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Abstract
This study examines the impact of climate change on Soil Organic Carbon (SOC) stocks, with a particular focus on
Mineral-Associated Organic Carbon (MAOC)—a stable fraction of soil organic matter critical for long-term carbon
sequestration. This study aims to develop a predictive tool for estimating MAOC at a finer spatial resolution,
addressing gaps in current models and enabling cost-effective climate change mitigation strategies..

Using an extensive dataset from the Zenodo repository, augmented with detailed meteorological data, machine
learning techniques were employed—specifically, the Random Forest (RF) Regressor and Support Vector Machine
(SVM) Regressor. The RF model not only outperformed the SVM in predictive accuracy but also identified key
factors influencing MAOC content under various climate change scenarios.

These findings deepen our understanding of soil carbon sequestration potential in future climate condi-
tions, offering actionable insights for sustainable soil management and cost-effective climate change mitigation
strategies.
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1. Introduction

Soil organic carbon (SOC) is an indispensable component of the global carbon cycle that strongly
influences soil health, agricultural productivity and the climate system in general. SOC makes up a
significant part of the organic matter in soils and serves as the main source of nutrients for plants
and microorganisms. It improves soil structure, water retention, and resistance to erosion, making it
a cornerstone of sustainable agricultural practices. In addition to the immediate benefits to soil and
crop health, SOC plays a central role in the global carbon budget by sequestering carbon that would
otherwise contribute to increasing atmospheric carbon dioxide (CO2) levels, one of the main drivers
of climate change. The global carbon cycle is a complex network of processes in which carbon is
exchanged between the Earth’s atmosphere, the oceans, the biosphere, and the geosphere. Within this
cycle, soils are the largest terrestrial reservoir of organic carbon and contain more carbon than the
atmosphere and vegetation combined. The ability of soils to store carbon therefore has a significant
impact on climate regulation. When properly managed, soils can act as a carbon sink by absorbing
more CO2 from the atmosphere than they release, thus helping to mitigate climate change. Conversely,
poor land management practices or changing environmental conditions can turn soils into carbon
sources, releasing stored carbon back into the atmosphere and exacerbating global warming. A crucial
aspect of SOC is its stabilization within the soil matrix, which determines how long the carbon remains
sequestered in the soil. One of the most important mechanisms for the stabilization of SOC is its
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association with soil minerals, resulting in the so-called mineral-associated organic matter (MAOM).
MAOM is a part of organic matter that binds tightly to soil minerals, protecting them from microbial
decomposition and physical disturbance. This binding traps the carbon in the soil, making it less
likely to be released back into the atmosphere as CO2. The carbon fraction of MAOM, known as
mineral-associated organic carbon (MAOC), is particularly important because it represents a stable and
long-term storage form of SOC.
By understanding the dynamics of MAOC, we can better predict the long-term carbon storage

potential of soils and develop strategies to enhance this process. The stability of MAOC is influenced
by various factors, including soil type, mineralogy, and environmental conditions. However, one of the
most pressing questions in current research is how climate change will impact MAOC stability and,
by extension, the broader SOC stock. So, even if we shall devise a good method in the context of the
prediction, the topic we deal with here shall be subject of several investigations in the climate change
studies.

Climate change, in fact, introduces a new level of complexity to the study of SOC and MAOC. Rising
global temperatures, changing precipitation patterns, the increasing frequency of extreme weather
events, and shifts in vegetation cover are just some of the ways in which climate change can affect soil
processes. These changes can accelerate the decomposition of organic matter, disrupt the formation
of MAOM and alter the balance between carbon input and output in soil ecosystems. For example,
higher temperatures can increase microbial activity, leading to faster decomposition of organic matter
and potentially reducing the amount of carbon that is stabilized as MAOC. Changing precipitation
patterns can affect soil moisture, which is crucial for microbial processes and the decomposition of
organic matter. In some regions, increased precipitation could promote the formation of MAOM by
facilitating the movement of organic matter into the soil where it can bind with minerals. In other
regions, droughts could reduce plant growth and the supply of organic matter, limiting the formation
of new MAOM. Given these potential impacts, it is crucial to understand how MAOC will respond to
future climate scenarios.

Beyond understanding these changes in MAOM in general and MAOC in particular, lies one point that
could make the mitigation process effective: the ability to reduce the cost of the mitigation initiatives.
This can be done when we shall be able to detect the raster of the area where we need to provide the
initiative as small as possible. Scientists and policymakers will be able to predict changes in SOC stocks
and develop effective land management practices that can enhance soil carbon sequestration under
changing environmental conditions. This study utilizes Random Forest and Support Vector Machine
regression models to explore the intricate relationship between climate change and MAOC dynamics.
These models were selected for their ability to handle complex, non-linear interactions within large,
multifactorial datasets.

This study employs RF and SVM regressors to predict MAOC content, leveraging environmental and
climatic variables, including temperature, precipitation, soil type, and land use. The models’ ability
to handle non-linear relationships and interactions between variables makes it particularly useful for
identifying the most important factors that influence MAOC stability. Additionally, RF can provide
insights into the relative importance of different climatic factors, helping to pinpoint which aspects of
climate change are most likely to impact SOC stocks.
The rest of this paper is organized as follows: Section 2 provides references to relevant literature,

while Section 3 discusses the experimental design. Section 4 presents the results of the experiments,
and Section 5 introduces a discussion of the key findings. Finally, Section 6 takes some conclusions and
sketches further work.

2. Related Work

In this section, we review the current literature at the intersection of agronomy and climate change.
This review is motivated by the limited forecasting methods based on machine learning, which is the
central focus of this study. In contrast to studies applying Neural Networks and XGBoost to soil carbon



dynamics [2], this study focuses on Random Forest for its balance of accuracy and interpretability,
which is critical for ecological and policy decision-making.

The effectiveness of agricultural methods enhanced by artificial intelligence on a large scale has been
examined in prior studies. For instance, Tomazzoli et al. [3] explored the role of robotics in agriculture,
while Cristani et al. [4] investigated the application of drones in modernizing agriculture, particularly
in developing countries.
The relationship between climate change and Soil Organic Carbon (SOC) has been extensively

researched over recent decades. Many studies have examined the effects of rising temperatures, shifting
precipitation patterns, and land use changes on SOC dynamics. However, the specific impacts of
climate change on Mineral-Associated Organic Carbon (MAOC)—a stable fraction of SOC—remain
underexplored. Studies like Golchin et al. [5] demonstrated that increased temperatures accelerate
the decomposition of organic matter, leading to SOC loss. Wan et al. [6] highlighted that shifts in
precipitation patterns affect soil moisture, influencing microbial activity and SOC dynamics.
This study builds upon the dataset described by Whalen et al. [7], which provides foundational

insights into MAOM dynamics under changing climate conditions. By extending this dataset, our work
utilizes machine learning models to predict MAOC stability at a finer spatial resolution. Whalen et al[7].
emphasize the importance of soil mineralogy, climate conditions, and microbial traits in determining
the long-term stability of soil organic matter, with significant implications for carbon sequestration and
climate change mitigation.
SOC levels are influenced by various factors, both positive and negative, that must be considered

when forecasting the effects of climate change. While currently minor, shifts in agricultural practices,
such as increased adoption of plant-based diets and reduced meat consumption, could significantly alter
SOC dynamics, emphasizing the need for accurate predictive models.
MAOC, being more resistant to decomposition than other SOC fractions, plays a critical role in

soil stability. Xu et al. [8] highlighted the role of mineral-organic interactions in stabilizing MAOC.
However, the long-term stability of MAOC under changing climatic conditions remains uncertain.
Machine learning has recently gained prominence in soil science. For example, Matinfar et al. [9]
successfully applied machine learning to predict SOC content based on environmental variables, while
Bouslihim et al. [10] identified soil stability zones using similar methods.

Despite these advancements, several gaps persist in the literature. Research specifically addressing the
effects of climate change on MAOC stability is limited. While machine learning has been widely applied
to study SOC dynamics, its application in predicting MAOC stability and behavior remains relatively
unexplored. Furthermore, most studies focus on individual climatic factors, with few integrating
multiple variables to assess the overall impact of climate change on SOC and MAOC.
This study addresses these gaps by focusing on MAOC stability under climate change scenarios.

It employs machine learning techniques, specifically Random Forest and Support Vector Machines
(SVM), to model and predict MAOC content. Additionally, the study aims to identify the most critical
environmental factors influencing MAOC stability, classify soil samples into stability zones, and assess
their resilience to climate change. By exploring the non-linear relationships between climatic variables
and SOC dynamics, this research contributes to a nuanced understanding of soil carbon sequestration
potential under future climate conditions. Ultimately, it offers valuable insights for sustainable soil
management and climate change mitigation strategies.

3. Methodology

This study utilized machine learning techniques, specifically Random Forest (RF) and Support Vector
Machine (SVM) regressors, to enhance predictive modeling of Mineral-Associated Organic Carbon
(MAOC) stability. The methodology comprises several critical steps: data sourcing and preprocessing,
feature selection, model training and evaluation, and model interpretation. These steps are detailed
below.



3.1. Data Source and Preprocessing

The dataset used in this study was sourced from the Zenodo repository1, containing comprehensive
information on soil properties such as Soil Organic Carbon (SOC), Mineral-Associated Organic Carbon
(MAOC), and various climatic variables. To address the dataset’s initial limitations in climatic data
representation, additional meteorological variables were integrated from the Open-Meteo Historical
Weather API2. This process leveraged geographic coordinates to fetch variables like temperature,
precipitation, and soil moisture.
The final dataset, encompassing 1,231 entries and 396 columns, included a mix of climatic, land

use, and soil factors. Key attributes comprised Latitude, Longitude, SOC, MAOC, year of observation,
temperature-related variables, and vegetation types. Data preprocessing steps included:

• Handling Missing Values: Statistical imputation methods were applied to ensure data com-
pleteness.

• Normalization: Continuous variables were normalized to improve model performance and
convergence.

The enriched dataset forms a robust foundation for analyzing climate change’s impact on soil carbon
dynamics.

3.2. Feature Selection

Feature importance analysis was performed using Random Forest to identify variables most influential
in predicting MAOC stability. This process revealed that SOC, MAOC-to-SOC ratio, and climatic
factors (e.g., temperature and precipitation) were the most significant predictors. These features were
subsequently selected for model training to enhance prediction accuracy.

3.3. Model Training and Evaluation

Both RF and SVM regressors were employed for model training. The training process involved:

• Hyperparameter Tuning: Grid search and cross-validation were utilized to optimize model
performance.

• Performance Metrics: Models were evaluated using Mean Squared Error (MSE) and R-squared
(𝑅2) values. The RF model outperformed the SVM model due to its superior ability to capture
non-linear interactions among features.

3.4. Model Interpretation

The RF model provided feature importance scores, offering insights into how various climatic and soil
variables influence MAOC stability. This interpretability is essential for understanding ecological drivers
and identifying actionable strategies for land management. The findings underline the importance of
SOC and climatic factors in determining long-term carbon sequestration potential.

3.5. Analysis Steps

The following analysis steps were undertaken:

1. Feature Importance Analysis: Random Forest was used to identify significant features impact-
ing MAOC stability in the original dataset.

2. Climatic Influence Analysis: The enriched dataset was analyzed to determine how specific
climatic variables affect SOC dynamics and to identify climatic zones most influenced by MAOC.

1The data can be accessed via the following link: https://zenodo.org/record/5987644#.Y-53q3aZPIX
2API documentation: https://open-meteo.com/en/docs/historical-weather-api
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3. SOC Impact Analysis: Zones with exceptionally high SOC levels were examined for their
contribution to CO2 emissions.

4. Model Predictions and Comparisons: The developed RF and SVM models were compared to
assess their predictive accuracy and performance.

4. Results and Analysis

In this section, we present the results of the analysis we conducted, which employed two regression
methods -Random Forest Regressor and Support Vector Machine Regressor— to predict the stability
of Mineral-Associated Organic Carbon (MAOC). We assessed the performance of these models using
regression metrics, specifically Mean Squared Error (MSE) and R-squared (𝑅2). Additionally, we
identified key climatic factors influencing Soil Organic Carbon (SOC) dynamics.
The analysis yielded four main insights:

1. Identification of Significant Features: We determined the most significant features impacting
MAOC stability using the original dataset from the Zendro repository. This identification helps
in understanding which factors are most influential in predicting MAOC stability.

2. Understanding Climatic Influences on SOC Dynamics: We gained insights into how specific
climatic variables contribute to variations in SOC dynamics. The analysis also highlighted which
climatic zones are most affected by MAOC, providing a clearer picture of the relationship between
climate and MAOC stability.

3. SOC Levels and CO2 Emissions: We observed that SOC levels are exceptionally high in certain
zones. This finding has significant implications as it indicates a substantial contribution to CO2
emissions, underscoring the importance of these zones in the global carbon cycle.

4. Model Predictions and Comparisons: We predicted MAOC stability using the developed mod-
els and compared their performance. The results, including graphical representations, illustrate
the effectiveness of each model and provide a visual comparison of their predictions.

These insights underscore the critical role of SOC in the global carbon cycle and its potential impact
on climate change.

4.1. Key Analyses

1 Feature Importance Analysis((Original Dataset): Random Forest regression was used
to rank features by their predictive power. Variables like SOC, MAOC-to-SOC ratio,
and climatic conditions were assessed for their contribution to MAOC predictions). The
dataset includes variables that capture the geographical coordinates (latitude and longitude),
time (year), and ecological context (biome, natural vegetation management, and climatic zone)
of specific locations. It also includes detailed soil measurements (depth, soil organic carbon,
mineral-associated organic carbon) critical for assessing soil health and carbon storage. The
MAOC-to-SOC ratio serves as a key metric for assessing the stability of soil organic carbon,
offering valuable insights into long-term sequestration potential and ecosystem resilience.Model
performance metrics indicate that Random Forest significantly outperformed SVM in predicting
MAOC stability . Consequently, feature importance analysis focuses on Random Forest results
due to its superior accuracy. SOC and the MAOC-to-SOC ratio emerged as the most influential
predictors of MAOC stability, highlighting the central role of SOC in soil carbon sequestration.
(Table 1). Table 1 and Figure 1 shows the correlations between all features(right). Understanding
these features allows researchers to focus on the environmental factors that most strongly
influence the stability of MAOC in soils.
To explore the relationships between Mineral-Associated Organic Carbon (MAOC) content and
various climate zones, categorized as B (dry), C (temperate), D (continental), and E (polar), we



Table 1
Top 10 Most Important Features for MAOC Stability

Rank Feature Importance
1 SOC 0.741136
2 MAOCtoSOC 0.231405
3 Lon 0.006446
4 Lat 0.004193
5 Biome_Grassland 0.000607
6 Biome_Temperate Forest 0.000589
7 Climzone_D 0.000321
8 Climzone_C 0.000265
9 Biome_Shrubland 0.000219
10 Natvman_Natural 0.000174

Figure 1: This combined visualization presents a side-by-side comparison of the top 10 features influencing
MAOC stability (left) and the correlations between all features (right). Together, they offer insights into
the importance of individual features and how they interact.

investigated how these climatic conditions correlate with a range of environmental and soil-
related variables. These variables include temperature, precipitation, and Soil Organic Carbon
(SOC) levels. The goal of this analysis is to explore how MAOC content fluctuates across different
biomes and climate zones, thereby identifying potential patterns in carbon storage within mineral-
associated organic carbon across diverse ecosystems. By examining these correlations, we aim
to gain a deeper understanding of how varying climatic conditions influence the distribution
and stability of MAOC, which could provide insights into the broader implications for carbon
sequestration and soil health across different environmental contexts.

2 Climatic Influence Analysis(Extended Dataset) Random Forest regression on the enriched
dataset with additional meteorological variables was conducted to evaluate how climatic factors
(e.g., precipitation, temperature) affect SOC and MAOC dynamics. Temperature and moisture lev-
els are critical factors in determining the rate of organic matter decomposition and, consequently,
MAOC stability. Higher temperatures can accelerate decomposition rates, while soil moisture
levels influence the microbial activity that breaks down organic matter. However, the interaction
between temperature and moisture can be complex—e.g., very wet or dry conditions can slow
down decomposition. We analyze the interaction between temperature, soil moisture, and MAOC
stability. we analyzed to see important factors that impact MAOC stability in the extended dataset.
Table 2 shows the top 10 parameters affecting MAOC value in the extended dataset(the dataset
that includes all meteorological data). i.e The table ranks features based on their importance



Figure 2: Comprehensive analysis of MAOC content, including bar plots of average MAOC by
biome, average MAOC by climate zone, and the MAOC-to-SOC ratio distribution by biome, to
illustrate spatial and environmental variability. This figure includes: (1) Bar Plot of Average MAOC
Content by Biome showing the average MAOC content across various biomes. (2) Average MAOC content
across climate zones (A-E), highlighting significant variations in carbon sequestration potential among zones.
illustrating the average MAOC content across different climate zones. (3) Boxplot of MAOC to SOC Ratio
by Biome indicating the relationship between MAOC and SOC across biomes. (4) Heatmap of Average
MAOC Content by Biome and Climate Zone combining biome and climate zone data to visualize their
interaction effect on MAOC content.

scores, with SOC being the most significant factor.. whereas Figure 2 shows Feature importance
for predicting MAOC stability and 3 shows the comparison of the top 10 features influencing
MAOC stability (left) and the correlations between all features (right). Together, they offer insights
into the importance of individual features and how they interact
In Figure4 the correlation heatmap (a) reveals the interdependencies between variables, while the
average values plot (b) displays the mean metrics across various climzone,i.e Tropical Climates
(A), Arid Climates (B), Temperate Climates (C), Continental Climates (D), Polar Climates (E),
4a Correlation heatmap showing the relationships between different variables. i.e between
the climzone(i.e A, B, C, D, E) and Top 10 parameters influencing the MAOC and 5 show the
distribution of various soil and climate-related variables across different climate zones

3 SOC Impact Analysis: In this analysis, we investigate zones with exceptionally high Soil Organic
Carbon (SOC) levels and their contribution to CO2 emissions. SOC is a crucial component of



Rank Feature Importance
1 SOC 0.743450
2 MAOCtoSOC 0.214718
3 soil_temperature_100_to_255cm (∘C) - min 0.004954
4 dewpoint_2m (∘C) - min 0.004788
5 Lon 0.003179
6 dewpoint_2m (∘C) - max 0.002164
7 soil_temperature_100_to_255cm (∘C) - max 0.001746
8 precipitation (mm) - max 0.001657
9 temperature_2m (∘C) - max 0.001585
10 relativehumidity_2m (%) - min 0.001546

Table 2
Feature importance for predicting MAOC stability.

Figure 3: This combined visualization presents a side-by-side comparison of the top 10 features influencing
MAOC stability (left) and the correlations between all features (right)

soil health, playing a significant role in the global carbon cycle. While SOC is vital for soil
fertility and ecosystem functioning, it is also a major carbon reservoir. When SOC levels are
disturbed—whether through land use changes, deforestation, agricultural practices, or climate
change—this stored carbon can be released into the atmosphere as carbon dioxide (CO2), a potent
greenhouse gas. Consequently, areas with high SOC levels have the potential to significantly
contribute to CO2 emissions if not managed sustainably. The investigation aims to identify these
high SOC zones, assess their current carbon storage capacity, and evaluate their potential risk
of CO2 emissions. By understanding the relationship between SOC levels and CO2 emissions,
we can better inform land management practices and climate change mitigation strategies. This
analysis is critical in guiding policies that balance the need for agricultural productivity with the
urgency of reducing atmospheric CO2 levels. In figure6, shows the contribution of each climate
zone to potential CO2 emissions and the correlation between SOC levels and key environmental
variables.

• Model Predictions and Comparisons The Random Forest model outperformed the SVM model
in predicting MAOC stability, as shown in Figure X. This suggests that ensemble methods are
better suited for capturing the non-linear relationships inherent in soil carbon dynamics. In figure
7 and 8, we showed the correlation between SOC levels and key environmental variables and the
Comparison of the Random Forest Regressor and Support Vector Regressor models respectively.



(a) Correlation heatmap showing relationships be-
tween climatic zones (A, B, C, D, E) and the top
10 parameters influencing MAOC.

(b) Average MAOC values across different climatic
zones (A, B, C, D, E).

Figure 4: (a) Correlation heatmap and (b) average MAOC values for different climatic zones.

Figure 5: Distribution of various soil and climate-related variables across different climate zones (A, B, C,
D, and E). The x-axis represents the climate zones, while the y-axis shows the respective values for each
variable.



Figure 6: Contribution of each climate zone to potential CO2 emissions. This visualization highlights the
proportional impact of climate zones on emissions.

Figure 7: A heatmap showing the correlation between SOC levels and key environmental variables,
indicating how other factors influence SOC levels.

Figure 8: Comparison of the Random Forest Regressor and Support Vector Regressor models based on
Mean Squared Error (MSE) and R2 scores, highlighting the performance differences between the two
models.

5. Key Findings’ Discussion

This section synthesizes the insights gained from the analysis and discusses their implications in the
broader context of soil carbon dynamics, climate change, and model performance. To ensure clarity
and readability, the key findings and their broader implications are structured into subsections.



5.1. Key Findings

5.1.1. Significant Features in Predicting MAOC Stability

The analysis revealed that Soil Organic Carbon (SOC) and the ratio of Mineral-Associated Organic
Carbon to Soil Organic Carbon (MAOC to SOC) are the most critical factors in predicting MAOC
stability. This underscores the direct relationship between SOC levels and the stability of organic carbon
within soils, highlighting the importance of maintaining high SOC levels to ensure long-term carbon
sequestration. Other features, such as geographic coordinates (latitude and longitude), biomes, and
climate zones, were found to have a lesser but still notable impact. These results suggest that while
local environmental conditions are less influential, they still play a role in determining MAOC stability.

5.1.2. Climatic Influence on SOC Dynamics

Climatic factors, particularly temperature and moisture, have a significant impact on SOC dynamics.
Higher temperatures and varying moisture regimes affect organic matter decomposition rates, which
in turn influence the stability of MAOC. The complex interaction between these factors, as reflected
in the model’s interaction terms, suggests that extreme dryness and excessive moisture can limit
decomposition, thereby affecting MAOC stability. This finding highlights the necessity of accounting
for local climatic conditions in any assessment of carbon sequestration potential.

5.1.3. SOC Levels and CO2 Emissions

The identification of zones with exceptionally high SOC levels reveals a dual-edged sword: while these
zones serve as crucial carbon reservoirs, they also pose a significant risk for CO2 emissions if disturbed.
Specific climate zones, such as temperate and continental regions, were highlighted as areas with high
SOC levels. This underscores the importance of sustainable land management practices in these regions
to prevent the release of stored carbon and contribute to climate change mitigation.

5.1.4. Model Performance Comparison

The Random Forest Regressor and Support Vector Machine Regressor models demonstrated differing
levels of accuracy in predicting MAOC stability. The Random Forest model outperformed the Support
Vector Machine model in both Mean Squared Error (MSE) and R2 metrics. This suggests that ensemble
methods like Random Forest are better suited for capturing the complex, non-linear relationships
inherent in soil carbon dynamics. The superior performance of the Random Forest model also implies
that it could be a more reliable tool for policymakers and scientists working on soil carbon management.

5.2. Discussion

5.2.1. Model Effectiveness and Future Directions

While the Random Forest model demonstrated superior performance, future work could explore ad-
vanced methods such as XGBoost or deep neural networks to further enhance accuracy. However,
Random Forest’s interpretability and feature importance capabilities make it ideal for understanding the
ecological drivers of MAOC stability. Compared to existing approaches, our method offers finer spatial
resolution and greater clarity in identifying key climatic influences on MAOC dynamics. The identifica-
tion of SOC as a critical factor in MAOC stability underscores the need for targeted conservation efforts
to preserve and enhance SOC levels, particularly in regions identified as high-risk for CO2 emissions.

5.2.2. Climatic Factors and Carbon Dynamics

The interaction between climatic variables and SOC underscores the complexity of soil carbon processes.
Climate change, through alterations in temperature and moisture regimes, could significantly impact
the stability of soil carbon stocks. This finding aligns with broader concerns about feedback loops



between climate change and carbon cycling, where warming temperatures could lead to increased
carbon release from soils, further exacerbating global warming.

5.2.3. Applications of Model Insights

The analysis provides data that can be utilized to refine forecasting processes and reduce raster sizes
for targeted interventions. For example, by identifying areas prone to MAOC instability, actions such
as seeding or other mitigation strategies can be more effectively implemented. This approach not only
enhances precision but also supports cost-effective land management strategies.

5.2.4. Summary of Implications

The comparison of model performances adds another layer of understanding. The effectiveness of the
Random Forest model in predicting MAOC stability suggests that it can serve as a powerful tool for
future research and practical applications. Its ability to handle complex interactions and non-linearities
makes it particularly well-suited for environmental modeling, where such complexities are common.
In summary, this study provides robust evidence that SOC plays a pivotal role in the stability of

MAOC and, by extension, the global carbon cycle. It also emphasizes the importance of climatic factors
in shaping these dynamics. The findings highlight the pivotal role of SOC in ensuring MAOC stability
and emphasize the need for region-specific land management practices. The demonstrated efficacy
of the Random Forest model underscores the potential of machine learning in advancing predictive
accuracy for soil carbon dynamics, enabling more targeted and cost-effective mitigation strategies.

6. Conclusion

This study provides a novel approach to understanding soil carbon dynamics by integrating Random
Forest-based predictive modeling with feature importance analysis. By identifying key predictors
of MAOC stability, such as SOC and MAOC-to-SOC ratio, and refining predictions to a finer spatial
resolution, this research contributes actionable insights for sustainable land management and climate
change mitigation. By providing insights at a finer spatial resolution, our approach offers actionable data
for climate change mitigation and sustainable land management. By identifying the key variables that
affect soil carbon, such as SOC, climate, and geographic conditions, this research provides a foundation
for more targeted conservation and land management efforts aimed at mitigating climate change. The
superior performance of the Random Forest model further suggests that advanced machine learning
techniques can play a crucial role in environmental research, offering accurate and actionable insights
into complex ecological processes.
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