spectral variations between land types often 
compromises the accuracy and reliability of traditional classification approaches. The limitations are 
particularly evident in areas with complex land use patterns and overlapping spectral signatures, 
resulting in misclassifications and inaccurate maps. This highlights the need for more advanced 
technologies capable of efficiently processing high-resolution images and large-scale datasets while 
maintaining high accuracy. 

Recent advances in deep learning offer significant potential for improving the accuracy and 
efficiency of land cover mapping [18, 19, 20, 21, 22, 27, 30]. However, a major bottleneck remains: 
the scarcity of readily available, high-quality, and cost-effective datasets tailored to specific 
agricultural contexts [23, 24, 25, 31, 32, 33]. The development of robust and accurate deep learning 
models for land cover classification relies heavily on large, well-annotated datasets that accurately 
reflect the diversity and complexity of the target environment. The high costs and time investment 
associated with creating such datasets often hinder research and limit the widespread adoption of 
deep learning in agricultural applications. This data shortage has impeded progress in accurate 
agricultural practices and sustainable land management, underscoring the urgent need for a readily 
accessible and representative dataset. 

This paper presents an approach to address the problem of data scarcity in land cover 
classification. We introduce a new semantic segmentation dataset, Land Cover Aerial Imagery 
(LICAID), specifically designed for the wine-growing region. LICAID includes eleven land cover 
classes representing the diverse landscapes surrounding vineyards: pastures, arable land, herb-
dominated habitats, hedgerows, vineyards, tree-dominated man-made habitats, olive groves, 
wetlands, planted trees, small anthropogenic forests, and other. This detailed classification allows 
for a more precise understanding of the complex interactions within the vineyard ecosystem and its 
surrounding environment. 

Our methodology focuses on cost-effective data acquisition and processing, making it a replicable 
approach for other agricultural regions. We evaluate the performance of the state-of-the-art deep 
learning model DeepLabV3, utilizing ResNet, DenseNet, and EfficientNet backbones, on the LICAID 
dataset. This comparative analysis demonstrates the potential of our approach to enhance the 
accuracy and efficiency of land cover mapping in agricultural settings, ultimately supporting 
sustainable land management and environmental monitoring efforts.  

2. Materials and Methods 

This study uses the deeplabV3 model to use four-step semantic segmentation methods in the wine 
region of Franciacorta wine region. The process includes remote sensing data collection, rigorous 
image preprocessing, expert validation, training and evaluation of DeepLabV3 models. The focus on 
DeepLabV3 allows for a deeper exploration of its implementation and optimization in this specific 
application context [34]. 

2.1. Study Area  

The study focuses on the famous Italian wine-growing region of Franciacorta in Lombardy 
(Figure 1). Located in the picturesque province of Brescia, Franciacorta is renowned for its stunning 
landscapes, rich history, and world-class wine production. 



 

Figure 1. Geographical context of the Franciacorta study area in the Lombardy region of Italy. Left: 
Overview shows the position of the map of the Lombardy region in Italy. Right: Close-up view 
showing the detailed perspective of the Franciacorta research area.  

2.2. Image Preprocessing, Segmentation, and Expert Validation 

Satellite imagery for the study was acquired through Google Earth Pro, which provided high-
resolution imagery of the area. The images were downloaded in .kmz format, which includes both 
the visual data and spatial attributes, forming the foundation for further analysis. Following 
acquisition, ArcGIS was used for georeferencing each image to ensure alignment with the 
geographical coordinates of the region, enabling precise spatial analyses. The study area's 
heterogeneous landscape posed a challenge for segmentation, as different cover types required fine-
tuned segmentation techniques. 

1. Image Tile Segmentation 
Multiresolution segmentation (MRS) was performed on the georeferenced images using 
eCognition software. This approach divides the imagery into smaller, homogeneous 
regions based on spectral and spatial characteristics, optimizing the image for more 
accurate classification. Key segmentation parameters included: 

• Scale parameter (100): Balances segment size to reflect distinct regions in the 
landscape. 

• Compactness (0.5): Adjusts the segment shape for clarity without excessive 
fragmentation. 

• Shape (0.4): Ensures the segments preserve geographic coherence while isolating 
major landscape features. 

2. Expert Validation and Classification 
The segmented images were subsequently validated and classified by a plant expert using 
QGIS software. Each polygon within the shapefile was analyzed and assigned one of 
several classes, such as grasslands, vineyards, arboreal land, and olive groves. This 
validation ensured that each segment's classification was botanically accurate, allowing for 
reliable LULC representation. 

 
The expert identified eleven cover types essential to Franciacorta’s biodiversity and agricultural 
ecosystem: 

1. Grassland: Supports biodiversity through pollination and pest control [3]. 
2. Arable Land: Cultivated land used for crop production. 
3. Herb-Dominated Habitats: Supports herbivores, pollinators, and decomposers, contributing 

to soil health. 



4. Hedgerows: Enhance ecosystem connectivity and provide habitat for wildlife. 
5. Vineyards: The primary land cover type, supporting specialized flora and fauna. 
6. Tree-Dominated Man-Made Habitats: Provide habitat in human-modified landscapes. 
7. Olive Groves (Olea europaea): Support specialized flora and fauna in Mediterranean 

environments. 
8. Wetlands: Areas characterized by saturated soil conditions. 
9. Lines of Planted Trees: Linear plantings used for windbreaks, etc. 
10. Small Anthropogenic Forests: Small, human-planted forest patches. 
11. Other: A residual class for miscellaneous land cover types. 
 
3. Patch Extraction and Dataset Preparation 

Given the size of the original image pixels, preprocessing is required to optimize deep-
learning model training. A Python script was developed to divide large images into smaller, 
manageable regions while maintaining spatial coherence between each region and its 
corresponding class labels. As illustrated in Figure 2, semantic segmentation was performed 
in three steps: 1) Images and corresponding masks were acquired from QGIS software; 2) 
Large training images and masks were divided into 128x128 pixel segments for training the 
DeepLabv3 semantic segmentation model; and 3) The trained DeepLabv3 model (saved for 
future use) was then used to predict and map the image. 

 

 

Figure 2. Illustration of the general flow of semantic segmentation images. 

2.3. Image and Mask Processing 

A Python script processed the image and mask files (Figure 3), resizing them to the nearest 
dimension divisible by the chosen patch size. This ensured the creation of non-overlapping patches 
using the patchy library, resulting in 921 training image-mask pairs and 230 validation image-mask 
pairs. This preprocessing step was crucial for efficient model training and prevented artifacts that 
could arise from overlapping patches. 

The non-overlapping patch strategy, facilitated by the patchy library, provided a clean and 
consistent dataset for training the DeepLabv3 model. The resulting datasets 921 training and 230 
validation image-mask pairs were balanced and suitable for effective model training and subsequent 
performance evaluation. This careful dataset preparation was a key factor in achieving the high 
accuracy reported in the results. 

 



 

 
Figure 3. Illustration of four randomly selected image patches (A, B, C, D) of size 128x128 pixels, 
extracted from the original images along with their corresponding ground truth masks. These 
patches are used to train and evaluate a deep-learning model. 

2.4. Data Split and Organization 

Using TensorFlow’s split folders library, the patches were split into training and validation 
datasets with an 80-20 split ratio. These splits facilitated model training and performance evaluation, 
allowing for robust testing across both seen and unseen data. 

2.5. Semantic Segmentation Models and Backbone Architecture 

The DeepLabv3 model was implemented using TensorFlow/Keras. The training involved 
minimizing loss functions (measuring the difference between predicted and ground truth masks) and 
evaluating performance using IoU (Intersection over Union), accuracy, and mean IoU. We compared 
semantic segmentation models with and without backbone architectures. The "no backbone" 
approach trained DeepLabv3 from scratch, relying solely on its intrinsic architecture for feature 
extraction. This contrasts with models incorporating four commonly used backbone architectures: 
ResNet-34 [35], a deep convolutional network with residual connections to mitigate vanishing 
gradients; InceptionV3 [36], a computationally efficient architecture using inception modules for 
multi-scale feature extraction; EfficientNet [37], distinguished by its compound scaling method for 
optimal resource utilization; and DenseNet [38], characterized by dense connections promoting 
feature reuse and efficient gradient propagation. 

 DeepLabV3[34] is an advanced convolutionary neural network architecture designed for 
semantic image segmentation. It uses the atrous convolution to efficiently capture multi-scale 
context information. The key features include the feature pyramid network for hierarchical feature 
extraction, the spatial pyramid pool for a multi-scale feature aggregation, and the efficient higher-



level sampling method for high-resolution segmentation maps. Our DeepLabV3+ model, shown in 
Figure 4, uses the Effi-cientNetB0 framework for feature extraction without fully connected layers 
as an encoder. The encoder processes the input image, extracts the functions, and transmits them to 
the decoder. The decoder consists of an Atrous Spatial Pyramid Pooling (ASPP) module followed by 
global average pooling and low-level function concatenation. The ASPP module captures multi-scale 
context information by using a convolutional layer with different dispersion rates. In addition, global 
average pooling is performed to capture global context information. Then the decoder combines 
ASPP output, global context, and low-level functionality through concatenation. Further 
convolutional layers refine the characteristics and then increase the sampling layers to restore spatial 
information. Finally, the 1x1 convolutional layer activated by SoftMax generates pixel predictions 
for semantic segmentation. The model was composed by Adam's optimizer, using categorical cross-
entropy losses and accuracy as measures of evaluation.  

 

Figure 4. Block diagram of DeeplabV3 with backbone CNN as the encoder and decoder. 

3. Results and Discussion 

Our DeeplabV3 semantic segmentation model was trained on a dataset comprising 1152 image 
patches. These patches were derived from 15 satellite images by dividing them into smaller 128x128 
pixel sections. To ensure rigorous evaluation, the dataset was divided into a training set (80%), and a 
test set (20%). 

The training process began by loading and preprocessing the image-mask pairs from specified 
directories. Each image was annotated with one of eleven land cover classes, and the corresponding 
masks underwent label encoding before being split into training and testing datasets (80/20 split). 
The DeepLabv3 model was then configured, experimenting with four different backbone 
architectures (DenseNet121, ResNet34, InceptionV3, and EfficientNet) and employing a combined 
Dice and Categorical Focal loss function for optimization. Training proceeded for 100 epochs, with 
progress visualized through plots of training loss and Intersection over Union (IoU) scores. Upon 
completion, the trained model was saved. 

Following training, the model's performance was rigorously evaluated on the held-out test 
dataset. A comprehensive suite of performance metrics, including accuracy, precision, recall, F1-
score, Jaccard index, and mean IoU, were calculated and reported to provide a thorough assessment 
of the model's ability to accurately segment the eleven land cover classes. These results provided a 
quantitative measure of the model's effectiveness and informed the subsequent analysis and 
discussion. 

Our methodology proves to be both scalable and cost-effective, with potential applications in 
other agricultural regions. The comparative analysis highlights the importance of model selection 
and backbone configuration in optimizing performance for specific land cover mapping tasks. 



To address the class imbalance problem, where certain land cover classes were significantly 
under-represented in the dataset compared to others, a class-balanced data augmentation strategy 
was implemented. This involved selectively enhancing the training data by generating new image 
patches that focused specifically on the under-represented classes. 

This augmentation technique modified existing masks to temporarily exclude the over-
represented classes, effectively creating new masks where the under-represented classes became the 
dominant features. New image patches were then generated from these modified masks, increasing 
the number of training samples for the under-represented classes without altering the original 
dataset. This targeted approach ensured that the model received sufficient training examples for all 
classes, improving its ability to accurately segment even the less frequent land cover types. 

 In order to reduce over-fitting, we implemented an early stop. Training stopped when validation 
losses stopped declining for a certain period (e.g., 10 years), so that training continued only when 
the model improved its performance in invisible data. In addition, batch normalization has been used 
to stabilize and accelerate training, and loss-function class weight has helped to control class 
imbalances. These strategies collectively contributed to preventing over-adaptation and improving 
the generalization capacity of models.  

The comparison of semantic segmentation models with different backbone architectures reveals 
nuanced differences in performance metrics (Table 1). Across all models, including ResNet34, 
EfficientNet, InceptionV3, DenseNet, and a model without a specified backbone, there is a notable 
consistency in accuracy, precision, recall, and F1 score, with variations typically within a range of 1-
2 percentage points. However, when assessing metrics more tailored to semantic segmentation tasks, 
such as mean IOU and Jaccard score, subtle disparities emerge. EfficientNet and DenseNet exhibit 
slightly higher mean IOU and Jaccard scores compared to ResNet34 and InceptionV3, highlighting 
their marginally superior ability to accurately segment objects in images. For instance, EfficientNet 
achieves an accuracy of 85.6%, while DenseNet reaches 84.2%, both with corresponding mean IOU 
scores of 59.0% and 56.2%, respectively. These results underscore the importance of selecting an 
appropriate backbone architecture, as models with dedicated architectures designed for image 
segmentation tasks demonstrate enhanced performance, particularly in terms of mean IOU and 
Jaccard score, compared to models without a specified backbone. 

Table 1 
Performance Metrics of DeepLabV3 Semantic Segmentation Models with Different Backbone 
Architectures and without. 

Backbone Accuracy Precision Recall F1 Score Mean IOU Jaccard 
Score 

ResNet  79.0 78.8 78.3 71.1 49.5 62.1 
EfficientNet 

B0 
85.61 85.48 85.5 85.28 59.0 75.68 

Inception V3 80.6 80.1 80.4 80.5 55.2 69.4 
DenseNet 84.2 84.7 84.1 84.2 56.2 70.2 
Without 

Backbone 
75.0 75.9 75.8 75.5 49.9 63.2 

Accuracy: This metric measures the overall correctness of the segmentation by 
calculating the ratio of correctly predicted pixels to the total number of pixels. 
Precision: Precision quantifies the model's ability to correctly identify positive 
predictions among all predicted positives. It's calculated as the ratio of true positives 
to the sum of true positives and false positives. 
Recall: Recall, also known as sensitivity, measures the ability of the model to detect 
all relevant instances of the class in the image. It's calculated as the ratio of true 
positives to the sum of true positives and false negatives. 



F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a 
balanced measure between precision and recall and is calculated as 2 * (precision * 
recall) / (precision + recall). 
Mean IoU: Mean IoU calculates the average IoU across all classes. It's a popular 
metric for semantic segmentation tasks as it provides an overall measure of 
segmentation accuracy across different classes. 
Jaccard Score (IoU): The Jaccard score, or Intersection over Union (IoU), measures 
the ratio of the intersection of the predicted and ground truth segmentation masks to 
their union. It evaluates the overlap between the predicted and ground truth regions. 
 

Following the training phase, the optimized DeepLabv3 model was loaded for evaluation. A batch 
of test images and their corresponding ground truth masks were generated using the previously 
prepared validation data generator. This ensured that the model's performance was assessed on 
unseen data, providing a more robust and unbiased evaluation of its generalization capabilities. The 
loaded model then processed this batch of test images, generating predictions in the form of predicted 
segmentation masks. These predicted masks, initially represented in a categorical format, were 
subsequently converted to an integer format for easier visualization and compatibility with the 
Intersection over Union (IoU) calculation. This conversion simplifies the comparison between the 
predicted and ground truth masks, facilitating both qualitative and quantitative analysis of the 
model's performance. 

To provide a qualitative assessment of the model's performance, a randomly selected test image 
was chosen for visualization alongside its corresponding ground truth mask and the model's 
predicted mask. This visual comparison, presented in Figure 5, allowed for a direct assessment of the 
model's ability to accurately segment the different land cover classes. The visual representation 
provides valuable insights into the model's strengths and weaknesses, highlighting areas where the 
model performed exceptionally well and areas where further improvement might be needed. This 
qualitative assessment complements the quantitative evaluation provided by the calculated 
performance metrics, offering a more comprehensive understanding of the model's overall 
performance. Visual comparison helps to identify potential biases or limitations in the model’s 
predictions, informing future model improvements and dataset refinements. The selection of a 
random image ensures that the visualization is representative of the model's performance across the 
entire test dataset, avoiding potential bias towards specific image characteristics. 



 

 
Figure 5. Visualization of a randomly selected test image, ground truth mask, and predicted mask. 
The figure illustrates the qualitative assessment of the model's performance, comparing the original 
test image to its corresponding ground truth and predicted masks. The legend describes the color 
representing each class. 

After training, the optimized DeepLabv3 model was loaded to process a significantly larger image 
than those used during training and validation. Because the model was trained on smaller image 
patches, this large image was first segmented into a series of overlapping patches of the same size as 
those used during training. This tiling strategy ensured compatibility with the model's input 
requirements. The model then processed each patch individually, generating a predicted 
segmentation mask for each. A crucial step followed: these individual, patch-level predictions were 
carefully stitched together using an appropriate image stitching algorithm to reconstruct a complete, 
seamless predicted mask for the entire large input image. This process effectively scaled the model's 
application to images exceeding the size constraints of the training data, allowing for the analysis of 
larger scenes and demonstrating the model's ability to generalize to larger-scale applications (as 
shown in Figure 6). The overlapping patches helped to mitigate boundary artifacts that can 
sometimes occur during this stitching process, ensuring a more coherent and accurate final 
segmentation mask. 

 



 

 

 
Figure 6.  Illustrates the original image, ground truth mask, and the final segmented image mask 
obtained by applying a trained model. The model segments the large image into patches for 
processing, generates predictions for each patch, and seamlessly stitches together the resulting 
segmented patches to reconstruct the predicted mask for the entire large image. The legend describes 
the color representation of each class.  

This study demonstrates land cover mapping in agricultural areas using semantic segmentation 
with the DeepLabv3 deep learning model and transfer learning. A new dataset of eleven agricultural 
land cover classes was created, addressing a critical gap in existing research. This dataset facilitates 
the development of mapping methods for the main land cover classes in Italy's Franciacorta region 
and provides a valuable resource for future research on biodiversity and sustainability. The study 
overcomes limitations of traditional methods that struggle with spectral similarities and class 
heterogeneity. Results show superior performance for DeepLabv3 with an EfficientNetB0 backbone, 
achieving significantly higher accuracy (0.866) and improved performance across other key metrics. 
DeepLabv3's advanced architecture, including atrous spatial pyramid pooling (ASPP), facilitates 
multi-scale context integration for improved detail capture. EfficientNetB0's efficient compound 
scaling method optimizes the balance between model complexity and accuracy. Future work should 
include expanding the dataset to incorporate more land cover classes and integrating ground truth 
data from field observations to further improve accuracy and reliability, particularly in complex 
agricultural landscapes. 

 
 

4. Conclusion 

This study successfully demonstrates the application of satellite imagery and deep learning, 
specifically the DeepLabv3 model, for accurate land cover mapping in the Franciacorta wine-growing 
area. A novel manually annotated dataset comprising eleven land cover classes provides a valuable 



resource for agricultural research and future studies. Our results highlight the effectiveness of 
DeepLabv3 in accurately segmenting these classes from satellite imagery, showcasing the potential 
of this advanced method for sustainable land management, environmental monitoring, and informed 
agricultural decision-making. The analysis of diverse land cover types emphasizes the importance of 
understanding the contribution of surrounding habitats to vineyard sustainability, biodiversity, and 
ecosystem services. Future work should focus on enhancing the generalizability of the findings 
through dataset expansion (potentially including additional land cover classes and ground-truth data 
from field surveys) and exploration of more advanced deep learning architectures to further refine 
model performance and broaden applicability across diverse agricultural landscapes. 

This study successfully demonstrates the application of deep learning, using the DeepLabv3 
model, for accurate land cover mapping in the Franciacorta wine-growing region of Italy. Leveraging 
high-resolution satellite imagery, the study produced detailed land cover maps, providing valuable 
insights into the spatial distribution of eleven distinct land cover classes within this complex 
agricultural landscape. The creation of a novel, manually annotated dataset represents a significant 
contribution, offering a valuable resource for future research in agricultural applications and 
precision land management. 

The results clearly show the effectiveness of DeepLabv3 in accurately segmenting these diverse 
land cover classes from satellite imagery. This success highlights the potential of advanced deep 
learning techniques for improving the accuracy and efficiency of land cover mapping, thereby 
supporting sustainable land management practices, environmental monitoring initiatives, and 
evidence-based agricultural decision-making. The detailed analysis of the various land cover types 
underscores the importance of understanding the intricate relationships between vineyard 
ecosystems and their surrounding habitats, emphasizing the contribution of these surrounding areas 
to overall vineyard sustainability, biodiversity, and the provision of essential ecosystem services. 

Future research should focus on enhancing the generalizability and robustness of the findings. 
This can be achieved through expanding the dataset to include a wider range of land cover classes, 
incorporating ground-truth data collected through field surveys to further validate the model's 
accuracy, and exploring more advanced deep learning architectures or model optimization 
techniques to improve performance and broaden applicability across diverse agricultural settings. 
These enhancements will strengthen the model's capability for wider application and contribute to 
more comprehensive and reliable land cover mapping in various agricultural contexts. 
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