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Abstract
The scheduling of radiation therapy is a complex problem that significantly impacts patient outcomes and the use
of healthcare resources. This paper proposes a novel formalization of the radiotherapy scheduling problem (RTSP)
as a modified one-dimensional bin-packing problem (BPP). This formalization offers several advantages, including
leveraging state-of-the-art solvers for the one-dimensional BPP and extending the formulation to various BPP
variants that align with the complexities of the RTSP. Preliminary results on a synthetic instance demonstrate the
feasibility of the proposed approach.
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1. Introduction

Radiotherapy is a significant component of cancer treatment. It involves delivering precise radiation
doses to the tumor sites while minimizing damage to surrounding healthy tissues. It is critical for
a patient to start treatment as soon as possible for a successful cure. Thus, effective scheduling of
radiation therapy treatments is a complex problem that directly impacts patient outcomes and good
utilization of healthcare resources. Existing approaches often rely on novel formalizations of the
problem, often solved with exact methods from Operational Research or metaheuristics such as Genetic
Algorithms (GAs). In this paper, we propose a formalization of the problem starting from a well-known
combinatorial problem, the one-dimensional Bin-Packing Problem (BPP). The one-dimensional BPP is
a well-studied combinatorial optimization problem that involves packing items of varying sizes into
a minimum number of bins of equal capacity. By mapping radiotherapy treatments to items and the
linear accelerator machine (LINAC) to a bin, we establish a clear correspondence between these two
problems. This new formalization offers several advantages:

• Leveraging State-of-the-Art Solvers: The one-dimensional BPP has been extensively researched,
leading to the development of efficient, effective, and scalable algorithms. By mapping the Radio-
therapy Scheduling Problem (RTSP) as a one-dimensional BPP, we can use these existing solvers to
improve the quality of treatment schedules.

• Extending to other BPP versions: The versatility of the one-dimensional BPP allows its extension
to various variants that align with the complexities of the RTSP. For instance, online BPP can address
scenarios in which the number and characteristics of patients are not known in advance, while
extensible BPP (EBP) can incorporate constraints related to potential working overtime of the medical
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staff. Stochastic EBP can further capture the innate variability in treatment times arising from pre-
and post-treatment procedures.

The remainder of the article is organized as follows. Section 2 presents the background concepts on
the RTSP and the main formalization of the BPP. Section 3 describes our proposed formalization for the
RTSP, which is the main contribution of this paper. Section 4 summarizes the relevant related works
on the scheduling of healthcare operations and, more deeply, on radiotherapy scheduling. Section 5
shows the preliminary results of our new formalization, starting from a synthetic instance solved with
an Integer Linear Programming (ILP) solver. Finally, Section 6 ends this article.

2. Background

Hereafter we first briefly summarize the main concepts of radiotherapy and its workflow, then we
briefly present the BPP.

2.1. Radiotherapy

Radiotherapy is a cancer treatment that involves the use of radiation to attack and kill cancer cells.
Since radiation has limited precision, although research in the field has advanced considerably, it is
the responsibility of doctors and medical physicists to test and calibrate both the radiation doses and
the position of the machine in relation to the patient’s body as effectively as they can. Optimizing the
workflow that goes from the time the tumor is diagnosed and the choice of radiotherapy as a treatment
to the actual moment the patient undergoes it is therefore of paramount importance. Figure 1 visually
shows the macro-stages of a typical radiotherapy workflow, which are briefly described below:

• Consultation: After the patient is diagnosed with the tumor and radiation therapy is recommended
as treatment, a preliminary consultation is conducted between the patient and the radiotherapist.

• Scanning: As the consultation ends with positive feedback from both the patient and the radiothera-
pist, the pre-treatment flow starts. Firstly, the patient undergoes a series of scans to delineate the
tumor’s position.

• Image Post-Processing: The resulting image of the scan is post-processed to become as usable and
understandable as possible.

• Contouring: At this point, the contouring phase starts: the scanned image, after being post-processed,
is then used to contour the tumor. This phase is actually very delicate, as the contouring continuously
undergoes a review to make sure that it is perfectly executed.

• Treatment Planning: The final phase before starting the treatments is used to define the treatment
planning. In this context, the dose distribution and the plan for the radiotherapy sessions are decided.

• Treatment: After all the pre-treatment phases are completed, the actual treatment can start. This
last phase is crucial, as the schedule of the treatment sessions can significantly impact the patient’s
health and well-being.

The above-mentioned phases underline the importance of developing a formalization for the RTSP that
allows the optimization of the entire radiotherapy workflow. Sub-optimal solutions to this problem can
in fact lead to significant disruptions for patients, including long waiting times, underutilized equipment,
and disruptions due to unforeseen events.



Figure 1: Typical workflow of a radiotherapy treatment.

2.2. One-dimensional Bin-Packing Problem

The one-dimensional BPP is one of the most known and studied combinatorial problems, known to
belong to the class of NP-hard problems. In the BPP, objects of different sizes must be packed into a
finite number of bins or containers of fixed capacity, in order to minimize the number of bins used. It
is a combinatorial problem with several areas of application, e.g., in logistics, cloud computing, and
resource allocation. It can be formalized as a linear programming problem [2]:
Parameters
𝑠𝑗 (𝑗 = 1, … , 𝐽 ) size of item 𝑗
𝑐𝑖 (𝑖 = 1, … , 𝐼 ) capacity of bin 𝑖

Variables
𝑦𝑖 (𝑖 = 1, … , 𝐼 ) 1 if bin 𝑖 is used, 0 otherwise
𝑥𝑖𝑗 (𝑖 = 1, … , 𝐼 ; 𝑗 = 1, … , 𝐽 ) 1 if item 𝑗 is packed in bin 𝑖, 0 otherwise

Objective

min
𝐼

∑
𝑖=1

𝑦𝑖 (1)

Constraints
𝐼

∑
𝑖=1

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ [1, … , 𝐽 ] (2)
𝐽
∑
𝑗=1

𝑠𝑗𝑥𝑖𝑗 ≤ 𝑐𝑖𝑦𝑖 ∀𝑖 ∈ [1, … , 𝐼 ] (3)

The objective presented in Equation (1) describes the goal of the BPP, namely minimizing the number of
used bins. The constraint described in Equation (2) states that each item must be packed in exactly one
container, while the constraint in Equation (3) states that the amount packed in each container cannot
exceed its capacity. A visual example of the BPP is shown in Figure 2. It can be seen that the different
colors of the items correspond to different sizes of them. The goal of the problem is to minimize the
number of bins used, assuming that one knows in advance the quantity and size of the items to be
packed.

Figure 2: A visual example of the one-dimensional BPP.



3. Proposed modified one-dimensional Bin-Packing Problem

We propose a new formulation of the one-dimensional BPP which is used to formalize the RTSP. In this
new formulation, each item is part of a group, and all items within the same group must be packed
together in consecutive groups of bins. The bins are also grouped, with each group containing a fixed
number of bins with a set capacity. When packing items from a group 𝑘, each item 𝑗 must be placed
in any bin 𝑖 within a group 𝑑 that has enough space. In a further development of the problem, some
constraints on which bin 𝑖 of the group 𝑑 can be used for item 𝑗may arise. This problem can be expressed
as a linear programming model:
Parameters
𝑠𝑗,𝑘 (𝑘 = 1, … , 𝐾; 𝑗 = 1, … , 𝐽𝑘) size of item 𝑗 of group 𝑘
𝑐𝑖,𝑑 (𝑑 = 1, … , 𝐷; 𝑖 = 1, … , 𝐼𝑑) capacity of bin 𝑖 of group 𝑑
𝑀𝑑 = 𝐼𝑑 (𝑑 = 1, … , 𝐷) maximum bins’ number for each group 𝑑
𝐼𝑘 (𝑘 = 1, … , 𝐾) sets of bins allowed for each group 𝑘

Variables
𝑦𝑖,𝑑 (𝑑 = 1, … , 𝐷; 𝑖 = 1, … , 𝐼𝑑) 1 if bin 𝑖 of group 𝑑 is used, 0 otherwise
𝑥𝑗,𝑘,𝑖,𝑑 (𝑘 = 1, … , 𝐾; 𝑗 = 1, … , 𝐽𝑘; 𝑑 = 1, … , 𝐷; 𝑖 =

1, … , 𝐼𝑑)
1 if item 𝑗 of group 𝑘 is packed in bin 𝑖 of
group 𝑑, 0 otherwise

𝑧𝑑 (𝑑 = 1, … , 𝐷) 1 if a bin of group 𝑑 is used, 0 otherwise,
i.e. 1 if ∑𝐼𝑑

𝑖=1 𝑦𝑖,𝑑 ≥ 1, 0 otherwise
Objective

min
𝐷
∑
𝑑=1

𝑧𝑑𝑑 (4)

Constraints
𝐷
∑
𝑑=1

𝐼𝑑
∑
𝑖=1

𝑥𝑗,𝑘,𝑖,𝑑 = 1 ∀𝑘 ∈ [1, … , 𝐾], ∀𝑗 ∈ [1, … , 𝐽𝑘] (5)

𝐾
∑
𝑘=1

𝐽𝑘
∑
𝑗=1

𝑠𝑗,𝑘𝑥𝑗,𝑘,𝑖,𝑑 ≤ 𝑦𝑖,𝑑𝑐𝑖,𝑑 ∀𝑑 ∈ [1, … , 𝐷], ∀𝑖 ∈ [1, … , 𝐼𝑑] (6)

∑
𝑖
𝑥𝑗,𝑘,𝑖,𝑑 = ∑

𝑖
𝑥𝑗+1,𝑘,𝑖,𝑑+1 ∀𝑘 ∈ [1, … , 𝐾], ∀𝑗 ∈ [1, … , 𝐽𝑘 − 1], ∀𝑑 ∈ [1, … , 𝐷 − 1] (7)

𝐼𝑑
∑
𝑖
𝑦𝑖,𝑑 ≤ 𝑀𝑧𝑑 ∀𝑑 ∈ [1, … , 𝐷] (8)

1 −
𝐼𝑑
∑
𝑖
𝑦𝑖,𝑑 ≤ 𝑀(1 − 𝑧𝑑) ∀𝑑 ∈ [1, … , 𝐷] (9)

𝐼𝑑∖𝐼𝑘
∑
𝑖
𝑥𝑗,𝑘,𝑖,𝑑 = 0 ∀𝑑 ∈ [1, … , 𝐷], ∀𝑘 ∈ [1, … , 𝐾], ∀𝑗 ∈ [1, … , 𝐽𝑘] (10)

The objective presented in Equation (4) describes the goal of the modified BPP, namely minimizing the
number of used groups of bins. The constraint described in Equation (5) states that each item 𝑗 of each
group 𝑘 must be packed in exactly one bin 𝑖 of group 𝑑, while constraint in Equation (6) states that the
amount packed in each bin cannot exceed its capacity. In Equation (7), another constraint assures that
all items must be packed consecutively in bins’ groups: if item 𝑗 is in group 𝑑, then item 𝑗 + 1 must
be in group 𝑑 + 1. Equation (8) and Equation (9) force each variable 𝑧𝑑 to take value 1 if ∑𝐼𝑑

𝑖 𝑦𝑖,𝑑 ≥ 1,
and 0 otherwise. Finally, Equation (10) states that no item of group 𝑘 can be packed in a bin that is not
allowed by the group.



Figure 3: A visual example of the proposed modified one-dimensional BPP.

A visual example of the proposed modified BPP is shown in Figure 3. Different colors indicate
different groups of items. Each item in a group has a number identifying it. It can be seen how each
item in a group is packed consecutively, as stated in Equation (7). In this case, the minimum number of
groups of bins to be used is 6.
The RTSP can be straightforwardly mapped to this modified one-dimensional BPP formulation. In

fact, each 𝑘 is a patient and each fraction is an item 𝑗. Each group of bins𝑑 corresponds to a day and each
bin 𝑗 in a group 𝑑 is a specific machine for the day 𝑑. For what concerns the availability of machines in
terms of maintenance and in terms of medical personnel that can use the machine, it can be modulated
by varying the capacity of the bin that correspond to that machine in that specific day. In a broader
view, all the workflow of the patient radiotherapy can be formulated as our modified BPP, by adding
some more constraints.

4. Related works

In this section, we first introduce articles that tackle the wider topic of healthcare scheduling, and
then we deepen the literature for the RTSP. We categorize those works into (1) workflow schedul-
ing, (2) appointment scheduling, (3) online appointment scheduling, and (4) appointment scheduling
formalizations.

Healthcare scheduling. In the last few years, several research efforts have been carried out to
develop healthcare resource allocation decision support tools. For example, Kokangul [3], Oddoye et al.
[4], Zhang et al [5], Ma and Demeulemeester [6], and Holm et al. [7] developed tools for solving the
bed capacity problem. Instead, Wang et al. [8] conducted a study related to operating room capacity.
Ordu et al. [9] followed a forecasting-simulation-optimization approach for optimizing the level of
resources of a National Health Service. Concerning the problem of patient appointments, Squires et
al. [10] developed a novel genetic algorithm for the scheduling of repetitive Transcranial Magnetic
Stimulation (rTMS) appointments.

Workflow scheduling. For the specific case of planning and scheduling of patients’ treatments
in radiotherapy, there are several studies that have explored the field. Some authors explored the
scheduling of the entire radiotherapy process. For instance, Petrovic et al. [11] developed three patient-
priority GAs to schedule the entire radiotherapy process–from consultation to treatment–aiming to (i)
minimize patient waiting times and (ii) minimize breaches of waiting time targets. These objectives were
normalized and weighted using a scalarization approach. Their model considers real-life constraints
like doctors’ schedules, machine availability, patient categories, and waiting time targets. Vieira et
al. focused on specific stages of radiotherapy. Firstly, they introduced a stochastic Mixed-Integer
Linear Programming (MILP) model to optimize the allocation of radiation therapist technologists (RTTs)
during pre-treatment, considering stochastic patient inflows [12]. Later, they developed a MILP model



to develop weekly treatment schedules, taking patient time window preferences into account [13].
Eventually, this model was tested on real data from two radiotherapy centers, where it demonstrated
improved performance by reducing LINAC switches and better aligning with patient preferences
compared to manual scheduling methods [14]. More recently, Hoffmans-Holtzer et al. combined a multi-
objective Genetic Algorithm (NSGA-II) with MILP to optimize pre-treatment preparation scheduling
[15]. Their model balances average patient preparation time with the risk of overtime, offering tactical
decision-making insights based on factors like patient volume, staff composition, and clinic hours.

Appointment scheduling. Several works have focused solely on scheduling radiotherapy treatment
appointments, bypassing the pre-treatment phases. The majority of these works focused on using
Operational Research approaches. Early work by Conforti et al. [16] formulated the scheduling problem
as an ILP, focusing on maximizing the number of patients to be scheduled under four conditions: (i)
patient priority, (ii) number of treatment sessions, (iii) consecutive treatment days, and (iv) treatment
duration in weeks. Later, they added minimizing patient waiting times as an objective [17], and then
further extended the initial model to incorporate patient availability [18]. Sauré et al. formulated the
RTSP as a discounted infinite-horizon Markov Decision Process (MDP) model [19]. They expanded the
work by Partick et al. [20] by introducing multiple appointment requests, different session durations,
and allowing overtime. They transformed the MDP into a Linear Programming (LP) model and solved its
dual problem using the Column Generation (CG) algorithm. More recently, Pham et al. proposed a two-
phase approach: first, assigning sessions to specific LINACs and days using ILP, and then deciding the
sequence of patients on each day/LINAC and the specific appointment times with MILP and Constraint
Programming models [21]. This approach was tested on data from CHUM, a large cancer center in
Montréal. Finally, Frimodig et al. compared three optimization methods: (i) Integer Programming (IP),
(ii) Column Generation IP (CG-IP), and (iii) Constraint Programming, focusing on minimizing waiting
times and maximizing patient preference fulfilment [22]. They also modeled urgent patient arrivals
and machine interruptions. A later study by the same authors focused specifically on the Column
Generation algorithm, addressing additional constraints such as machine compatibility, individualized
protocols, and multiple hospital sites [23].

Online appointment scheduling. Another challenge in radiotherapy scheduling is the continuous
and uncertain arrival of patients. Legrain et al. addressed this by integrating patient arrival uncertainty
into a method that combines stochastic and online optimization [24]. Their model utilizes future
patient arrival information to better predict resource utilization, adapting an online stochastic algorithm
developed by Legrain and Jaillet [25] for real-world radiotherapy scheduling, to determine the initial
treatment day and time slot on a LINAC. Additionally, Braune et al. considered the uncertainty of
patient preparation and exit times during treatment scheduling [26]. They developed a model for
planning appointment times under uncertain duration, employing a combination of GAs and Monte
Carlo simulations to heuristically solve the problem.

Appointment scheduling formalizations. In the context of radiotherapy, Vogl et al. modeled
treatment appointments at an ion beam facility as a modified job shop scheduling problem (JSP) [27].
They established custom constraints and aimed to minimize the operation time of the bottleneck
resource, the particle beam, while also reducing violations of time window constraints. To solve this
problem, they employed three metaheuristic methods: (i) a GA, (ii) Iterated Local Search, and (iii) a
combination of the two.
While previous research has explored the JSP paradigm for ion beam therapy, our work focuses on

traditional RTSP. Unlike the first, where treatments require precise start times, the latter primarily
involves assigning patients to suitable treatment days and then finding the best start times.



Patient Fractions Duration Machines
allowed

p1 1: 12, 2: 6, 3: 6, 4: 6, 5: 6 m1, m2
p2 1: 16, 2: 8, 3: 8, 4: 8, 5: 8 m2
p3 1: 14, 2: 7, 3: 7, 4: 7, 5: 7 m1
p4 1: 10, 2: 5, 3: 5, 4: 5, 5: 5 m2
p5 1: 14, 2: 7, 3: 7, 4: 7, 5: 7 m1

Table 1
Patients data.

Machine Day [capacity in minutes]
m1 1 [25], 2 [20], 3 [20], 4 [25],

5 [20], 6 [25], 7 [25], 8 [20], …
m2 1 [25], 2 [15], 3 [25], 4 [20],

5 [25], 6 [25], 7 [25], 8 [25], …

Table 2
Machines capacities.

5. Preliminary Results

This section introduces and explains the synthetic instance created to generate preliminary results to
test the proposed formalization.

Synthetic instance We created a synthetic instance, as shown in Table 1, composed of 5 patients
with 5 fractions each, which can be allocated on two machines whose capacities are reported in Table 2.
Each patient has a different duration for the fractions, and the duration of the first fraction is always
twice as long as that of the other fractions, since the first time the patient undergoes radiotherapy
treatment, they need more time for positioning. Each patient also has a set of allowed machines, which
are in total two with different capacities each day, as shown in the “Previous Occupation” column in
Table 3. When completely unloaded, without previous scheduled appointments, the machines have a
maximum capacity of 25 minutes.

Numerical results To validate the proposed formulation, we implemented a prototype using Google
OR-Tools1 with the SCIP solver [28] in Python 3.12. The prototype has been run on a MacBook Air
with an Apple M1 chip, 8 cores, and 16 GB of RAM. The solver was configured with the constraints and
objective described in Section 3. Table 3 presents the results of solving the problem instance described
in Section 5. The schedule optimizes patient assignments to machines while adhering to machine
restrictions and minimizing treatment days.

m1 [(Frac n°, Patient)] Prev.
Occ.

Plan
Occ.

m2 [(Frac n°, Patient)] Prev.
Occ.

Plan
Occ.

day 1 [] 0 min 0 min [(1, ’p4’)] 0 min 10 min
day 2 [(1, ’p1’)] 5 min 12 min [(2, ’p4’)] 10 min 5 min
day 3 [(2, ’p1’), (1, ’p3’)] 5 min 20 min [(1, ’p2’), (3, ’p4’)] 0 min 21 min
day 4 [(2, ’p3’), (1, ’p5’)] 0 min 21 min [(3, ’p1’), (2, ’p2’), (4, ’p4’)] 5 min 19 min
day 5 [(4, ’p1’), (3, ’p3’), (2, ’p5’)] 5 min 20 min [(3, ’p2’), (5, ’p4’)] 0 min 13 min
day 6 [(5, ’p1’), (4, ’p3’), (3, ’p5’)] 0 min 20 min [(4, ’p2’)] 0 min 8 min
day 7 [(5, ’p3’), (4, ’p5’)] 0 min 14 min [(5, ’p2’)] 0 min 8 min
day 8 [(5, ’p5’)] 5 min 7 min [] 0 min 0 min

Table 3
Results of the proposed modified BPP on the synthetic instance. “Prev. Occ.” refers to the minutes the machine
was already booked for, while “Plan Occ.” refers to the minutes scheduled on the machine by the solver.

6. Conclusion

This paper introduced a novel approach to formalizing the RTSP as a modified one-dimensional Bin-
Packing Problem. The proposed formalization is designed to exploit the research and algorithms
developed for the one-dimensional BPP to address the challenges of the RTSP. By mapping radiotherapy

1https://developers.google.com/optimization

https://developers.google.com/optimization


treatments to items and the LINAC to a bin, we established a clear correlation between these two
problems. The proposed formulation offers several advantages, including the ability to leverage state-of-
the-art solvers used for the plain one-dimensional BPP and the possibility of extending the formulation
to other extensively studied versions of the BPP to tackle the complexities of the RTSP.
Future work includes evaluating the performance of the proposed formulation on real-world RTSP

instances, incorporating patient priorities and uncertainties in treatment times, and tailoring existing
one-dimensional BPP algorithms to the specific requirements of the new formulation. A practical
enhancement could involve integrating physicians’ expertise to refine the model’s objectives and
constraints, leading to more clinically feasible and optimal treatment plans. In conclusion, this paper
provides a promising foundation for addressing the complex problem of radiotherapy scheduling.
By leveraging the power of the one-dimensional BPP, we can potentially improve the efficiency and
effectiveness of cancer treatment.
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