
Strategic Reasoning for BitML Smart Contracts

Luigi Bellomarini, Marco Favorito and Giuseppe Galano

Bank of Italy

Abstract

In this paper, we study the problem of Atl* model checking for Bitcoin smart contracts when formalized in the
BitML high-level formal language. Starting from a BitML contract specification, we show how to construct a
concurrent game structure (CGS) that captures its semantics. For a significant subset of BitML, we show that,
while we adopt imperfect information and perfect recall semantics, we can retain decidability by reducing our
problem to model checking on a CGS with only public actions, which is known to be decidable even in this
general setting. We validate our framework through practical applications, including the verification of contract
liquidity properties and the strategic analysis of key smart contracts.

Keywords

Bitcoin Smart Contracts, Strategic Reasoning, Liquidity Analysis, Multi-Agent Systems

1. Introduction

Distributed Ledger Technologies (DLT) such as Bitcoin [2] and Ethereum [3] enabled the idea of smart

contracts, i.e. agreements between untrusted parties that can be automatically enforced without a trusted
intermediary [4, 5]. The consensus protocol underlying a DLT ensures that, under certain working
assumptions, all network participants agree on the public record of state updates (i.e. transactions) and
that the execution of the smart contracts is compliant with the contract rules. In this way, the state
of each contract is uniquely determined by the sequence of its transactions on the public ledger. In
many DLT platforms, transactions are sorted in a data structure called blockchain: an append-only,
timestamped, tamper-resistant, and cryptographically secure chain of transaction blocks. The form of
smart contracts varies depending on the DLT platform on which they are built. In Bitcoin, the stack-
based and loop-free (hence not Turing-complete) Script language [6] allows to specify, for each unspent
transaction, the conditions under which they can be spent, e.g., provide a signature by a certain public
key. Despite the limited expressiveness of Script, the integration of on-chain and off-chain interactions,
usually in the form of cryptographic protocols, makes Bitcoin able to support a variety of interesting
smart contracts [7, 8], such as lotteries [9, 10, 11, 12, 13], gambling games [14], micro-payment channels
[15, 16, 17], contingent payments [18, 16], and fair multi-party computations [19, 20].

Smart contracts, like traditional programs or protocols, are not immune to security issues. Attackers
may exploit vulnerabilities in implementing contracts or publish contracts with hidden vulnerabilities to
control their behavior in ways not expected by users. For example, several vulnerabilities in Ethereum
smart contracts have caused the theft or the freezing of Ether or other digital assets worth millions
of USD at the time: the famous attacks on The DAO [21], the Parity Multisig Wallet [22, 23, 24], the
King of the Ether Throne smart contract [25] are only few notorious examples. Another important
source of problems comes from coding errors or design issues that affect the behaviour of the contract
at the interaction level: the participants might not be incentivized to behave honestly because they
can exploit an unfair advantage with dishonest behaviour [26, 27, 28, 29]. For example, a naive design
of a rock-paper-scissors game [30] allows playing sequentially rather than concurrently and gives an

AI4CC-IPS-RCRA-SPIRIT 2024: International Workshop on Artificial Intelligence for Climate Change, Italian Workshop on Planning

and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving problems with combinatorial explosion,

and SPIRIT Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy. November 25-28th, 2024, Bolzano, Italy [1].

All views are those of the authors and do not necessarily reflect the position of Bank of Italy.
$ luigi.bellomarini@bancaditalia.it (L. Bellomarini); marco.favorito@bancaditalia.it (M. Favorito);
giuseppe.galano2@bancaditalia.it (G. Galano)
� 0000-0001-6863-0162 (L. Bellomarini); 0000-0001-9566-3576 (M. Favorito); 0009-0008-3251-6606 (G. Galano)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:luigi.bellomarini@bancaditalia.it
mailto:marco.favorito@bancaditalia.it
mailto:giuseppe.galano2@bancaditalia.it
https://orcid.org/0000-0001-6863-0162
https://orcid.org/0000-0001-9566-3576
https://orcid.org/0009-0008-3251-6606
https://creativecommons.org/licenses/by/4.0/deed.en


advantage to the second player who can see the opponent’s move. The DAO attack is an example where
a coding bug incentivized dishonest behavior. See [31, 32, 33, 34, 35, 36, 37] for surveys on the matter.

To overcome the mentioned security issues, the industry and the research community have put a lot
of effort into developing techniques for formally specifying and verifying smart contract correctness. A
plethora of different model formalisms, specification languages, and verification techniques studied for
traditional programs have been applied or adapted in the context of smart contracts [38, 32, 39, 40, 41].
Regarding formal verification, one of the main used technique is model checking, a well-established
formal method that automatically checks for system correctness [42, 43, 44, 45]. In this framework, we
represent the system into a formal model, typically a state-transition graph such as Kripke structures

[46] or labelled transition systems (LTS) [47], specify the property using temporal logics such as Ltl
[48], Ctl [42], or Ctl* [49], and check formally that the model satisfies the temporal logic specification.

However, in model checking, the system is assumed to be closed, i.e., a system whose behavior is
completely determined by its state. In contrast, an open system interacts with multiple participants,
and its behaviour depends on this interaction [50, 51]. In fact, most techniques for formally verifying
smart contracts treat them as closed systems, disregarding the interaction aspect [52], but a smart
contract that does not accept inputs from its participants is not realistic nor interesting. A common
workaround is to fix the users’ behavior in advance to make the system closed, enabling the use of
model checking. While this approach is enough for the verification of interesting properties, e.g. the
(strategyless) liquidity property [53, 54], it has the major downside of potentially missing adversary
strategies that could exploit security vulnerabilities. Adopting module checking [51, 55] as a verification
framework for open systems would help, but at the cost of only considering two-player games between
the participants’ coalition and the environment, hence limiting the expressiveness of the model and what
can be reasoned about. For example, we cannot reason about strategic abilities of smart contract users,
e.g. which outcome can be enforced or prevented by a single participant or a coalition of participants.

In this paper, we put forward the idea of modeling the interaction between a smart contract and its
participants as a game between agents in a multi-agent system [56, 57]. In particular, starting from a
Bitcoin smart contract, formalized in the high-level modelling language BitML [58], we define a BitML

game as a concurrent game structure with imperfect information (iCGS) [59] that follows the BitML
semantics, in the sense that there is a tight correspondence between the runs in the two formalisms.
Then, for a relevant subset of BitML contracts, we study the problem of model checking alternating-time

temporal logic (Atl*) [59] specifications over BitML games. Atl* is a logic formalism that allows
reasoning about agents’ strategies within a multi-agent system, by introducing path quantifiers to
range over those paths that a team of agents can force the system into. Here, we adopt the setting
of imperfect information, which is needed to model secret commitments, and perfect recall. While in
general this setting leads to undecidability of the Atl* model checking problem [60], we show how our
game structure from BitML contracts can be cast into a iCGS with only public action [61], for which
our problem remains decidable. Finally, we show that several strategic properties of interest can be
captured by Atl* specifications on BitML games, e.g. liquidity [54].

The rest of the paper is structured as follows: Section 2 reviews previous works related to ours;
Section 3 introduces the BitML formalism; Section 4 describes our translation from BitML specification
to a CGS; Section 5 defines our model checking problem and proves decidability; Section 6 discusses
use cases, such as general patterns of liquidity analysis and Atl* model checking with concrete BitML
smart contracts; and Section 7 concludes the paper and discusses future works.

2. Related Works

One of the first works that used some form of strategic reasoning in the context of smart contracts
was presented in [26], where the authors combined probabilistic model checking and game theory to
analyze a specific protocol that also involve players (human users) with different/competing gaming
strategies. They used game theory to analyze the protocol’s players’ behaviour, and then the resulting
strategies were modelled in a probabilistic system for automated validation. TypeCoin [62] is a high-



level language for Bitcoin smart contracts that allows the modeling of the updates of a state machine as
affine logic propositions. Users can “run” this machine by putting transactions on the blockchain, with
the guarantee that only the legit updates can be performed. A downside is that liveness is guaranteed
only by assuming cooperative participants, i.e. a dishonest participant can make the others unable to
complete an execution, hence they study only a specific type of user strategies. Chatterjee et al. [27]
defined a simplified language for loop-free smart contracts, with a compiler to Solidity. Then, they
provided an automatic translation into concurrent game structures and analyzed these games employing
interval abstraction demonstrated to be sound. The technique is very powerful and of practical relevance,
considering that models of concurrent games are very large. The main difference is that they focus on
two-player games with quantitative objectives, while Atl* can model more general temporal properties,
including some quantitative property (e.g. constraints on deposits), nested games, and reason about
strategic abilities of coalitions. Moreover, their framework is suited for Ethereum-like platforms, but not
easily adaptable for Bitcoin smart contracts. Tsankov et al. [53] study a property called liquidity, which
holds when the contract always admits a trace where its balance is decreased (so, the funds stored within
the contract do not remain frozen). A major limitation is that their approach considers only cooperating
adversaries, and do not handle more complex strategic reasoning. Bartoletti and Zunino [54] study
the liquidity property for BitML smart contracts in an adversarial setting, including the verification
of general Ltl properties. To do so, their tool [63] relies on the Maude model checker [64, 65]. Their
approach allows one checking whether the smart contract satisfies the liquidity property regardless
of the participants’ behaviors or if certain user strategies are fixed beforehand. While being a very
useful tool, it is not able to handle branching time properties, coalitions of agents, or complex strategic
interactions as one could do in Atl*. The behavior of contract users can also be partially defined in a
Turing-complete process calculus scl proposed by Laneve et al. [28]. scl models behaviors of a smart
contract and a user as a parallel composition, where a user acts nondeterministically, while the behavior
of a smart contract is determined by its execution logic. The scl models are, in fact, transition systems
that are summarized by a first-order logic formula describing the values of the objective function for all
possible runs and user strategies. Then, the game-theoretical analysis is performed to identify strategies
that help users maximize their profits or minimize losses. There are a few differences with our work: (i)

we use a sequential model rather than process algebra but still model the interleaving between the users;
(ii) their work considers only rational strategies, while we also aim to find the outcomes of strategies
in the general cases of non-cooperative or dishonest (possibly non-rational) behavior; and (iii) they
only consider quantitative objectives, while we also study the case with temporal qualitative objectives.
van der Meyden [29] investigated the specification and verification of an atomic swap smart contract
and argued that logics with the ability to express properties of players’ strategies in a multi-agent setting,
such as Atl, are conceptually useful for this purpose. The MCK model checker was used to establish
the correctness and fairness of a contract under the specified user behaviors. However, this approach
suffers from the issue of having to fix the user strategy to verify certain properties without letting the
system automatically figure out the possible strategies. Madl et al. [66] capture the interaction between
the users of a marketplace contract by describing their behaviors as interface automata. The authors
verify the composition of the automata in a model checker to ensure that participants can successfully
cooperate, but once again, the strategies of the participants are fixed in advance. Nam and Kil [67]
propose a technique to translate an Ethereum smart contract written in a subset of the Solidity language
into an input file for the MCMAS tool [68] and then use the tool to verify certain Atl specifications.
However, their framework does not handle imperfect information, and only focus on two-player games.

3. Overview of BitML

In this section we briefly overview BitML [58, 69]. We assume a set of participants 𝒫 , ranged over by
A,B, . . . , and a set of names of two kinds: 𝑥, 𝑦, . . . denote deposits 𝒟 of B, while 𝑎, 𝑏, . . . denote secrets

𝒮 . We also use 𝑣, 𝑣′, 𝑤 to range over non-negative rational values. We write 𝑥⃗ (resp. 𝑎⃗) for a finite
sequence of deposit (resp. secrets) names. We denote with 𝒮A ⊆ 𝒮 the set of secret names usable by A,



requiring that 𝒮A ∩𝒮B = ∅ if A ̸= B. To facilitate strategic reasoning, we restrict the original semantics
by removing contract advertisement rules, deposit rules, and authorizations of deposit operations.

Syntax. BitML is a domain-specific language and a calculus for Bitcoin smart contracts, which allows
participants to exchange cryptocurrency according to pre-agreed contract rules. A BitML contract
specification, denoted with {G}C , is made of two components: a contract C , that specifies the rules to
transfer bitcoins (B), and contract preconditions G , that is a set of preconditions to its execution. In the
following, we will use the formalization proposed in [54].

Contract preconditions have the following syntax (the deposits 𝑥 in a contract precondition G must
be distinct): G ::= A:! 𝑣 @𝑥 | A:? 𝑣 @𝑥 | A:secret 𝑎. A contract precondition G may require
participants to deposit some B in the contract (either upfront or at runtime) or to commit to some secret.
More in detail, A:! 𝑣 @𝑥 requires A to own 𝑣B in a persistent deposit (or !-deposits) 𝑥, and to spend it
for stipulating a contract C . Instead, A:? 𝑣 @𝑥 only requires A to pre-authorize the spending of the
volatile deposit (or ?-deposits) 𝑥, which can be gathered by the contract at run-time. The precondition
A:secret 𝑎 requires A to commit to a secret 𝑎 before C starts. After stipulation, A can choose whether
to disclose the secret 𝑎, assuming the published commitment was not fake.

C ::=
∑︁
𝑖∈𝐼

Di contract

D ::= guarded contract

| withdraw A transfer balance to A

| split ‖𝑖 (𝑤𝑖 → Ci) split the balance

| A :D wait for A’s authorization

| after 𝑡:D wait until time 𝑡

| put 𝑥⃗ & reveal 𝑎⃗ if 𝑝.C collect deposits/secrets

𝑝 ::= predicate

true truth

| 𝑝 ∧ 𝑝 conjunction

| ¬𝑝 negation

| 𝐸 ∘ 𝐸 (∘ ∈ {=, <})
𝐸 ::= expression

𝑁 constant

| 𝑎 secret

| 𝐸 ∘ 𝐸 (∘ ∈ {+,−})

Figure 1: Syntax of BitML contracts and preconditions.

Contracts are terms with the syntax
in Figure 1, where: (i) the sum

∑︀
𝑖∈𝐼 Di

is over a finite set of indices 𝐼 ; (ii) the
names 𝑎⃗ in put 𝑥⃗ & reveal 𝑎⃗ if 𝑝
are distinct, and they include those in
𝑝. We denote the empty sum with 0.
The order of decorations is immaterial,
e.g., after 𝑡:A :B :D is equivalent
to B :A : after 𝑡:D . Intuitively, a
contract C is a choice among zero or
more branches. Each branch is a guarded contract, which enables an action and possibly proceeds
with a continuation C ′. The guarded contract withdraw A transfers the whole balance to A, while
split ‖𝑖 (𝑤𝑖 → Ci) decomposes the contract into 𝑛 parallel components Ci , each with balance 𝑤𝑖.
The guarded contract put 𝑥⃗ & reveal 𝑎⃗ if 𝑝 atomically performs the following: (i) spend all the
?-deposits 𝑥⃗, adding their values to the contract balance; (ii) check that all the secrets 𝑎⃗ have been
revealed and satisfy the predicate 𝑝. When enabled, anyone can fire the above-mentioned actions at any
time. To restrict who can execute actions and when, one can use the decoration A :D , which requires
the authorization of A, and the decoration after 𝑡:D , which requires waiting until time 𝑡. We use the
syntactic sugar reveal 𝑎 for put [] & reveal 𝑎 if true .

A BitML contract specification (or contract advertisement) is a term {G}C , such that: (i) each secret
name in C occurs in G ; (ii) G requires a deposit from each A in {G}C . Intuitively, {G}C is the
advertisement of a contract C with preconditions G . Condition (ii) is used to guarantee that the
contract is stipulated only if all the involved participants give their consent: namely, A’s consent is
rendered as A’s authorization to spend one of her deposits. When all the preconditions G have been
satisfied, the contract C becomes stipulated. The contract starts its execution with a balance, initially
set to the sum of the !-deposits required by its preconditions. Running C will affect this balance when
participants deposit/withdraw funds to/from the contract.

Semantics. We now define the semantics of BitML. A configuration Γ is a term with the syntax:

Γ ::= 0 | {G}C | ⟨C , 𝑣⟩𝑥 | ⟨A, 𝑣⟩𝑥 | A[𝜉] | {A : 𝑎#𝑁} | A : 𝑎#𝑁 | (Γ | Γ′) | (Γ | 𝑡)
𝜉 ::= # ◁ {G}C | 𝑥 ◁ {G}C | 𝑥 ◁D

where: (i) in a committed secret, 𝑁 ∈ N ∪ {⊥} (where ⊥ denotes an ill-formed commitment); (ii)

in a revealed secret, 𝑁 ∈ N; (iii) in a configuration, there are no duplicate authorizations; (iv) in a
configuration containing ⟨· · · ⟩𝑥 and ⟨· · · ⟩𝑦 , it must be 𝑥 ̸= 𝑦; (v) there exists at most one term 𝑡. We
assume that (|, 0) is a commutative monoid, and we denote indexed parallel compositions with ‖𝑖. We
say that Γ is a timed configuration when it contains a term 𝑡. With cn(Γ), we denote the set of contract



names 𝑥 such that Γ contains ⟨C , 𝑣⟩𝑥, for some C and 𝑣, and with dn(Γ) the deposit names. The
intuition behind the various terms in configurations is the following: ⟨C , 𝑣⟩𝑥 is a stipulated contract
storing 𝑣B, uniquely identified by the name 𝑥; ⟨A, 𝑣⟩𝑥 is a deposit of 𝑣B owned by A, and uniquely
identified by the name 𝑥; A[𝜉] is A’s authorizations to perform some action 𝜉; {A : 𝑎#𝑁} represents
A’s commitment to a secret 𝑁 (with 𝑁 ∈ N ∪ {⊥}), identified by 𝑎; A : 𝑎#𝑁 represents a secret 𝑁
(with 𝑁 ∈ N), identified by 𝑎, and revealed by A. Regarding authorizations: # ◁ {G}C authorizes to
commit secrets to stipulate {G}C ; 𝑥 ◁ {G}C authorizes to spend the !-deposit 𝑥 to stipulate {G}C ;
and 𝑥 ◁D is an authorization to take branch D .

The semantics of a BitML contract specification is a labelled transition system (LTS) between timed
configurations. A LTS is a triple ℳ = (𝑆,Λ, 𝑇 ) where 𝑆 is a set of states, Λ is a set of labels, and
𝑇 : 𝑆×Λ → 𝑆 is the (deterministic) labelled transition function. We say there is a transition from state 𝑝

to state 𝑞 with label ℓ iff 𝑇 (𝑝, ℓ) = 𝑞. A run ℛ is a (possibly infinite) sequence Γ0 | 𝑡0
ℓ0−→ Γ1 | 𝑡1

ℓ1−→ · · ·
where ℓ𝑖 are the transition labels, Γ0 is an initial configuration, and 𝑡0 = 0. If ℛ is finite, we write

Γℛ for its last untimed configuration, and 𝛿ℛ for its last time. We write ℛ ℓ−→ ℛ′ when ℛ′ extends ℛ
with the transition Γℛ | 𝛿ℛ

ℓ−→ Γℛ′ | 𝛿ℛ′ . We write ℛ →* ℛ′ to say that there exists a sequence of
transitions such that ℛ′ can extend ℛ.

𝑎1 · · · 𝑎𝑘 secrets of A in G ∀𝑖 ∈ 1..𝑘 : ∄𝑁 : {A : 𝑎𝑖#𝑁} ∈ Γ
∆ = ‖𝑘𝑖=1{A : 𝑎𝑖#𝑁𝑖} ∀𝑖 ∈ 1..𝑘 : ∄𝑁 : A : 𝑎𝑖#𝑁 in Γ

∀𝑖 ∈ 1..𝑘 : 𝑁𝑖 ∈ N ∪ {⊥}

Γ
A:Δ−−→ Γ | ∆ | A[# ◁ {G}C ]

[C-AuthCommit]

G =
(︀
‖𝑖∈𝐼 A𝑖:! 𝑣𝑖 @𝑥𝑖

)︀
|
(︀
‖𝑖∈𝐽 B𝑖:? 𝑣

′
𝑖 @ 𝑦𝑖

)︀
|
(︀
‖𝑖∈𝐾 C𝑖 : secret 𝑎𝑖

)︀
𝑥 fresh

∆ =
(︀
‖𝑖∈𝐼 ⟨A𝑖, 𝑣𝑖⟩𝑥𝑖

)︀
|
(︀
‖𝑖∈𝐼 A𝑖[𝑥𝑖 ◁ {G}C ]

)︀
|
(︀
‖𝑖∈𝐾 C𝑖[# ◁ {G}C ]

)︀
∆ | Γ init−−→ ⟨C ,

∑︀
𝑖∈𝐼 𝑣𝑖⟩𝑥 | Γ

[C-Init]

𝑦 fresh

⟨withdraw A, 𝑣⟩𝑥 | Γ withdraw(A,𝑣,𝑥)−−−−−−−−−−→ ⟨A, 𝑣⟩𝑦 | Γ
[C-Withdraw]

𝑤 =
∑︀𝑘

𝑖=1𝑤𝑖 𝑣𝑖 = (𝑣 · 𝑤𝑖)/𝑤 𝑦1 · · · 𝑦𝑘 fresh

⟨split‖𝑘𝑖=1 (𝑤𝑖 → Ci) , 𝑣⟩𝑥 | Γ split(𝑥)−−−−→
(︀
‖𝑘𝑖=1 ⟨Ci , 𝑣𝑖⟩𝑥𝑖

)︀
| Γ

[C-Split]

𝑁 ̸=⊥

{A : 𝑎#𝑁} | Γ A:𝑎−−→ A : 𝑎#𝑁 | Γ
[C-AuthRev]

𝑥⃗ = 𝑥1 · · ·𝑥𝑚 Γ =‖𝑚𝑖=1 ⟨A𝑖, 𝑣𝑖⟩𝑥𝑖 𝑧 fresh
𝑎⃗ = 𝑎1 · · · 𝑎𝑛 ∆ =‖𝑛𝑖=1 B𝑖 : 𝑎𝑖#𝑁𝑖 J𝑝KΔ = true

⟨put 𝑥⃗ & reveal 𝑎⃗ if 𝑝.C , 𝑣⟩𝑦 | Γ | ∆ | Γ′ put(𝑥⃗,𝑎⃗,𝑦)−−−−−−→ ⟨C , 𝑣 +
∑︀𝑚

𝑖=1 𝑣𝑖⟩𝑧 | Γ′ | ∆
[C-PutRev]

JtrueKΔ = true J𝑝1 ∧ 𝑝2KΔ = J𝑝1KΔ and J𝑝2KΔ J¬𝑝KΔ = not J𝑝KΔ
J𝑎KΔ = 𝑁 if Γ contains A : 𝑎#𝑁 J𝐸1 ∙ 𝐸2KΔ = J𝐸1KΔ ∙ J𝐸2KΔ (∙ ∈ {+,−})

J𝑁KΔ = 𝑁 J𝐸1 ∘ 𝐸2KΔ = J𝐸1KΔ ∘ J𝐸2KΔ (∘ ∈ {=, <})

D ≡ A :D ′

⟨A :D + C , 𝑣⟩𝑥 | Γ A:(𝑥,A :D)−−−−−−−→ ⟨A :D + C , 𝑣⟩𝑥 | A[𝑥 ◁ A :D ] | Γ
[C-AuthBranch]

⟨D ′, 𝑣⟩𝑥 | Γ ℓ−→ Γ′ D = A1 : · · · : A𝑘 : after 𝑡1 : · · · : after 𝑡𝑚 : D ′ D ′ ̸≡ A : · · ·
𝑥 /∈ cn(Γ′) 𝑡 ≥ 𝑡1, . . . , 𝑡𝑚 D ′ ̸≡ after 𝑡′ : · · ·

⟨D + C , 𝑣⟩𝑥 |
(︀
‖𝑘𝑖=1 A𝑖[𝑥 ◁D ]

)︀
| Γ | 𝑡 ℓ−→ Γ′ | 𝑡

[C-Branch]

𝛿 > 0

Γ | 𝑡 𝛿−→ Γ | 𝑡+ 𝛿
[C-Delay]

Figure 2: Inference rules for the BitML semantics.

Below, we introduce the BitML
semantics, formally defined in Fig-
ure 2. Labels represent the actions
performed by participants. A dec-
oration A : · · · in the label means
that the action can be performed
only by A, while its absence means
that it can be performed by anyone.
Note that labels are not instrumen-
tal to defining the BitML semantics.
Yet, they are essential in the game-
theoretic formalization of a BitML
contract since we need to associate
actions with the participants who
can perform them.
Secret commitment. To stipu-
late an advertised contract, all the
participants mentioned in it must
fulfill the preconditions by making
available the required deposits and
committing to the required secrets.
These steps are formalized by rule
[C-AuthCommit], where the term {A :
𝑎#𝑁} represents A’s commitment
to the secret𝑁 , while A[# ◁ {G}C ]
represents finalising the commit-
ment phase for A. The rule precondi-
tions ensures that the final configu-
ration fulfills the conditions required
by G . Note that condition (iii) in the
definition of configurations ensures that rule [C-AuthCommit] cannot be used more than once to generate
the same authorization. The same is true for all the other rules that generate authorizations.
Initialization. Once all the needed authorizations have been granted, the advertisement can be turned
into an active contract. Rule [C-Init] consumes the deposits and the authorizations, and it initializes the
new contract, with a fresh name 𝑧, and with a balance corresponding to the sum of all the consumed



deposits. Note that the part ∆ of the configuration contains all the terms that are consumed by the step.
The next rules define the behaviour of a contract after stipulation.

Withdraw. Executing withdraw A terminates the contract and transfer its balance to A. After the
contract 𝑥 is terminated, a fresh deposit of 𝑣B owned by A is created. This is defined by rule [C-Withdraw].
The case where the action withdraw A has an alternative branch is handled by rule [C-Branch] below.

Split. The split primitive divides the contract balance in parts, each one controlled by its own contract.
The general rule is [C-Split]. Note that the weights 𝑤𝑖 in the split do not represent actual B values, but
the proportion w.r.t. the contract balance.

Revealing secrets. Any participant can reveal one of her secrets, using the rule [C-AuthRev]. The premise
𝑁 ̸= ⊥ is needed to avoid the case where a participant does not know the secret she has committed
to. Indeed, at the level of Bitcoin, commitments are represented as cryptographic hashes of bitstrings,
and revealing a secret amounts to broadcasting a preimage, i.e. a value whose hash is equal to the
committed value. If a participant commits to a random value, then with overwhelming probability she
will not be able to provide a preimage. The label A : 𝑎 represents the fact that only A, the participant
who performed the commitment, can fire the transition.

Put-Reveal. The prefix put 𝑥⃗ & reveal 𝑎⃗ if 𝑝 can be fired with rule [C-PutRev] if all the deposits 𝑥⃗
are available, all the committed secrets 𝑎⃗ have been revealed, and satisfy the guard 𝑝, where J𝑝KΔ is the
evaluation of predicate 𝑝 in configuration ∆.

Authorizing branches. With rule [C-AuthBranch], a branch A :D can be taken only provided that A
has granted her authorization.

Reducing branches. Once all the authorizations for a branch occur in the configuration, anyone can
trigger the transition with rule [C-Branch], provided that the time constraints (if any) are respected.

Delaying. In any configuration, we allow time to advance with rule [C-Delay].

In this paper, we consider the LTS ℳ{G}C , associated with a contract specification {G}C , with
only the participants occurring in G and as initial timed configuration Γ0 | 𝑡0 (with 𝑡0 = 0) the set of
persistent deposits 𝑥𝑖 and volatile deposits 𝑦𝑗 occurring in G held by their respective participants, as
well as the authorizations A𝑘[𝑥𝑖 ◁ {G}C ] to spend the persistent deposits. While the original semantics
of BitML included the possibility of fresh contract advertisement and manipulation of deposits, here
we strip out it by leaving only the needed elements to reason on a single BitML contract. These
simplifications rule out some interesting participants’ behaviors that were possible in the original
semantics, e.g., advertising a new contract or destroying the deposits to prevent specific contract branch
executions. Due to space limitations, we preferred to focus on the core features of a BitML contract
and the main strategic reasoning tasks we can perform.

4. BitML Games

In this section, we are interested in defining a game structure that models the interaction between
participants of a BitML smart contract. Given a set 𝑋 of elements, let 𝑢 ∈ 𝑋𝜔 ∪𝑋+ denote an infinite
or non-empty finite sequence on 𝑋 . Then, we write 𝑢𝑖 for its (𝑖 + 1)-th element, i.e., 𝑢 = 𝑢0𝑢1 . . . ,
and |𝑢| for its length, with |𝑢| = ∞ for 𝑢 ∈ 𝑋𝜔 . The first element of 𝑢 is denoted by first(𝑢), and its
last by last(𝑢). We write 𝑢≥𝑖 for its suffix 𝑢𝑖𝑢𝑖+1 . . . starting in 𝑢𝑖, and 𝑢≤𝑖 for its prefix 𝑢0 . . . 𝑢𝑖. The
empty sequence is denoted by 𝜖. For a vector 𝑣 ∈ Π𝑖𝑋𝑖, we denote its 𝑖-th element by 𝑣(𝑖).

Games and strategies. A concurrent game structure with imperfect information (iCGS) [59] is a
tuple 𝒢 = ⟨St,AP,Ag, {Act𝑎}𝑎∈Ag, 𝜆, 𝜏, 𝑆𝜄, {∼𝑎}𝑎∈Ag⟩ where: (i) St is a finite non-empty set of
states; (ii) AP is a finite non-empty set of atomic propositions; (iii) Ag is a finite non-empty set of
agents (𝑚 = |Ag|); Act𝑎 is a set of actions of agent 𝑎 ∈ Ag, and with every state 𝑠 and agent 𝑎
we associate a subset Act𝑎(𝑠) ⊆ Act𝑎 of actions that 𝑎 can perform at 𝑠; (iv) 𝑆𝜄 ∈ St is the set of

initial states; (iv) 𝜆 : St → 2AP is a labelling function; (v) For each state 𝑠 ∈ St and each joint action

𝐽 ∈ Jact(𝑠) =
∏︀

𝑎∈Ag Act𝑎(𝑠), we define the state 𝜏(𝑠, 𝐽) ∈ St that results from state 𝑠 if every player



𝑎 chooses move 𝑗𝑎, with 𝜏 called transition function; (vi) for each agent 𝑎 ∈ Ag, ∼𝑎⊆ St × St is an
equivalence relation called indistinguishability relation.

Intuitively, the game starts in an initial state 𝑠𝜄 ∈ 𝑆𝜄, and in any state 𝑠 each agent 𝑎 chooses an
action 𝑗𝑎 ∈ Act𝑎(𝑠), and the game proceeds to state 𝑠′ = 𝜏(𝑠, 𝐽), where 𝐽 ∈ Jact(𝑠) stands for the
joint action allowed in state 𝑠, and 𝐽(𝑎) = 𝑗𝑎 is the action of agent 𝑎 in 𝐽 . For each state 𝑠 ∈ St, 𝜆(𝑠)
is the finite set of atomic propositions that hold in 𝑠, and for 𝑎 ∈ Ag, ∼𝑎 is an equivalence relation
that represents the observation of agent 𝑎: for two states 𝑠, 𝑠′ ∈ St, 𝑠 ∼𝑎 𝑠

′ means that agent 𝑎 cannot
tell the difference between 𝑠 and 𝑠′. We say that 𝑠′ is a successor of 𝑠, with 𝑠, 𝑠′ ∈ St, if there exists a
joint action 𝐽 such that 𝜏(𝑠, 𝐽) = 𝑠′. A run 𝜌 ∈ St𝜔 is an infinite sequence 𝜌 = 𝑠0𝑠1𝑠2 · · · ∈ St𝜔 such
that 𝑠0 ∈ 𝑆𝜄 and for every integer 𝑖 ≥ 0, 𝑠𝑖+1 is a successor of 𝑠𝑖. The set of runs is denoted by Runs.
A history ℎ ∈ St+ is a finite sequence ℎ = 𝑠0𝑠1𝑠2 . . . 𝑠𝑘 such that 𝑠0 ∈ 𝑆𝜄 and for 0 ≤ 𝑖 < 𝑘, 𝑠𝑖+1 is
a successor of 𝑠0. The set of histories is denoted by Hist. Each indistinguishability relation is thus
extended to runs and as follows: 𝜌 ≈𝑎 𝜌

′ if 𝜌𝑖 ∼𝑎 𝜌
′
𝑖 for every 𝑖 ≥ 0. Similarly, for ℎ, ℎ′ ∈ Hist, ℎ ≈𝑎 ℎ

′

if |ℎ| = |ℎ′| and 𝜌𝑖 ∼𝑎 𝜌
′
𝑖 for every 0 ≤ 𝑖 < |ℎ|. A fairness constraint is a criterion to distinguish

between fair and unfair runs. Here, we use unconditional fairness constraints, defined as a subset of
states fc ∈ 2St, as in [70]. A run 𝜌 is fair according to a set of fairness conditions FC = {fc1, . . . , fc𝑘}
if for each fairness condition fc𝑗 , there exist infinitely many positions 𝑖 such that 𝜌(𝑖) ∈ fc𝑗 .

A (perfect recall or memoryful) strategy for agent 𝑎 in a iCGS 𝒢 is a function 𝜎𝑎 : Hist → Act𝑎
such that for all histories ℎ, 𝜎𝑎(last(ℎ)) ∈ Act𝑎(last(ℎ)), and for all histories ℎ, ℎ′, 𝜎𝑎(ℎ) = 𝜎𝑎(ℎ

′)
whenever ℎ ≈𝑎 ℎ

′. The latter constraint captures the essence of imperfect information: agents can
base their strategic choices only on the information available to them. For 𝐴 ⊆ Ag and 𝑦 ∈ {𝑅, 𝑟}, let
𝜎𝐴 : 𝐴→ Σ𝑦(𝐺) denote a joint strategy associating a memoryful strategy 𝜎𝑎 with each agent 𝑎 ∈ 𝐴.
For ℎ ∈ Hist and a joint strategy 𝜎𝐴, we write Out(ℎ, 𝜎𝐴), called the outcomes of 𝜎𝐴 from ℎ, for the set
of runs 𝜌 ∈ Runs such that 𝜌 is consistent with ℎ and 𝜎𝐴. That is, 𝜌 ∈ Out(ℎ, 𝜎𝐴) iff (i) ℎ is a prefix
of 𝜌; (ii) for every 𝑖 ≥ |ℎ| − 1, there exists a joint action 𝐽𝑖 ∈ Jact such that 𝜌𝑖+1 = 𝜏(𝜌𝑖, 𝐽𝑖) and for
every 𝑎 ∈ 𝐴, 𝐽𝑖(𝑎) = 𝜎𝐴(𝑎)(𝜌≤𝑖). Moreover, we define Out𝑖(ℎ, 𝜎𝐴) =

⋃︀
ℎ≈𝐴ℎ′ Out(ℎ′, 𝜎𝐴), where

∼𝐴=
⋃︀

𝑎∈𝐴 ∼𝑎 and ≈𝐴=
⋃︀

𝑎∈𝐴 ≈𝑎, which represents the set of outcomes under subjective semantics
[71] and the “everybody knows” type of collective knowledge [72].

FromBitMLContracts to Game Structures. To enable strategic reasoning on BitML smart contracts,
in this section, we show how to compute a iCGS 𝒢{G}C , starting from a BitML contract specification
{G}C . The game structure 𝒢{G}C will be designed so that the plays generated in 𝒢{G}C have a
corresponding run in the LTS ℳ{G}C , and vice-versa. This will enable the application of multi-agent
strategic reasoning techniques based on the formal model of game structures, which resembles the
BitML semantics. Note that because agents can commit to arbitrary secret strings and can advance
the current time (a natural number) for an arbitrary time delay [54], ℳ{G}C has an infinite state
space and infinite label space, and so the game structure 𝒢{G}C , hence hindering the feasibility of
reasoning techniques. In the next section, we show how to abstract the secret commitments and the
time representation to make the state and action spaces finite.

Before presenting the formal definition, we explain our design choices for 𝒢{G}C . (a) Firstly, we have
to depart from a concurrent formalization and instead focus on a turn-based game since the inference
rules of the BitML semantics (except the [C-Delay] rule) are associated with actions to be performed by a
single agent. This is also reflected in the instantaneous nature of these actions, similar to many timed
process calculi [73]. Hence, we can rule out agent actions that happen simultaneously with others. (b)
Secondly, the interaction between the agents must be asynchronous, meaning that, from the perspective
of a single agent, there is some nondeterminism that determines whose turn it is. We can rely on
a turn-based asynchronous game structure by introducing a fair scheduler agent that decides which
agent plays at each step (e.g. see [59, 74]), and all the other agents are forced to play the null action 𝜀.
Multi-agent systems with asynchronous execution, often formalized as interleaved interpreted systems

(IIS) [72], are a well-known setting in the verification of multi-agent systems [44, 59, 75, 76, 77]. (c)
Thirdly, some mechanisms in the game structure must guarantee that the adversary cannot prevent the
execution of the contract unless the contract itself permits this. More precisely, we want to rule out the



cases in which, during the initialization phase, some agents never commit to secrets via [C-AuthCommit],
nor anyone initializes the contract via [C-Init]. This is required to focus on the analysis of the contract
rather than the participants’ decision to participate in it. (d) Finally, we require that the progress of time
is agreed upon by all participants, and that there is a fairness constraint that guarantees that eventually
the time moves forward. This is crucial to comply with the assumption that participants can always
meet deadlines if they want to.

Thus, we define the game structure 𝒢{G}C as follows:
∙ St is the set of tuples ⟨Γ, 𝑡,Aux ⟩, i.e. the set of all timed configurations reachable from Γ0 | 𝑡0
in ℳ{G}C , plus a set of auxiliary predicates Aux for defining the fairness constraints. We define
Conf(𝑠) = Γ, Time(𝑠) = 𝑡, and Aux(𝑠) = Aux . The (unique) initial state is 𝑠𝜄 = ⟨Γ0, 𝑡0, ∅⟩.
∙ Ag=𝒫∪{Sch}, where 𝒫 is the set of participants and Sch is the scheduler agent;
∙ Act𝑎: if 𝑎 ∈ 𝒫 , then for each rule of the BitML semantics, except [C-Delay], we have a correspond-
ing action, e.g.: action “A : {A : 𝑎1#𝑁1}, . . . , {A : 𝑎𝑘#𝑁𝑘}” from [C-AuthCommit], init from [C-Init];
withdraw(A, 𝑣, 𝑥) from [C-Withdraw], and so on. To allow agents to progress the time synchronously, we
include a new action, doneA, meaning that agent A agrees to progress the time by one unit. The effect
of this action is to set the auxiliary proposition DoneA to true in the next state. If DoneA ∈ Aux(𝑠), we
say that participant A ready to progress the time (or delay the time) in state 𝑠, and we denote with the
term Ready(𝑠) the set of agents that have ready to delay the time in 𝑠. Each agent also has the action 𝜀,
with no effect on the current state. If instead 𝑎 = Sch, we have an action for each agent in 𝒫 plus the
action delay that increases the current time by one unit. In a state 𝑠, if Ready(𝑠) = 𝒫 , then the only
enabled action is delay ; otherwise, the set of available actions is 𝒫 ∖ Ready(𝑠), i.e., the scheduler can
assign the turn to an agent that is not ready yet to progress the time.
∙ The set of proposition AP captures relevant features of the game states. The actual choice for AP and
𝜆 will depend on the specification to be verified. Some examples will be discussed in the next sections.
∙ Being 𝒢{G}C a turn-based asynchronous game, the transition function 𝜏 is defined according to
the construction in [59]. In particular, for all states 𝑠 ∈ St and all joint actions 𝐽1, 𝐽2 ∈ Jact(𝑠), if
𝐽1(Sch)=𝐽2(Sch)=𝑎 and 𝐽1(𝑎)=𝐽2(𝑎), then 𝜏(𝑠, 𝐽1)=𝜏(𝑠, 𝐽2). The effects of the auxiliary actions
have been specified above, and the ones from the BitML semantics are specified by the inference rules.
∙ The indistinguishability relations ∼𝑎, one for each participant 𝑎 ∈ 𝒫 , captures partial observability
on the value of the secrets of the other participants 𝒫 ∖ {𝑎}. In other words, ∼𝑎 is such that states
where other agents have committed to different secrets are all indistinguishable from 𝑎’s point of view.
∙ We add further auxiliary propositions in order to define our desired fairness constraints: (i) during the
stipulation phase, each participant must eventually execute the action corresponding to [C-AuthCommit];
(ii) after that, some participants must eventually execute the init action to initialize the contract; (iii)

the scheduler is fair, i.e., it does not neglect an agent forever; (iv) each participant is eventually ready to
progress the time. We could define a fairness constraint for each action involved by adding auxiliary
propositions in the Aux component of states, e.g., AuthCommitA to keep track of whether A has
committed to secrets in the past, Initialized to keep track of whether the contract has been initialized,
ActedA that holds in the current state if A was the last agent scheduled by Sch, and DoneA (already
defined above) to keep track whether A has taken action doneA since the most recent time delay, and
Delayed if the last action of Sch was delay . Given these auxiliary propositions, defining a fairness
constraint for each requirement above is straightforward.

We observe that such construction complies with the abovementioned design choices (a), (b), (c) and (d).
Also, the time progression machinery is not needed if there are no timeouts in the contracts. Moreover,
note that we make an implicit assumption, often made in model checking cryptographic protocols, that
is called "perfect cryptography". This assumption implies that the probability of adversaries discovering
the secret value through brute force is zero [29].

Correspondence between the semantics. We show that each trajectory, i.e., sequence of state and
actions 𝑆 = 𝑠0, 𝐽0, 𝑠1, 𝐽1, . . . compatible with 𝜏 in the game structure 𝒢{G}C , has a corresponding
run ℛ of the LTS ℳ{G}C , in the sense that 𝑆 and ℛ visit the same configurations by doing analogous
transitions (modulo auxiliary propositions and synchronization actions). The correspondence also



holds in the other direction: given a run ℛ, we can construct a trajectory 𝑆 in 𝒢{G}C where the
configurations and the actions in ℛ occur in the same order. We give further definitions to formalize
such correspondence before formally proving the result. We inductively define a transformation
from trajectories 𝑆 = 𝑠0, 𝐽1, 𝑠1, . . . of 𝒢{G}C to runs ℛ of ℳ{G}C , denoted with 𝑡𝑟: for 𝑆0 = 𝑠0,
where 𝑠0 = 𝑠𝜄 = ⟨Γ0, 𝑡0,Aux 0⟩, we have 𝑡𝑟(𝑆0) = Γ0 | 𝑡0. Let 𝑆𝑘 = 𝑠0, 𝐽1, . . . , 𝐽𝑘, 𝑠𝑘 be a generic
sequence in 𝒢{G}C of length 𝑘, and ℛ = 𝑡𝑟(𝑆𝑘) be its associated run on ℳ{G}C . Consider a valid
extension of 𝑆𝑘 , i.e. 𝑆𝑘+1 = 𝑆, 𝐽𝑘+1, 𝑠𝑘+1 such that 𝜏(𝑠𝑘, 𝐽𝑘+1) = 𝑠𝑘+1. In case 𝐽(Sch) = delay , then
𝑡𝑟(𝑆𝑘+1) = ℛ 1−→ Γ𝑘+1 | 𝑡𝑘+1, be the extension of ℛ after applying rule [C-Delay] with delay 1, with
Γ𝑘+1 = Γ𝑘 and 𝑡𝑘+1 = 𝑡𝑘 + 1. Otherwise, in case 𝐽(Sch) = A for some A ∈ 𝒫 that has not yet ready
to progress the time in 𝑠𝑘: (i) if 𝐽𝑘(A) is one of 𝜀 or doneA, then 𝑡𝑟(𝑆𝑘+1) = 𝑡𝑟(𝑆𝑘); (ii) otherwise,

𝑡𝑟(𝑆𝑘+1) = ℛ ℓ−→ Γ𝑘+1 | 𝑡𝑘+1, where ℓ is the label corresponding to 𝐽𝑘+1(A) in the LTS ℳ{G}C , Γ𝑘+1

is the configuration obtained after taking action 𝐽𝑘+1(A) in state 𝑠𝑘, and 𝑡𝑘+1 = 𝑡𝑘.

Theorem 1. Let {G}C be a BitML contract specification. Let 𝑆 = 𝑠0, 𝐽1, 𝑠1, . . . be a trajectory on

𝒢{G}C . Then, ℛ = 𝑡𝑟(𝑆) is a run of ℳ{G}C .

Proof sketch. The claim can be proved by the definition of 𝑡𝑟, by the construction of 𝒢{G}C , and by
induction on the length of the trajectory. The idea is that auxiliary actions in 𝑆, e.g., 𝜀 and doneA are
trimmed out by 𝑡𝑟, while the other actions are all translated in ℛ into legal moves of ℳ{G}C .

Moreover, each run ℛ of the LTS ℳ{G}C has a corresponding trajectory 𝑆 in 𝒢{G}C :

Theorem 2. Let {G}C be a BitML contract specification. Let ℛ = Γ0 | 𝑡0
ℓ1−→ Γ1 | 𝑡1

ℓ2−→ · · ·
ℓ𝑗−→ Γ𝑗 | 𝑡𝑗

be a run of ℳ{G}C . There exist a trajectory 𝑆 = 𝑠0, 𝐽1, 𝑠1, . . . 𝐽𝑘, 𝑠𝑘 of 𝒢{G}C such that 𝑡𝑟(𝑆) = ℛ.

Proof sketch. The claim can be proved by the definition of 𝑡𝑟, by the construction of 𝒢{G}C , and by
induction on the length of the run ℛ. Intuitively, 𝑆 has the same actions as ℛ, but whenever there is a
time delay of 𝛿, all the agents synchronize for 𝛿 rounds to increment the current time of 𝛿 units.

5. Atl
*
model checking on BitML Games

In this section, we propose a unifying framework based on Atl* model checking, in which BitML game
structures 𝒢{G}C can be verified against Atl* specifications.

Alternating-time Temporal Logic. First, we introduce Alternating-time Temporal Logic (Atl*)
[59, 78], a well-known and popular logic formalism for modeling and verifying multi-agent systems.
The temporal logic Atl* is defined with respect to a finite set of propositions AP and a finite set
Ag = {𝑎1, . . . , 𝑎𝑚} of players. The syntax of Atl* is given by the grammar

𝜙 ::= 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | ⎷A⌄𝜓 𝜓 ::= 𝜙 | ¬𝜓 | 𝜓 ∧ 𝜓 | ○𝜓 | 𝜓 𝒰 𝜓
where 𝑝 ∈ AP and𝐴 ⊆ Ag. The temporal operators are ○ (“next”) and𝒰 (“until”). The strategy quantifier

is ⎷𝐴⌄, meaning “the agents in A can enforce 𝜓”. The logic Atl* is similar to the branching-time
temporal logic Ctl* [42], only that path quantifiers are parameterized by sets of players. Sometimes we
write ⎷a1, . . . , 𝑎𝑙⌄ instead of ⎷{𝑎1, . . . , 𝑎𝑙}⌄, and ⎷⌄ instead of ⎷∅⌄. Additional Boolean connectives are
defined from ¬ and ∧ in the usual manner. Moreover, we define “sometime in the future” as ♢𝜓 ≡ ⊤𝒰 𝜓
and “always in the future” as □𝜓 ≡ ¬♢¬𝜓. formulas 𝜙 and 𝜓 are called state and path formulas of Atl*,
respectively. State formulas constitute the language of Atl*. By imposing that temporal operators are
immediately preceded by a strategic operator, we obtain the logic fragment Atl.

Since Alur et al.’s seminal paper, several different semantics of Atl* have been proposed. For instance,
agents may be able to observe the full state of the system or only parts of it (perfect vs. imperfect

information), and they may base their decisions on the current state only, or on the entire history of the
game (perfect vs. imperfect recall) [79, 80, 81]. Moreover, agents can have objective or subjective ability
to achieve their goals [71], their behavior can be subject to fairness constraints [59, 70], or they can be
endowed with a mechanism for broadcasting information within a team [82, 83]. Another concern is
how collective knowledge of a coalition 𝐴 is interpreted [72]. The most used variants are: agents with
mutual knowledge (also known as “everybody knows” [79], where agents aggregate uncertainty), agents



with distributed knowledge (where agents aggregate certainty), and agents with common knowledge

(where agents aggregate uncertainty, plus uncertainty about uncertainty etc.).
In this paper, we assume (i) perfect recall, (ii) imperfect information with subjective semantics,

and (iii) mutual knowledge as collective knowledge relation. We use the so-called truly perfect recall

semantics [81, 61]. We simultaneously define, by induction on the formulas, (𝒢, ℎ) |= 𝜙where ℎ ∈ Hist
and 𝜙 is a history formula, and (𝒢, 𝜌, 𝑘) |= 𝜓 where 𝜌 ∈ Runs, 𝑘 ≥ 0, and 𝜓 is a path formula:
∙ (𝒢, ℎ) |= 𝑝 iff 𝑝 ∈ 𝜆(last(ℎ)), for 𝑝 ∈ AP;
∙ (𝒢, ℎ) |= ⎷A⌄𝜓 iff ∃𝜎𝐴 ∈ Σ𝑅(𝒢) such that, ∀𝜌 ∈ Out𝑖(ℎ, 𝜎𝐴), we have (𝒢, 𝜌, |ℎ| − 1) |= 𝜓
∙ (𝒢, 𝜌, 𝑘) |= 𝜙 iff (𝒢, 𝜌≤𝑘) |= 𝜙 for 𝜙 a state formula;
∙ (𝒢, 𝜌, 𝑘) |= ○𝜓 iff (𝒢, 𝜌, 𝑘 + 1) |= 𝜓;
∙ (𝒢, 𝜌, 𝑘) |= 𝜓1 𝒰 𝜓2 iff ∃𝑖.𝑖 ≥ 𝑘 such that (𝒢, 𝜌, 𝑖) |= 𝜙2 and ∀𝑗.𝑘 ≤ 𝑗 < 𝑖 we have (𝒢, 𝜌, 𝑗) |= 𝜙1.
Boolean operators are omitted. For a state formula 𝜙 we say that 𝒢 |= 𝜙 iff (𝒢, ⟨𝑠𝜄⟩) |= 𝜙 for all 𝑠𝜄 ∈ 𝑆𝜄.

Atl
*
Model Checking of BitML Games. In the following, we study the problem of model checking

an Atl* specification 𝜙 over BitML games. First, observe that 𝒢{G}C allows for uninteresting outcomes,
such as an unfair scheduler, the time never progresses, or the contract is never initialized. To rule
out unfair runs (see requirements (b), (c) and (d)), we include a set of fairness constraints in 𝜙 of the
form □♢𝑝, one for each possible value of 𝑝, namely AuthCommitA, ActedA, DoneA for all A ∈ 𝒫 ,
and Delayed. Let Fair be the conjunction of these constraints, and let |=𝐹 be defined as 𝒢 |=𝐹 𝜙 iff
𝒢 |= ⎷ ⌄(Fair → 𝜙). Also, we introduce a suitable set of propositions AP{G}C , and its associated
labeling functions 𝜆{G}C , for 𝒢{G}C , to provide the alphabet for constructing the Atl* specifications:

∙ initializedC : this proposition is false in every initial state, and it is set to true by action init . Intuitively,
initializedC keeps track of whether the contract C has been initialized or not in the current game.
∙ committed𝑎 (with 𝑎 ∈ 𝒮): this type of proposition holds in a state 𝑠 iff, after contract initialization,
there exists a commitment for secret 𝑎 in Conf(𝑠):{A : 𝑎#𝑁}∈Conf(𝑠), for some 𝑁 ∈ N ∪ ⊥.
∙ revealed𝑎 (with 𝑎 ∈ 𝒮): this proposition holds in a state 𝑠 iff secret 𝑎 has been revealed in Conf(𝑠).
∙ liquidatedC : the proposition liquidatedC holds whenever there are no contract names, descendant
from C , in the current state 𝑠, i.e. liquidatedC ≡ initializedC ∧ (cn(Conf(𝑠)) = ∅). Intuitively, since
in BitML active contracts always store some funds, this is equivalent to checking that funds deposited
in the contract at initialization time have been withdrawn, so there are no frozen funds. The presence
of the initializedC is needed to rule out the case in which C has not been initialized yet.
∙ “total-depositsA ∘ 𝑣” (where ∘ ∈ {=, <}): this proposition holds in a state 𝑠 iff the sum of de-
posits available to A in Conf(𝑠) satisfies the condition ∘ against the value 𝑣, where total-depositsA =∑︀

⟨A,𝑣′⟩𝑥∈Conf(𝑠) 𝑣
′ is the sum of the values of all deposits controlled by A.

∙ expired𝑡: this proposition holds in a state 𝑠 iff Time(𝑠) ≥ 𝑡, meaning that the timeout 𝑡 has expired.
The term 𝑡 must occur in some after-clause in C .

According to the smart contract and the Atl specification of interest, there might be other choices of
atomic propositions. We designed these propositions based on the criterion that they should capture
generic properties of contract execution. Finally, we define the problem of Atl* model checking a
specification 𝜙 against a BitML 𝒢{G}C as the problem of determining whether 𝒢{G}C |=𝐹 𝜙.

Game Abstraction. The main limitation in solving our model checking problem is that 𝒢{G}C has an
infinite state space and an infinite action space. The source of the infiniteness of the state space and the
action space comes from (i) the commitment of secrets of arbitrary value, and (ii) the unboundedness
of time. Therefore, naively adopting an off-the-shelf Atl* model checking algorithm (see, e.g., [59]) for
solving our problem will not work since the termination is guaranteed only when the state space is
finite. In this section, analogous to the abstract semantics of the BitML semantics introduced in [54],
we introduce an abstraction for the (concrete) game 𝒢{G}C , denoted with 𝒢♯

{G}C , which reduces the
state/action space to a finite one, while guaranteeing correctness of Atl* model checking.

To cope with (i), we make the following simplifying assumption:

Assumption 1. All the clauses put 𝑥⃗ & reveal 𝑎⃗ if 𝑝 in BitML contract C are such that 𝑝 = true .



Assumption 1 simplifies the design of 𝒢♯
{G}C by only considering whether participants have committed

to secrets and, if so, whether they are willing to reveal them. In particular, the secret commitment
component {A : 𝑎#𝑁}, with𝑁 ∈ N∪{⊥}, is replaced with an abstract secret commitment {A : 𝑎#𝑁 ♯},
with 𝑁 ♯ ∈ {⊤,⊥}, and ⊤ denoting any valid secret value. The secret commitment action is changed
accordingly. While being a restrictive assumption, since it limits the expressivity of the BitML language,
it heavily simplifies the treatment and the analysis of the correctness. We will try to relax this assumption
in a future work. To address (ii), we redefine the transition rules to prevent the progression of time after
all the timeouts in C , if any, have expired. Formally, let ticks(C ) be the set of all timeouts occurring in
expressions of the form after 𝑡:D in contract C , and let 𝑡max the largest of such timeouts. Then, in
𝒢♯
{G}C , we impose that if Time(𝑠) = 𝑡max, the action delay from 𝑠 does not increase the time. Note

that we can also simplify the time progression machinery whenever this condition is triggered, but it is
inconsequential to the correctness of the abstraction. Intuitively, 𝒢♯

{G}C is the same as 𝒢{G}C except
that the participants can only decide whether they want to commit to a secret or not, and that time
cannot increase indefinitely. It is easy to see that, 𝒢♯

{G}C is a sound and complete abstraction: under
the assumption on put-reveal-if-clauses, the actual value of a valid secret does not matter for the
execution of the contract, and the evaluation of propositions in AP{G}C , do not depend on time after
Time(𝑠) > 𝑡max; hence, the construction of 𝒢♯

{G}C does not affect the truth of the Atl* specification.

Theorem 3. Under Assumption 1 and choice of propositions AP{G}C , 𝒢{G}C |=𝐹 𝜙 iff 𝒢♯
{G}C |=𝐹 𝜙.

Note that a different choice of propositions for 𝒢♯
{G}C does not guarantee the validity of Theorem 3,

e.g., propositions that check arbitrary conditions on secret values.

Despite Atl* model checking under imperfect information and perfect recall is undecidable in general
[60], it can be shown that 𝒢♯

{G}C can be cast into a game structure with only public actions [61], for
which model checking against Atl* specifications is decidable. Such games satisfy the condition that if
𝐽 ̸= 𝐽 ′ and 𝑠 ∼𝑎 𝑠

′ then 𝜏(𝑠, 𝐽) ̸∼𝑎 𝜏(𝑠
′, 𝐽 ′). Although all actions must be public, we can still model

private update of an agent’s private state [84]. Formally, we define 𝒢♯,PA
{G}C as 𝒢♯

{G}C with the following

differences: (i) 𝑆PA
𝜄 contains (at most) 2|𝒮| initial states, one for each possible abstract assignment (⊥ or

⊤) of each secret; (ii) the commitment action is replaced by toggleA, which must be called exactly once;
it can either leave a secret value unchanged or change it, e.g., from ⊤ to ⊥ or vice versa; (iii) the state
records the last joint action; (iv) (𝑠, 𝐽) ∼PA

𝑎 (𝑠′, 𝐽 ′), iff 𝑠 ∼𝑎 𝑠
′ and 𝐽 = 𝐽 ′, for (𝑠, 𝐽), (𝑠′, 𝐽 ′) ∈ StPA.

Lemma 4. Under Assumption 1 and choice of propositions AP{G}C , 𝒢♯
{G}C |=𝐹 𝜙 iff 𝒢♯,PA

{G}C |=𝐹 𝜙.

Proof sketch. Given a strategy for one of the two games, we can compute a strategy for the other game
such that, after contract initialization, the secrets of the protagonist coalitions are set to the same values
in both games. Moreover, note that in both evaluations, all the possible assignments of the adversaries
are considered: in one case because 𝒢 |= 𝜙 iff ∀𝑠𝜄 ∈ 𝑆𝜄.(𝒢, 𝑠𝜄) |= 𝜙, while in the other because we use
subjective semantics and mutual knowledge as collective knowledge relation.

Theorem 5 Under Assumption 1 and choice of propositions AP{G}C , 𝒢{G}C |=𝐹 𝜙 is decidable.

Proof. First, we determine whether 𝒢♯,PA
{G}C |=𝐹 𝜙, which is decidable (see Thm. 1 in [61]); then, the

result for 𝒢{G}C |=𝐹 𝜙 follows by applying Lemma 4 and Theorem 3.

We conjecture that the problem is decidable also without Assumption 1: intuitively, since the contract
is finite, there are a finite number of predicates 𝑝 in put-reveal-if-clauses, meaning that there are
only finitely many sets of relevant decisions that the participants can make on secret commitments.

6. Use Cases

Liquidity [53, 54, 85] is an important security property of smart contracts. Generally speaking, a
liquidity analysis of a smart contract aims to determine whether its balance can be decreased or funds
remain frozen and under which conditions these scenarios happen. The notion of liquidity is based
upon liquidability; here, we use the variant formalized in [85]. Informally, a BitML contract 𝑥 is



liquidable by A if, at any point during its execution, A can perform a sequence of transitions eventually
leading to a configuration containing no contract names originating from 𝑥. A contract 𝑥 is liquid in a
configuration Γ when, after an arbitrary sequence of moves performed by any participant, the contract
names originated by 𝑥 are liquidable by A. In our framework, it can be shown that a BitML contract C
is liquid in Γ0 iff 𝒢{G}C |= ⎷ ⌄□((

⋀︀
𝑎∈𝒮A

committed𝑎(⊤)) → ⎷A⌄♢liquidatedC ). The constraints of
the form committed𝑎(𝑁

♯), meaning that there exists an abstract commitment 𝑁 ♯ for secret 𝑎 in the
current configuration, are required because in the original setup of [85] A must be a “honest” participant
who always generates valid commitments to her secrets. There are other variants of liquidity [54] that
can be formalized in Atl*:
∙ Multiparty liquidity. Instead of a single agent A, we can consider a set 𝑃 ⊆ 𝒫 of collaborative
participants [53]. In the Atl* specification, it is enough to replace A with a coalition of participants 𝑃 .
∙ Liquidity under a strategy. We can allow A to follow a specific strategy since the start of the game.
This means the original Atl* liquidity specification can be simplified in ⎷A⌄♢liquidatedC .
∙ Liquidity under assumptions. We can constrain participants’ behavior by working at the specification
level. For example, to verify liquidity under the requirement that A always performs the reveal of a
secret 𝑎 ∈ 𝒮A, we can write: ⎷ ⌄□(revealed𝑎 → ⎷A⌄liquidatedC ).
∙ Quantitative liquidity. In some cases, A could accept that a portion of the funds remain frozen, e.g.
when these funds would be assigned to other participants. We define a contract 𝑣-liquid forA if a strategy
exists for A to withdraw at least 𝑣 bitcoins: ⎷A⌄□(initializedC → ⎷A⌄♢“total-depositsA ≥ 𝑣”).

Our framework can express more general strategic specifications. For example, in a mutual timed

commitment contract [54], A and B have to exchange their secrets or pay a 1B penalty. Consider the
following BitML contract that specifies the mutual timed commitment (with 𝑡 < 𝑡′):

reveal 𝑎.(reveal 𝑏.split(1B → withdraw A | 1B → withdraw B) + after 𝑡′: withdraw A)

+ after 𝑡: withdraw B

We can check some strategic invariants, e.g. if the secret 𝑎 is not valid, A cannot recover her funds:
⎷ ⌄□((committed𝑎(⊥) → ¬⎷A⌄♢“total-depositsA > 0”); or that, if timeout 𝑡 has expired and secret
𝑎 has not been revealed, then B can recover his funds plus A’s penalty without revealing its secret 𝑏:
⎷ ⌄□((¬revealed𝑏 ∧ committed𝑎(⊥) ∧ expired𝑡) → ⎷B⌄♢(¬revealed𝑏 ∧ “total-depositsB = 2”)).

Let us consider the following escrow contract Escrow between two participants A and B, where the
precondition requires A to deposit 1B [54]:

Escrow = A : withdraw B+ B : withdraw A+ A :Resolve + B :Resolve

Resolve = split(0.1B → withdrawM | 0.9B → M : withdraw A+M : withdraw B)

After the contract has been stipulated, A can choose to payB, by authorizing the first branch. Similarly, B
can allow A to take her money back, by authorizing the second branch. If they do not agree, any of them
can invoke a mediator M to resolve the dispute, invoking a Resolve branch. There, the 1B deposit is split
in two parts: 0.1B go to the mediator, while 0.9B are assigned either toA andB, depending onM’s choice.
We have that 𝒢{G}C ̸|= ⎷A⌄♢liquidatedEscrow , for any 𝐴 ∈ 𝒫 , but 𝒢{G}C |= ⎷P⌄♢liquidatedEscrow
for 𝑃 ⊆ 𝒫 with |𝑃 | ≥ 2, i.e. with at least two cooperative participants, the contract is liquid.

7. Conclusion

Our technique makes it possible to reason about several strategic abilities of participants of a Bitcoin
smart contract under a unifying framework based on Atl* model checking. Indeed, as we have shown,
interesting variants of contract liquidity proposed in the literature can be captured by Atl* specifications.
Moreover, as we have seen with the mutual time commitment and the escrow contracts, more general
strategic interaction can be captured. We proved that the model checking problem for BitML contracts,
under reasonable assumptions, is decidable even in the case of perfect recall and imperfect information
semantics. There are several future research directions. First, we would like to extend our approach
to the analysis of rational players [86] and to quantitative objectives [87, 88, 89]. Then, it would be



interesting to analyze the impact of different collective knowledge relations (mutual, common, and
distributed knowledge) by considering some form of communication mechanisms [83] or information
sharing (e.g. via resolution operators [90]). Moreover, we would like to devise a solution method for
general BitML contracts (i.e. without Assumption 1) and provide a tool that solves our problem, relying
on state-of-the-art tools such as MCMAS [68], or STV [91] with support for asynchronous models
[76, 77, 92].

References

[1] D. Aineto, R. De Benedictis, M. Maratea, M. Mittelmann, G. Monaco, E. Scala, L. Serafini, I. Serina,
F. Spegni, E. Tosello, A. Umbrico, M. Vallati (Eds.), Proceedings of the International Workshop
on Artificial Intelligence for Climate Change, the Italian workshop on Planning and Scheduling,
the RCRA Workshop on Experimental evaluation of algorithms for solving problems with com-
binatorial explosion, and the Workshop on Strategies, Prediction, Interaction, and Reasoning in
Italy (AI4CC-IPS-RCRA-SPIRIT 2024), co-located with 23rd International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2024), CEUR Workshop Proceedings, CEUR-WS.org,
2024.

[2] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2008). URL: https://bitcoin.org/
bitcoin.pdf, https://bitcoin.org/bitcoin.pdf.

[3] V. Buterin, Ethereum: A next-generation smart contract and decentralized application platform
(2014). URL: https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_
Buterin_2014.pdf.

[4] N. Szabo, Formalizing and securing relationships on public networks, First Monday 2 (1997). URL:
https://firstmonday.org/ojs/index.php/fm/article/view/548/469.

[5] N. Szabo, The Idea of Smart Contracts, 1997. URL: https://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html.

[6] Script - Bitcoin Wiki, ???? URL: https://en.bitcoin.it/wiki/Script.
[7] Contract - Bitcoin Wiki, 2012. URL: https://en.bitcoin.it/wiki/Contract, https://en.bitcoin.it/wiki/

Contract.
[8] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, R. Zunino, Sok: Unraveling bitcoin smart contracts, in:

POST, volume 10804 of Lecture Notes in Computer Science, Springer, 2018, pp. 217–242.
[9] M. Andrychowicz, S. Dziembowski, D. Malinowski, L. Mazurek, Fair two-party computations via

bitcoin deposits, in: Financial Cryptography Workshops, volume 8438 of Lecture Notes in Computer

Science, Springer, 2014, pp. 105–121.
[10] M. Bartoletti, R. Zunino, Constant-deposit multiparty lotteries on bitcoin, in: Financial Cryp-

tography Workshops, volume 10323 of Lecture Notes in Computer Science, Springer, 2017, pp.
231–247.

[11] S. Uchizono, T. Nakai, Y. Watanabe, M. Iwamoto, Constant-deposit multiparty lotteries on bitcoin
for arbitrary number of players and winners, in: ICISC (2), volume 14562 of Lecture Notes in

Computer Science, Springer, 2023, pp. 133–156.
[12] I. Bentov, R. Kumaresan, How to use bitcoin to design fair protocols, in: CRYPTO (2), volume

8617 of Lecture Notes in Computer Science, Springer, 2014, pp. 421–439.
[13] A. Miller, I. Bentov, Zero-collateral lotteries in bitcoin and ethereum, in: EuroS&P Workshops,

IEEE, 2017, pp. 4–13.
[14] R. Kumaresan, T. Moran, I. Bentov, How to use bitcoin to play decentralized poker, in: CCS, ACM,

2015, pp. 195–206.
[15] C. Decker, R. Wattenhofer, A fast and scalable payment network with bitcoin duplex micropayment

channels, in: SSS, volume 9212 of Lecture Notes in Computer Science, Springer, 2015, pp. 3–18.
[16] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, J. Herrera-Joancomartí, A fair protocol for

data trading based on bitcoin transactions, Future Gener. Comput. Syst. 107 (2020) 832–840.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://ethereum.org/content/whitepaper/whitepaper-pdf/Ethereum_Whitepaper_-_Buterin_2014.pdf
https://firstmonday.org/ojs/index.php/fm/article/view/548/469
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract


[17] J. Poon, T. Dryja, The bitcoin lightning network: Scalable off-chain instant payments (2016).
https://lightning.network/lightning-network-paper.pdf.

[18] W. Banasik, S. Dziembowski, D. Malinowski, Efficient zero-knowledge contingent payments in
cryptocurrencies without scripts, in: ESORICS (2), volume 9879 of Lecture Notes in Computer

Science, Springer, 2016, pp. 261–280.
[19] M. Andrychowicz, S. Dziembowski, D. Malinowski, L. Mazurek, Secure multiparty computations

on bitcoin, Commun. ACM 59 (2016) 76–84.
[20] R. Kumaresan, I. Bentov, How to use bitcoin to incentivize correct computations, in: CCS, ACM,

2014, pp. 30–41.
[21] D. Siegel, Understanding The DAO Attack, 2016. URL: https://www.coindesk.com/learn/

understanding-the-dao-attack/.
[22] L. Breidenbach, P. Daian, A. Juels, E. Sirer, An In-Depth Look at the Parity Multisig Bug, ???? URL:

https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/.
[23] P. Technologies, A postmortem on the parity multi-sig library self-destruct

(2017). URL: https://web.archive.org/web/20231106123811/https://www.parity.io/blog/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/.

[24] K. Nelaturu, A. Mavridou, A. G. Veneris, A. Laszka, Verified development and deployment of
multiple interacting smart contracts with verisolid, in: IEEE ICBC, IEEE, 2020, pp. 1–9.

[25] King of ether throne post-mortem investigation, 2016. URL: https://www.kingoftheether.com/
postmortem.html, https://www.kingoftheether.com/postmortem.html.

[26] G. Bigi, A. Bracciali, G. Meacci, E. Tuosto, Validation of decentralised smart contracts through
game theory and formal methods, in: Programming Languages with Applications to Biology and
Security, volume 9465 of Lecture Notes in Computer Science, Springer, 2015, pp. 142–161.

[27] K. Chatterjee, A. K. Goharshady, Y. Velner, Quantitative analysis of smart contracts, in: ESOP,
volume 10801 of Lecture Notes in Computer Science, Springer, 2018, pp. 739–767.

[28] C. Laneve, C. S. Coen, A. Veschetti, On the prediction of smart contracts’ behaviours, in: From
Software Engineering to Formal Methods and Tools, and Back, volume 11865 of Lecture Notes in

Computer Science, Springer, 2019, pp. 397–415.
[29] R. van der Meyden, On the specification and verification of atomic swap smart contracts (extended

abstract), in: IEEE ICBC, IEEE, 2019, pp. 176–179.
[30] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, E. Shi, Step by step towards creating a safe smart

contract: Lessons and insights from a cryptocurrency lab, in: Financial Cryptography Workshops,
volume 9604 of Lecture Notes in Computer Science, Springer, 2016, pp. 79–94.

[31] N. Atzei, M. Bartoletti, T. Cimoli, A survey of attacks on ethereum smart contracts (sok), in: POST,
volume 10204 of Lecture Notes in Computer Science, Springer, 2017, pp. 164–186.

[32] A. Miller, Z. Cai, S. Jha, Smart contracts and opportunities for formal methods, in: ISoLA (4),
volume 11247 of Lecture Notes in Computer Science, Springer, 2018, pp. 280–299.

[33] S. Badruddoja, R. Dantu, Y. He, K. Upadhyay, M. A. Thompson, Making smart contracts smarter,
in: IEEE ICBC, IEEE, 2021, pp. 1–3.

[34] R. Feichtinger, R. Fritsch, L. Heimbach, Y. Vonlanthen, R. Wattenhofer, Sok: Attacks on daos, in:
The 4th Workshop on Decentralized Finance (DeFi), 2024.

[35] A. Groce, J. Feist, G. Grieco, M. Colburn, What are the actual flaws in important smart contracts
(and how can we find them)?, in: Financial Cryptography, volume 12059 of Lecture Notes in

Computer Science, Springer, 2020, pp. 634–653.
[36] A. Mense, M. Flatscher, Security vulnerabilities in ethereum smart contracts, in: iiWAS, ACM,

2018, pp. 375–380.
[37] S. Sayeed, H. Marco-Gisbert, T. Caira, Smart contract: Attacks and protections, IEEE Access 8

(2020) 24416–24427.
[38] D. Harz, W. J. Knottenbelt, Towards safer smart contracts: A survey of languages and verification

methods, CoRR abs/1809.09805 (2018).
[39] A. Singh, R. M. Parizi, Q. Zhang, K. R. Choo, A. Dehghantanha, Blockchain smart contracts

formalization: Approaches and challenges to address vulnerabilities, Comput. Secur. 88 (2020).

https://lightning.network/lightning-network-paper.pdf
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://www.coindesk.com/learn/understanding-the-dao-attack/
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://web.archive.org/web/20231106123811/https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://web.archive.org/web/20231106123811/https://www.parity.io/blog/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html


[40] P. Tolmach, Y. Li, S. Lin, Y. Liu, Z. Li, A survey of smart contract formal specification and
verification, ACM Comput. Surv. 54 (2022) 148:1–148:38.

[41] R. B. Fekih, M. Lahami, M. Jmaiel, S. Bradai, Formal verification of smart contracts based on model
checking: An overview, in: WETICE, IEEE, 2023, pp. 1–6.

[42] E. M. Clarke, E. A. Emerson, Design and synthesis of synchronization skeletons using branching-
time temporal logic, in: Logic of Programs, volume 131 of Lecture Notes in Computer Science,
Springer, 1981, pp. 52–71.

[43] J. P. Queille, J. Sifakis, Specification and verification of concurrent systems in cesar, in: M. Dezani-
Ciancaglini, U. Montanari (Eds.), International Symposium on Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1982, pp. 337–351.

[44] E. M. Clarke, O. Grumberg, D. A. Peled, Model checking, 1st Edition, MIT Press, 2001.
[45] C. Baier, J. Katoen, Principles of model checking, MIT Press, 2008.
[46] S. Kripke, Semantical considerations on modal logic, Acta Philosophica Fennica 16 (1963) 83–94.
[47] R. M. Keller, Formal verification of parallel programs, Commun. ACM 19 (1976) 371–384.
[48] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE Computer Society, 1977, pp. 46–57.
[49] E. A. Emerson, J. Y. Halpern, "sometimes" and "not never" revisited: on branching versus linear

time temporal logic, J. ACM 33 (1986) 151–178.
[50] D. Harel, A. Pnueli, On the development of reactive systems, in: Logics and Models of Concurrent

Systems, volume 13 of NATO ASI Series, Springer, 1984, pp. 477–498.
[51] O. Kupferman, M. Y. Vardi, P. Wolper, Module checking, Inf. Comput. 164 (2001) 322–344.
[52] M. Bartoletti, Smart contracts contracts, Frontiers Blockchain 3 (2020) 27.
[53] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, M. T. Vechev, Securify: Practical

security analysis of smart contracts, in: CCS, ACM, 2018, pp. 67–82.
[54] M. Bartoletti, R. Zunino, Verifying liquidity of bitcoin contracts, in: POST, volume 11426 of Lecture

Notes in Computer Science, Springer, 2019, pp. 222–247.
[55] W. Jamroga, A. Murano, Module checking of strategic ability, in: AAMAS, ACM, 2015, pp. 227–235.
[56] Y. Shoham, K. Leyton-Brown, Multiagent Systems - Algorithmic, Game-Theoretic, and Logical

Foundations, Cambridge University Press, 2009.
[57] M. J. Wooldridge, An Introduction to MultiAgent Systems, Second Edition, Wiley, 2009.
[58] M. Bartoletti, R. Zunino, Bitml: A calculus for bitcoin smart contracts, in: CCS, ACM, 2018, pp.

83–100.
[59] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002) 672–713.
[60] C. Dima, F. L. Tiplea, Model-checking ATL under imperfect information and perfect recall semantics

is undecidable, CoRR abs/1102.4225 (2011).
[61] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of multi-agent systems with

imperfect information and public actions, in: AAMAS, ACM, 2017, pp. 1268–1276.
[62] K. Crary, M. J. Sullivan, Peer-to-peer affine commitment using bitcoin, in: PLDI, ACM, 2015, pp.

479–488.
[63] N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, R. Zunino, Developing secure bitcoin contracts with

bitml, in: ESEC/SIGSOFT FSE, ACM, 2019, pp. 1124–1128.
[64] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, J. F. Quesada, Maude:

specification and programming in rewriting logic, Theor. Comput. Sci. 285 (2002) 187–243.
[65] S. Eker, J. Meseguer, A. Sridharanarayanan, The maude LTL model checker, in: WRLA, volume 71

of Electronic Notes in Theoretical Computer Science, Elsevier, 2002, pp. 162–187.
[66] G. Madl, L. A. D. Bathen, G. H. Flores, D. Jadav, Formal verification of smart contracts using

interface automata, in: Blockchain, IEEE, 2019, pp. 556–563.
[67] W. Nam, H. Kil, Formal verification of blockchain smart contracts via ATL model checking, IEEE

Access 10 (2022) 8151–8162.
[68] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: an open-source model checker for the verification of

multi-agent systems, Int. J. Softw. Tools Technol. Transf. 19 (2017) 9–30.
[69] M. Bartoletti, T. Cimoli, R. Zunino, Fun with bitcoin smart contracts, in: ISoLA (4), volume 11247

of Lecture Notes in Computer Science, Springer, 2018, pp. 432–449.



[70] S. Busard, C. Pecheur, H. Qu, F. Raimondi, Reasoning about memoryless strategies under partial
observability and unconditional fairness constraints, Inf. Comput. 242 (2015) 128–156.

[71] N. Bulling, W. Jamroga, Comparing variants of strategic ability: how uncertainty and memory
influence general properties of games, Auton. Agents Multi Agent Syst. 28 (2014) 474–518.

[72] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning About Knowledge, MIT Press, 1995.
[73] X. Nicollin, J. Sifakis, An overview and synthesis on timed process algebras, in: CAV, volume 575

of Lecture Notes in Computer Science, Springer, 1991, pp. 376–398.
[74] A. Meski, W. Penczek, M. Szreter, B. Wozna-Szczesniak, A. Zbrzezny, Bdd-versus sat-based bounded

model checking for the existential fragment of linear temporal logic with knowledge: algorithms
and their performance, Auton. Agents Multi Agent Syst. 28 (2014) 558–604.

[75] A. Lomuscio, W. Penczek, H. Qu, Partial order reductions for model checking temporal-epistemic
logics over interleaved multi-agent systems, Fundam. Informaticae 101 (2010) 71–90.

[76] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, A. W. Mazurkiewicz, Towards partial order
reductions for strategic ability, J. Artif. Intell. Res. 68 (2020) 817–850.

[77] W. Jamroga, W. Penczek, T. Sidoruk, Strategic abilities of asynchronous agents: Semantic side
effects and how to tame them, in: KR, 2021, pp. 368–378.

[78] F. Laroussinie, N. Markey, G. Oreiby, On the expressiveness and complexity of ATL, Log. Methods
Comput. Sci. 4 (2008).

[79] P. Schobbens, Alternating-time logic with imperfect recall, in: LCMAS, volume 85 of Electronic

Notes in Theoretical Computer Science, Elsevier, 2003, pp. 82–93.
[80] W. Jamroga, W. van der Hoek, Agents that know how to play, Fundam. Informaticae 63 (2004)

185–219.
[81] N. Bulling, W. Jamroga, M. Popovici, Reasoning about strategic abilities: Agents with truly perfect

recall, ACM Trans. Comput. Log. 20 (2019) 10:1–10:46.
[82] D. P. Guelev, C. Dima, Model-checking strategic ability and knowledge of the past of communicat-

ing coalitions, in: DALT, volume 5397 of Lecture Notes in Computer Science, Springer, 2008, pp.
75–90.

[83] C. Dima, C. Enea, D. P. Guelev, Model-checking an alternating-time temporal logic with knowledge,
imperfect information, perfect recall and communicating coalitions, in: GANDALF, volume 25 of
EPTCS, 2010, pp. 103–117.

[84] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of multi-agent systems with public
actions against strategy logic, Artif. Intell. 285 (2020) 103302.

[85] M. Bartoletti, S. Lande, M. Murgia, R. Zunino, Verifying liquidity of recursive bitcoin contracts,
Log. Methods Comput. Sci. 18 (2022).

[86] A. Abate, J. Gutierrez, L. Hammond, P. Harrenstein, M. Kwiatkowska, M. Najib, G. Perelli,
T. Steeples, M. J. Wooldridge, Rational verification: game-theoretic verification of multi-agent
systems, Appl. Intell. 51 (2021) 6569–6584.

[87] N. Bulling, V. Goranko, Combining quantitative and qualitative reasoning in concurrent multi-
player games, Auton. Agents Multi Agent Syst. 36 (2022) 2.

[88] P. Bouyer, O. Kupferman, N. Markey, B. Maubert, A. Murano, G. Perelli, Reasoning about quality
and fuzziness of strategic behaviors, ACM Trans. Comput. Log. 24 (2023) 21:1–21:38.

[89] W. Jamroga, M. Mittelmann, A. Murano, G. Perelli, Playing quantitative games against an authority:
On the module checking problem, in: AAMAS, International Foundation for Autonomous Agents
and Multiagent Systems / ACM, 2024, pp. 926–934.

[90] T. Ågotnes, Y. N. Wáng, Resolving distributed knowledge, Artif. Intell. 252 (2017) 1–21.
[91] D. Kurpiewski, W. Jamroga, M. Knapik, STV: model checking for strategies under imperfect

information, in: AAMAS, International Foundation for Autonomous Agents and Multiagent
Systems, 2019, pp. 2372–2374.

[92] D. Kurpiewski, W. Pazderski, W. Jamroga, Y. Kim, Stv+reductions: Towards practical verification
of strategic ability using model reductions, in: AAMAS, ACM, 2021, pp. 1770–1772.


	1 Introduction
	2 Related Works
	3 Overview of BitML
	4 BitML Games
	5 Atl* model checking on BitML Games
	6 Use Cases
	7 Conclusion

