
Automata-based LTL𝑓 Satisfiability Checking via ASP

Andrea Cuteri1, Giuseppe Mazzotta1, Rafael Peñaloza2 and Francesco Ricca1

1University of Calabria, Italy
2University of Milano-Bicocca, Italy

Abstract
Linear Temporal Logic over finite traces (LTL𝑓) stands as a prominent and highly valuable formalism with
application in various areas, including AI, process mining, and model checking among many others. The key
reasoning task for LTL𝑓 is satisfiability checking, which amounts to verifying whether an input formula admits
temporal models. In this paper we propose a novel approach to satisfiability checking based on Answer Set
Programming (ASP). The idea is to encode in an ASP program the search for a finite state automaton that
recognizes (a subset of) the language of the LTL𝑓 formula given in input. An experimental analysis demonstrates
the viability of our approach.

Keywords
Linear Temporal Logic, Satisfiability Checking, and Answer Set Programming

1. Introduction

Linear Temporal Logic over finite traces (LTL𝑓) [2] stands as a prominent formalism with application in
various areas, including AI [3, 4, 5, 6], process mining [7, 8], model checking [9], and many others. The
main reasoning task in LTL𝑓 is satisfiability checking, which involves determining if there exist temporal
models that satisfy the formula. Traditionally, this problem is approached through automata-based
methods [10] or by reducing it to SAT, i.e., the satisfiability problem over Boolean formulas [2] which
is supported by highly efficient implementations [11]. Another promising formalism in this context
is Answer Set Programming (ASP) [12], a well-established logic-based framework for non-monotonic
reasoning, which combines a declarative language based on stable model semantics [13] with efficient
implementations [14], and academic and industrial applications [15, 16, 17].
In this paper we propose an approach to LTL𝑓 satisfiability checking based on ASP. We build on

a different method for deciding satisfiability of LTL𝑓 formulas based on the classical automata-based
construction originally developed for LTL (over infinite traces) [18]. In a nutshell, the approach builds
an automaton [19]—for LTL a Büchi automaton—whose accepting runs correspond to temporal models
satisfying the formula. The construction for LTL𝑓 uses non-deterministic finite automata (NFA) to deal
with finite traces only. We encode the search for (a subset of) the so-called 𝜑-automaton, which can be
used to test satisfiability, into an ASP program. Indeed, if one can establish a connection between an
initial state and a final state in the NFA corresponding to a given formula 𝜑, then 𝜑 is satisfiable (and
vice versa) [20].

The resulting ASP-based formulation has several features that makes it interesting. First of all, from
a pure knowledge representation perspective, it is a declarative solution based on a direct and uniform
encoding of LTL𝑓 satisfiability in the sense that the non-ground ASP program is a general solution that
can be used over different instances, whereas the SAT-based ones have to resort to a procedural step
that generates a specific propositional formula for the given input. Moreover, the answer sets of the
program have a direct association with some of the models of the original formula, and provide as a
byproduct a witness of satisfiability. Another property, which is interesting from a computational point

AI4CC-IPS-RCRA-SPIRIT 2024: International Workshop on Artificial Intelligence for Climate Change, Italian Workshop on Planning
and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving problems with combinatorial explosion,
and SPIRIT Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy. November 25-28th, 2024, Bolzano, Italy [1].
Envelope-Open cuteri.andrea@gmail.com (A. Cuteri); giuseppe.mazzotta@unical.it (G. Mazzotta); rafael.penaloza@unimib.it
(R. Peñaloza); francesco.ricca@unical.it (F. Ricca)
Orcid 0000-0003-0125-0477 (G. Mazzotta); 0000-0002-2693-5790 (R. Peñaloza); 0000-0001-8218-3178 (F. Ricca)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:cuteri.andrea@gmail.com
mailto:giuseppe.mazzotta@unical.it
mailto:rafael.penaloza@unimib.it
mailto:francesco.ricca@unical.it
https://orcid.org/0000-0003-0125-0477
https://orcid.org/0000-0002-2693-5790
https://orcid.org/0000-0001-8218-3178
https://creativecommons.org/licenses/by/4.0/deed.en

of view is that our approach does not require an explicit construction of the entire 𝜑-automaton (which
is exponential in the size of the input) to check satisfiability. Indeed, the need for such a construction
is generally seen as detrimental to the use of automata-based decision processes, by requiring an
exponential consumption of resources before any actual “reasoning” is performed. An additional benefit
for our encoding is that it allows for structure sharing of sub-formulas; that is, when a sub-formula 𝜓
appears repeatedly in the formula 𝜑, our encoding represents only one copy of 𝜓 within the encoding.
This allows us to transfer some of the benefits of propositional formula compilation [21] to the LTL𝑓
setting and thus improve the overall performance.

On the practical side, a thorough empirical analysis reveals that our approach is highly competitive
against state of the art approaches on benchmarks available in the literature and demonstrated a
significant scalability on hard instances. These findings confirm the viability of our approach, and
justify further work in this direction.

2. Linear Time Temporal Logic on Finite Traces

We briefly introduce the notions of linear temporal logic over finite traces (LTL𝑓) which are necessary
for understanding our work. LTL𝑓 [20] is a temporal logic over linear, discrete timepoints which is
characterised by considering only finite traces; that is, models must have a final timepoint. Syntactically,
it is equivalent to the well known LTL (over infinite time) [18]; that is, LTL𝑓 formulas are built, starting
from a set 𝒫 of propositional formulas, through the grammar

𝜑 ∶∶= 𝑥 ∣ ¬𝜑 ∣ 𝜑 ∧ 𝜑 ∣ 𝒳 𝜑 ∣ 𝜑𝒰 𝜑

where 𝑥 ∈ 𝒫. Briefly, LTL𝑓 extends propositional logic with the “next” (𝒳) and “until” (𝒰) operators.
The semantics is based on finite temporal models, which are just finite sequences of propositional
valuations. Formally, a valuation is a set 𝒱 ⊆ 𝒫 that intuitively describes which variables are true. A
temporal model is a finite sequenceℳ of valuations.

Definition 1 (satisfiability). Let ℳ = 𝒱1, 𝒱2, … , 𝒱𝑛 be a temporal model. Satisfaction of a formula 𝜑
at time 𝑘, 1 ≤ 𝑘 ≤ 𝑛 (denoted byℳ, 𝑘 ⊧ 𝜑) is defined inductively as follows:

• if 𝑥 ∈ 𝒫, thenℳ, 𝑘 ⊧ 𝑥 iff 𝑥 ∈ 𝒱𝑘;
• ℳ, 𝑘 ⊧ ¬𝜑 iffℳ, 𝑘 ̸⊧𝜑;
• ℳ, 𝑘 ⊧ 𝜑 ∧ 𝜓 iff ℳ, 𝑘 ⊧ 𝜑 and ℳ, 𝑘 ⊧ 𝜓;
• ℳ, 𝑘 ⊧ 𝒳𝜑 iff 𝑘 < 𝑛 and ℳ, 𝑘 + 1 ⊧ 𝜑; and
• ℳ, 𝑘 ⊧ 𝜑𝒰𝜓 iff there exists ℓ, 𝑘 ≤ ℓ ≤ 𝑛 such that (i) ℳ, ℓ ⊧ 𝜓 and (ii) for all 𝑘 ≤ 𝑗 < ℓ ℳ, 𝑗 ⊧ 𝜑.

ℳ satisfies 𝜑 (denoted as ℳ ⊧ 𝜑) iff ℳ,1 ⊧ 𝜑. In that case, we say that 𝜑 is satisfiable.

Satisfiability of a formula of the form 𝒳𝜑 requires that there is at least one successive timepoint. By
this semantics, 𝜑𝒰𝜓 is equivalent to 𝜓 ∨ (𝜑 ∧ 𝒳 (𝜑𝒰𝜓)); in other words, we can decide to satisfy an
until formula now, or wait until the next point in time.
In the literature one can find other temporal constructors like the weak next, which is true also in

cases that no next timepoint exists, or the eventually and always in the future operators. They can all
be expressed in terms of the constructors that we use [22]. We choose to preserve the limited syntax
to handle reasoning more effectively. Yet, we will use the disjunction 𝜑 ∨ 𝜓 ∶= ¬(¬𝜑 ∧ ¬𝜓) and the
tautology ⊤ ∶= 𝑝 ∨ ¬𝑝, where 𝑝 is any propositional variable for brevity.

3. Automata for LTL𝑓 satisfiability

A well-known method for deciding the satisfiability of an LTL𝑓 formula is based on the construction
of an automaton which, intuitively, accepts the temporal models that satisfy it. Thus, an emptiness

test of the automaton yields a decision procedure for satisfiability. Since our method is based on this
construction, we briefly recall it here assuming a basic knowledge of finite automata (for the full details,
we refer the interested reader to [23]).

Given an LTL𝑓 formula 𝜑, let sub(𝜑) denote the set of all its sub-formulas. The sub-formula closure
of 𝜑 is the smallest set (𝜑) that contains sub(𝜑); is closed under negation; and such that if 𝜑𝒰𝜓 ∈ (𝜑)
then 𝒳(𝜑𝒰𝜓) ∈ (𝜑) too. The formulas in (𝜑) are sufficient to verify satisfiability of the formula 𝜑.
A temporal model, which is formally defined only by the propositional variables satisfied at each

timepoint, can also be characterised by the formulas (in (𝜑)) that it makes true at each point in time.
Under this view, each timepoint can be associated to a type, which is a maximal consistent subset of (𝜑)
which also preserves the semantics of 𝒰 . Formally, a set 𝜏 ⊆ (𝜑) is a type iff the following conditions
hold:

• for every 𝜓 ∈ (𝜑), 𝜓 ∈ 𝜏 iff ¬𝜓 ∉ 𝜏;
• for every 𝜓1 ∧ 𝜓2 ∈ (𝜑), 𝜓1 ∧ 𝜓2 ∈ 𝜏 iff {𝜓1, 𝜓2} ⊆ 𝜏;
• for every 𝜓1 ∨ 𝜓2 ∈ (𝜑), 𝜓1 ∨ 𝜓2 ∈ 𝜏 iff {𝜓1, 𝜓2} ∩ 𝜏 ≠ ∅;
• for every 𝜓1𝒰𝜓2 ∈ (𝜑), 𝜓1𝒰𝜓2 ∈ 𝜏 iff either 𝜓2 ∈ 𝜏 or {𝜓1, 𝒳 (𝜓1𝒰𝜓2)} ⊆ 𝜏.

Note that this latter condition uses the equivalence of 𝒰 as described in the previous section.
As mentioned, types check for local consistency within a model, but one must still take into account

the temporal semantics of the 𝒳 operator. Two types 𝜏1 and 𝜏2 are compatible iff for every formula
of the form 𝒳𝜓 in (𝜑) it holds that 𝒳𝜓 ∈ 𝜏1 iff 𝜓 ∈ 𝜏2. Notice that this in particular means (by the
maximality of types) that ¬𝒳𝜓 ∈ 𝜏1 iff ¬𝜓 ∈ 𝜏2. We say that a type is terminal if it does not contain any
formula of the form 𝒳𝜓.

Definition 2 (𝜑-automaton). The LTL𝑓 formula 𝜑 defines the unlabelled NFA 𝒜𝜑 ∶= (𝑄, 𝛿, 𝐼 , 𝐹) where

• 𝑄 is the set of all types for 𝜑;
• 𝛿 ∶= {(𝜏1, 𝜏2) ∈ 𝑄2 ∣ 𝜏1 and 𝜏2 are compatible};
• 𝐼 ∶= {𝜏 ∈ 𝑄 ∣ 𝜑 ∈ 𝜏}; and
• 𝐹 ∶= {𝜏 ∈ 𝑄 ∣ 𝜏 is terminal}.

Intuitively, 𝒜𝜑 is a reachability graph, where an edge (𝜏1, 𝜏2) ∈ 𝛿 states that one can have a temporal
model with two successive timepoints satisfying the formulas in 𝜏1 and in 𝜏2, respectively. To construct
a model of 𝜑, we need to find a path that goes from an initial type (in 𝐼) to a final type (in 𝐹). Note that
the condition for a type to belong to 𝐹—that is, the lack of formulas of the form 𝒳𝜓—means that it
is safe to stop at that point, as no successive timepoint is needed to satisfy the constraints in the last
observed type. Yet, one is not required to stop (other, longer models may exist as well).

Proposition 3 ([20]). The LTL𝑓 formula 𝜑 is satisfiable iff 𝒜𝜑 is non-empty.

In Section 5, we present our approach which takes advantage of an ASP reasoner to decide satisfiability
of LTL𝑓 formulas by encoding (implicitly) the execution of a run of the automaton 𝒜𝜑. In a nutshell,
the approach guesses the types satisfied at each timepoint, but in a way that satisfies all the constraints
of the automaton. An important property of our encoding is that it allows for structure sharing, hence
potentially reducing the encoding length of a formula. Before that, it is important to understand the
main features of ASP.

4. Answer Set Programming

In this section we recall syntax and semantics of ASP. We refer the interested reader to the specific
literature for a more detailed account [12, 13].

ASP syntax. A variable is a string starting with uppercase letter. A constant is an integer number or
a string starting with lowercase letter. An atom is an expression of the form 𝑝(𝑡1, ⋯ , 𝑡𝑛) where 𝑝 is a
predicate of arity 𝑛 and 𝑡1, ⋯ , 𝑡𝑛 are terms. An atom is ground if it contains no variable. A literal is a
atom 𝑎 or its negation 𝑛𝑜𝑡 𝑎 where 𝑛𝑜𝑡 denotes negation as failure. A literal 𝑙 is negative if it is of the form
𝑛𝑜𝑡 𝑎, otherwise it is positive. The complement of positive (resp. negative) literal 𝑙 = 𝑎 (resp. 𝑙 = 𝑛𝑜𝑡 𝑎),
denoted by 𝑙, is the literal 𝑛𝑜𝑡 𝑎 (resp. 𝑎). A (normal) rule is an expression of the form ℎ ← 𝑏1, ⋯ , 𝑏𝑛
where 𝑏1, ⋯ , 𝑏𝑛 is a conjunction of literals, referred to as body, 𝑛 ≥ 0, and ℎ is an atom. All variables
in a rule must occur in some positive literal of the body (i.e., are safe cfr. [24]). A fact is a rule with
an empty body (i.e. 𝑛 = 0). A constraint is a rule with an empty head that is a shorthand for rule
𝑝 ← 𝑏1, ⋯ , 𝑏𝑛, 𝑛𝑜𝑡 𝑝, where 𝑝 is a standard ground atom not occurring anywhere else. A program is a
finite set of rules.

Stable Models Semantics. Given a program 𝑃, the Herbrand Universe 𝑈𝑃 denotes the set of constants
in 𝑃; the Herbrand Base 𝐵𝑃 denotes the set of standard ground atoms that can be obtained from predicates
in 𝑃 and constants in 𝑈𝑃. Given a rule 𝑟 ∈ 𝑃, 𝑔𝑟𝑜𝑢𝑛𝑑(𝑟) denotes the set of possible rule instantiations
that can be obtained by replacing variables in 𝑟 with constants in 𝑈𝑃. The ground instantiation of the
program 𝑃, denoted by 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃), is the union of ground instantiations of rules in 𝑃. An interpretation 𝐼
is a subset of 𝐵𝑃. Given an interpretation 𝐼, a positive (resp. negative) literal 𝑙 is true w.r.t. 𝐼, if 𝑙 ∈ 𝐼 (resp.
𝑙 ∉ 𝐼); it is false if 𝑙 ∉ 𝐼 (resp. 𝑙 ∈ 𝐼). A conjunction of literals is true w.r.t. 𝐼 if all the literals are true w.r.t.
𝐼. An interpretation 𝐼 is a model of 𝑃 if for each 𝑟 ∈ 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃), the head of 𝑟 is true whenever the body
of 𝑟 is true. Given a program 𝑃 and an interpretation 𝐼, the (Gelfond-Lifschitz) reduct [13], 𝑃 𝐼, is the
program obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃) by (i) removing all those rules having in the body a false negative
literal w.r.t. 𝐼, and (ii) removing negative literals from the body of remaining rules. Given a program 𝑃
and a model 𝐼, 𝐼 is a stable model or answer set of 𝑃 if there is no 𝐼 ′ ⊂ 𝐼 such that 𝐼 ′ is a model of 𝑃 𝐼. 𝑃 is
coherent if it admits at least one answer set, otherwise it is incoherent.

5. ASP-based Satisfiability Checking

In this section we present an ASP-encoding that models the LTL𝑓 satisfiability checking problem. In
particular, we first describe how to encode the input and then we describe the satisfiability checking
encoding.

5.1. Input Data

Given an input LTL𝑓 formula 𝜑, it is encoded in ASP by means of facts over predicates: 𝑠𝑢𝑏/1, 𝑖𝑠𝑃ℎ𝑖/1,
𝑠𝑡𝑎𝑡𝑒/1, 𝑛𝑒𝑔/2, 𝑛𝑒𝑥𝑡/2, 𝑎𝑛𝑑/3, 𝑜𝑟/3, and 𝑢𝑛𝑡𝑖𝑙/3.
In particular, each distinct sub-formula has to be uniquely identified by an 𝑖𝑑, which is declared by

facts of the form 𝑠𝑢𝑏(𝑖𝑑). Atoms of the form 𝑎𝑛𝑑(𝑖𝑑, 𝑖𝑑1, 𝑖𝑑2) and 𝑜𝑟(𝑖𝑑, 𝑖𝑑1, 𝑖𝑑2), encode sub-formulas
defined as the conjunction or disjunction, respectively of the two sub-formulas identified by 𝑖𝑑1, and
𝑖𝑑2. Atoms of the form 𝑛𝑒𝑔(𝑖𝑑, 𝑖𝑑1) models the negation of a sub-formula identified by 𝑖𝑑1, by means
of a sub-formula identified by 𝑖𝑑. We assume that both 𝑛𝑒𝑔(𝑖𝑑1, 𝑖𝑑2) and 𝑛𝑒𝑔(𝑖𝑑2, 𝑖𝑑1) are part of the
input whenever 𝑖𝑑1 is the negation of 𝑖𝑑2. Atoms of the form 𝑛𝑒𝑥𝑡(𝑖𝑑, 𝑖𝑑1) encode sub-formulas of the
form 𝒳𝑓1, where the sub-formula 𝑓1 is identified by 𝑖𝑑1, and atoms of the form 𝑢𝑛𝑡𝑖𝑙(𝑖𝑑, 𝑖𝑑1, 𝑖𝑑2) denote
sub-formulas of the form 𝑓1𝒰𝑓2, where 𝑖𝑑1, and 𝑖𝑑2 are the identifiers of 𝑓1 and 𝑓2, respectively. The
atom 𝑖𝑠𝑃ℎ𝑖(𝑖𝑑) encodes the input formula 𝜑, where 𝑖𝑑 is the identifier of the outermost sub-formula. Runs
of the automaton of length 𝑛 are represented using atoms of the form 𝑠𝑡𝑎𝑡𝑒(𝑡), where 1 ≤ 𝑡 ≤ 𝑛. Given a
formula 𝜑, all these facts can be obtained by decomposing, bottom-up, 𝜑 into different sub-formulas,
going from propositional variables to the outermost operator. Thus, an input formula 𝜑 can be encoded
as a set of facts of linear size w.r.t. the number of subformulas of 𝜑.

Example 4. The formula 𝜑 = ¬(𝑥) ∧ ((𝒳 𝑦)𝒰 𝑥) is encoded as:

𝑠𝑢𝑏(𝑥) 𝑠𝑢𝑏(𝑦) 𝑠𝑢𝑏(1) 𝑠𝑢𝑏(2)
𝑠𝑢𝑏(3) 𝑠𝑢𝑏(4) 𝑠𝑢𝑏(5) 𝑠𝑢𝑏(6)
𝑠𝑢𝑏(7) 𝑠𝑢𝑏(8) 𝑠𝑢𝑏(9) 𝑠𝑢𝑏(10)
𝑛𝑒𝑔(1, 𝑥) 𝑛𝑒𝑥𝑡(2, 𝑦) 𝑢𝑛𝑡𝑖𝑙(3, 2, 𝑥) 𝑎𝑛𝑑(4, 1, 3)
𝑛𝑒𝑥𝑡(9, 3) 𝑛𝑒𝑔(5, 𝑦) 𝑛𝑒𝑔(6, 2) 𝑛𝑒𝑔(7, 3)
𝑛𝑒𝑔(8, 4) 𝑛𝑒𝑔(10, 9)

𝑠𝑢𝑏(𝑥) and 𝑠𝑢𝑏(𝑦) encodes the two propositional variables 𝑥 and 𝑦. Each 𝑠𝑢𝑏(𝑖), 1 ≤ 𝑖 ≤ 10 instead encodes
a composite sub-formula. Specifically:

• 𝑠𝑢𝑏(1), 𝑛𝑒𝑔(1, 𝑥) encode the sub-formula 𝑓1 ∶ ¬𝑥
• 𝑠𝑢𝑏(2), 𝑛𝑒𝑥𝑡(2, 𝑦) encode the sub-formula 𝑓2 ∶ 𝒳 𝑦
• 𝑠𝑢𝑏(3), 𝑢𝑛𝑡𝑖𝑙(3, 2, 𝑥) encode the sub-formula 𝑓3 ∶ 𝑓2𝒰𝑥
• 𝑠𝑢𝑏(4), 𝑎𝑛𝑑(4, 1, 3) encoded the sub-formula 𝑓4 ∶ 𝑓1 ∧ 𝑓3
• 𝑠𝑢𝑏(5), 𝑛𝑒𝑔(5, 𝑦) encode the sub-formula 𝑓5 ∶ ¬𝑦
• 𝑠𝑢𝑏(6), 𝑛𝑒𝑔(6, 2) encode the sub-formula 𝑓6 ∶ ¬𝑓2
• 𝑠𝑢𝑏(7), 𝑛𝑒𝑔(7, 3) encode the sub-formula 𝑓7 ∶ ¬𝑓3
• 𝑠𝑢𝑏(8), 𝑛𝑒𝑔(8, 4) encode the sub-formula 𝑓8 ∶ ¬𝑓4
• 𝑠𝑢𝑏(9), 𝑛𝑒𝑥𝑡(9, 3) encode the sub-formula 𝑓9 ∶ 𝒳 𝑓3
• 𝑠𝑢𝑏(10), 𝑛𝑒𝑔(10, 9) encode the sub-formula 𝑓10 ∶ ¬𝑓9

Note that 𝑓4 is the outermost sub-formula after reconstructing the formula 𝜑 and so 𝑖𝑠𝑃ℎ𝑖(4) encodes 𝜑. In
addition, note that 𝑓9 and 𝑓10 (along with most of the negations) are not strictly sub-formulas of 𝜑 but they
must be included to guarantee the construction of a type from the set (𝜑) as defined in Section 3.

5.2. Encoding

In this section we present the encoding that models the satisfiability check of an LTL𝑓 formula. Notably,
this encoding is highly general and does not depend on the specific formula being evaluated. Therefore,
given any formula 𝜑 and its corresponding encoding as ASP facts (as outlined in the previous section),
the encoding can be directly reused to verify the satisfiability of 𝜑. In order to better present the
proposed encoding, in what follows we refer to sub-formulas by means of their identifier. The proposed
encoding exploits the well-known Guess&Check paradigm [25] in which the Guess part tries to guess
maximal subset of formulae, by assigning to each state either a formula 𝐹 or its negation 𝐹1.

𝑔1 ∶ 𝑡𝑦𝑝𝑒(𝑆, 𝐹) ← 𝑠𝑡𝑎𝑡𝑒(𝑆), 𝑠𝑢𝑏(𝐹), 𝑛𝑒𝑔(𝐹1, 𝐹), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹1)
𝑔2 ∶ 𝑡𝑦𝑝𝑒(𝑆, 𝐹1) ← 𝑠𝑡𝑎𝑡𝑒(𝑆), 𝑠𝑢𝑏(𝐹), 𝑛𝑒𝑔(𝐹1, 𝐹), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹)

Next, the definition of the different elements of the automaton is verified by means of normal rules and
constraints.

Initial State. To ensure that state 1 (the first state in the run) contains the the outermost sub-formula
denoted by 𝑖𝑠𝑃ℎ𝑖(𝐹) we use the rule:

𝑡𝑦𝑝𝑒(1, 𝐹) ← 𝑖𝑠𝑃ℎ𝑖(𝐹).

Final and active states. A final state, which contains no 𝒳 -formula, should be observed within the
first 𝑛 states of the run. This is enforced through the rules:

𝑟1 ∶ ℎ𝑎𝑠𝑁 𝑒𝑥𝑡(𝑆) ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑛𝑒𝑥𝑡(𝐹 , 𝐹1)
𝑟2 ∶ 𝑓 𝑖𝑛𝑎𝑙(𝑆) ← 𝑠𝑡𝑎𝑡𝑒(𝑆), 𝑛𝑜𝑡 ℎ𝑎𝑠𝑁 𝑒𝑥𝑡(𝑆)
𝑟3 ∶ 𝑓 𝑜𝑢𝑛𝑑_𝑓 𝑖𝑛𝑎𝑙 ← 𝑓 𝑖𝑛𝑎𝑙(𝐿)
𝑟4 ∶ ← 𝑛𝑜𝑡 𝑓 𝑜𝑢𝑛𝑑_𝑓 𝑖𝑛𝑎𝑙
𝑟5 ∶ 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆) ← 𝑠𝑡𝑎𝑡𝑒(𝑆), 𝑓 𝑖𝑛𝑎𝑙(𝐿), 𝐿 >= 𝑆

Rule 𝑟1 defines atoms of the form ℎ𝑎𝑠𝑁 𝑒𝑥𝑡(𝑆). These denote all those states containing at least one
sub-formula, 𝐹 ∶ 𝒳𝐹1. Rule 𝑟2 encodes the final states as atoms of the form 𝑓 𝑖𝑛𝑎𝑙(𝑆). A state 𝑆 is final if
does not contain sub-formula of the form 𝒳𝐹1 (i.e. 𝑛𝑜𝑡 ℎ𝑎𝑠𝑁 𝑒𝑥𝑡(𝑆)). Finally, rules 𝑟3 and 𝑟4 impose that
at least one final state exists. Moreover, since the proposed encoding search for a run of at most 𝑛 states,
then the required conditions must be verified for all the states up to the actual final one. Thus, we mark
as active, by means of rule 𝑟5 that derives an atom 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆), for each state 𝑆 that is less or equal than
the actual last state 𝐿 (i.e. 𝑓 𝑖𝑛𝑎𝑙(𝐿)).

Type Condition. We must still impose that each state 1 ≤ 𝑆 ≤ ℓ (where ℓ is the first observed final
state) is a type. A state 𝑆 is a type iff the following conditions hold for all formulas in (𝜑)

1. 𝑆 contains the formula 𝐹 if and only if 𝑆 does not contain ¬𝐹
2. 𝑆 contains the formula 𝑋 ∧ 𝑌 if and only if 𝑆 contains both 𝑋 and 𝑌
3. 𝑆 contains the formula 𝑋 ∨ 𝑌 if and only if 𝑆 contains at least one between 𝑋 and 𝑌
4. 𝑆 contains the formula 𝐹 = 𝑋𝒰𝑌 if and only if at least one of the following conditions holds:

a) 𝑆 contains 𝑌 or
b) 𝑆 contains both 𝑋 and 𝒳𝐹

Condition 1 is ensured by the guess rules 𝑔1, 𝑔2 that for each state 𝑆 and each sub-formula 𝐹 assign
either 𝐹 or 𝐹1 ∶ ¬𝐹 to 𝑆.
Condition 2 is ensured by the constraints:

𝑎1 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑛𝑑(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝑋), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)
𝑎2 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑛𝑑(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝑌), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

𝑎3 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝑋), 𝑡𝑦𝑝𝑒(𝑆, 𝑌), 𝑎𝑛𝑑(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

Intuitively, for each formula 𝐹 ∶ 𝑋 ∧ 𝑌, constraint 𝑎1 (resp. 𝑎2) imposes that it is not possible that a state
𝑆 ≤ ℓ contains 𝐹 and does not contain 𝑋 (resp. 𝑌). Constraint 𝑎3 discards those answer sets in which a
state 𝑆 ≤ ℓ contains both 𝑋 and 𝑌, and does not contain 𝐹.
Condition 3 is ensured by the constraints:

𝑜1 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑜𝑟(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝑋), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝑌), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

𝑜2 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝑋), 𝑜𝑟(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)
𝑜3 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝑌), 𝑜𝑟(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

Here, for each formula 𝐹 ∶ 𝑋 ∨ 𝑌, the constraint 𝑜1 expresses that it is not possible for a state 𝑆 ≤ ℓ to
contain 𝐹, but contain neither 𝑋 nor 𝑌. Constraint 𝑜2 (resp. 𝑜3) imposes that it is not possible that a state
𝑆 ≤ ℓ contains 𝑋 (resp. 𝑌) and does not contain 𝐹.
In order to verify the conditions 4a and 4b the predicate 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙/4 is used. Atoms of the form

𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌) denote that at least one between conditions 4a and 4b holds at state 𝑆 for the formula
𝐹 ∶ 𝑋𝒰𝑌 and so 𝐹 can be added to the state 𝑆. These atoms can be derived by the rules:

𝑠𝑢1 ∶ 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌) ← 𝑢𝑛𝑡𝑖𝑙(𝐹 , 𝑋 , 𝑌), 𝑡𝑦𝑝𝑒(𝑆, 𝑌)
𝑠𝑢2 ∶ 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌) ← 𝑢𝑛𝑡𝑖𝑙(𝐹 , 𝑋 , 𝑌), 𝑡𝑦𝑝𝑒(𝑆, 𝑋), 𝑛𝑒𝑥𝑡(𝐹1, 𝐹), 𝑡𝑦𝑝𝑒(𝑆, 𝐹1)

Roughly, for each formula 𝐹 ∶ 𝑋𝒰𝑌, if there exists a state 𝑆 containing 𝑌 then condition 4a is satisfied;
thus, rule 𝑠𝑢1 derives 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌). On the other hand, if there exists a state 𝑆 containing both 𝑋
and a formula 𝐹1 ∶ 𝒳𝐹 then condition 4b is satisfied and so rule 𝑠𝑢2 derives 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌). Thus,
condition 4 is ensured by the constraints:

𝑢1 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑢𝑛𝑡𝑖𝑙(𝐹 , 𝑋 , 𝑌), 𝑛𝑜𝑡 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)
𝑢2 ∶ ← 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑠𝑎𝑡_𝑢𝑛𝑡𝑖𝑙(𝑆, 𝐹 , 𝑋 , 𝑌), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

Intuitively, for each formula 𝐹 ∶ 𝑋𝒰𝑌, constraint 𝑢1 imposes that a state 𝑆 ≤ ℓ cannot contain 𝐹 if 𝐹
cannot be added to 𝑆, while, constraint 𝑢2, imposes that it is not possible that 𝐹 can be added to the state
𝑆 but 𝑆 does not contain 𝐹.

Connectedness. The guessed automaton is connected if the following conditions hold:

1. a state 𝑆 contains a formula 𝐹1 ∶ 𝒳𝐹 iff 𝑆 is not the final state and the state 𝑆 + 1 contains 𝐹
2. a state 𝑆 contains a formula 𝐹1 ∶ ¬(𝒳 𝐹) iff 𝑆 is not the final state and the state 𝑆 + 1 contains ¬𝐹

Condition 1 is ensured by the constraints:

𝑐1 ∶ ← 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑛𝑒𝑥𝑡(𝐹 , 𝐹1), 𝑆1 = 𝑆 + 1, 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆1), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆1, 𝐹1), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

𝑐2 ∶ ← 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑛𝑒𝑥𝑡(𝐹 , 𝐹1), 𝑆1 = 𝑆 + 1, 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆1), 𝑡𝑦𝑝𝑒(𝑆1, 𝐹1), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

Basically, for every formula 𝐹 ∶ 𝒳𝐹1, 𝑐1 imposes that it is not possible for a state 𝑆 to contain 𝐹 if 𝐹1 is
not assigned at state 𝑆 + 1. On the other hand, 𝑐2 imposes that it is not possible that there exists a state
𝑆 + 1 containing a formula 𝐹1 such that the state 𝑆 does not contain the formula 𝐹 ∶ 𝒳𝐹1. Condition 2
is ensured by the constraints:

𝑐3 ∶ ← 𝑛𝑒𝑔(𝐹 , 𝐹1), 𝑛𝑒𝑥𝑡(𝐹1, 𝐹2), 𝑛𝑒𝑔(𝐹3, 𝐹2), 𝑡𝑦𝑝𝑒(𝑆, 𝐹),
𝑆1 = 𝑆 + 1, 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆1), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆1, 𝐹3), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

𝑐4 ∶ ← 𝑛𝑒𝑔(𝐹 , 𝐹1), 𝑛𝑒𝑥𝑡(𝐹1, 𝐹2), 𝑛𝑒𝑔(𝐹3, 𝐹2), 𝑡𝑦𝑝𝑒(𝑆1, 𝐹3),
𝑆1 = 𝑆 + 1, 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆), 𝑛𝑜𝑡 𝑡𝑦𝑝𝑒(𝑆, 𝐹), 𝑎𝑐𝑡𝑖𝑣𝑒(𝑆)

Intuitively, let 𝐹 ∶ ¬𝐹1, 𝐹1 ∶ 𝒳𝐹2, and 𝐹3 ∶ ¬𝐹2, 𝑐3 imposes that it is not possible that there exists a
state 𝑆 containing the formula 𝐹 (i.e. ¬(𝒳𝐹2)), and the formula 𝐹3 (i.e. ¬𝐹2) is not assigned at state
𝑆 + 1. On the other hand, 𝑐4 imposes that it is not possible that there exists a state 𝑆 + 1 containing the
formula 𝐹3 (i.e. ¬𝐹2), and the state 𝑆 does not contain the formula 𝐹 (i.e. ¬(𝒳𝐹2)).

Correctness. Given the LTL𝑓 formula 𝜑, let 𝐹(𝜑, 𝑛) denotes the input obtained from 𝜑 as described in
Section 5.1, where 𝑛 indicates the maximum number of states in the run to be considered; and let Π
denote the ASP program described in Section 5.2.

Proposition 5. An LTL𝑓 formula 𝜑 is satisfiable iff there exists an integer 𝑛 > 0 such that Π ∪ 𝐹(𝜑, 𝑛) is
coherent.

Intuitively, the results follows from Proposition 3 observing that the choice rule in Π guesses a type for
each state, and the constraints in Π enforce the remaining conditions of Definition 2.

Implementation. By exploiting the encoding proposed in this section, it is possible to construct an
Algorithm for deciding the satisfiability of an LTL𝑓 formula. More precisely, Algorithm 1 reports the
pseudo-code of such a procedure.
Intuitively, starting with 𝑛 = 1 it is possible to incremetally search for an accepting run that uses

at most 𝑛 timepoints (each tagged with a state). Thus, at each iteration if 𝑃 = Π ∪ 𝐹(𝜑, 𝑛) is coherent

Algorithm 1 Decide-LTL𝑓
Input : An LTL𝑓 formula 𝜑

1 begin
2 𝑛 = 1
3 while 𝑛 ≤ 2‖𝜑‖+1 do
4 𝑃 := Π ∪ 𝐹(𝜑, 𝑛)
5 if 𝑃 is coherent then
6 return SAT

7 𝑛 := 𝑛 + 1
8 return UNSAT

LTL𝑓 pattern #Inst Formula

Alternate Response (𝐴𝑅(𝑘)) 40 ¬(⊤ 𝒰 ((¬𝑥0) ∨ (𝒳 ((¬𝑥0)𝒰 (
𝑘
⋁
𝑖=1

𝑥𝑖)))))

Chain Response (𝐶𝑅(𝑘)) 40 ¬(⊤ 𝒰 ((¬𝑥0) ∨ (𝒳 (
𝑘
⋁
𝑖=1

𝑥𝑖))))

Response (𝑅(𝑘)) 40 ¬((¬𝑥0) ∧ (⊤ 𝒰 (
𝑘
⋁
𝑖=1

𝑥𝑖)))

RespondedExistence (𝑅𝐸(𝑘)) 40 (¬(⊤ 𝒰𝑥0)) ∨ (⊤ 𝒰 (
𝑘
⋁
𝑖=1

𝑥𝑖))

𝐸(𝑘) 40
𝑘
⋀
𝑖=1

⊤ 𝒰𝑥𝑖

𝑆(𝑘) 40
𝑘
⋀
𝑖=1

⊤ 𝒰¬𝑥𝑖

𝐸𝐿(𝑘, 𝑧) 80
(
𝑘
⋀
𝑖=1

⊤ 𝒰¬𝑥𝑖) ∧ (𝒳 (𝒳 (⋯ (𝒳 𝑥0)⋯))),

where 𝑧 is number of nested “next” operators.

Table 1: Considered LTL𝑓-specific benchmarks

then we found a witness of satisfiability of 𝜑. Conversely, if we were not able to found such a witness
with 𝑛 up to 2‖𝜑‖+1 where ‖𝜑‖ denotes the number of symbols, excluding parenthesis, appearing in 𝜑,
then 𝜑 is unsatisfiability. This upper bound is an easy consequence of the definition of a type. Indeed,
from Section 3 it can be seen that the number of types is bounded by 2‖𝜑‖+1 and that in the worst
case, a successful run from an initial to a final type will traverse all types once. In practice, many
state-of-the-art proposals [22, 26, 27] operate following a similar strategy (i.e. incremental expanding
horizon), and are effective whenever the formula admits temporal models with a reasonably short
length. We implemented such an approach into a Python prototype that takes as input a formula 𝜑,
at each iteration computes 𝐹(𝜑, 𝑛), and uses the ASP solver clingo [28] for verifying the coherence
Π ∪ 𝐹(𝜑, 𝑛).

6. Experiments

We now present an empirical evaluation aimed at investigating the viability of the approach which we
have proposed in practical settings.

Benchmark suite. In this experiment, we used a benchmark suite consisting of LTL𝑓-specific bench-
marks commonly used in the literature to evaluate systems for LTL𝑓 satisfiability checking [22]. Specif-
ically, each benchmark corresponds to a distinct LTL𝑓 pattern formula as listed in Table 1. It is worth
noting that these formulas are expressed in the native syntax of LTL𝑓, which differs from the extended
syntax in [22], but the formulas are equivalent.

The first four, namely Alternate Response, Chain Response, Response, and RespondedExistence, are
LTL𝑓 encodings of Declare constraints [29]. Declare is the de facto standard in declarative processmining,
thus these can be considered as representative of a concrete application of LTL𝑓. The remaining three,
instead, are specific patterns of formulas suitable for a scalability analysis on a synthetic benchmark.
Concerning the instances, for each pattern we generated formulas with increasing values of 𝑘, from 5
to 200. For benchmark 𝐸𝐿(𝑘, 𝑧) we considered two values of 𝑧 for each value of 𝑘: 𝑘/2 and (3 × 𝑘)/2,
respectively. As a result we obtained a benchmark suite comprising 320 formulas.

(a) Overall Comparison

(b) Comparison on 𝐸𝐿(𝑘, 𝑧)

Figure 1: Systems Comparison

Compared methods. For our evaluation we consider four different methods: (i) our asp-based1

approach, implemented by running the ASP solver clingo [28]; (ii) the aaltaf system implementing
(Conflict-Driven LTL𝑓 Satisfiability Checking) [22]; (iii) the black system [27], in two different settings:
(a) the standard version denoted as black; (b) the semi-decisional one denoted as black-semi.

Hardware and software resources. All the experiments were executed on a machine equipped
with Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz, running macOS 14.5 (23F79) (Darwin Kernel Version
23.5.0). Memory and time were limited to 2GB and 600s respectively.

1https://github.com/MazzottaG/LTLToAutomata.git

Results. The results obtained are summarized by the cactus plots shown in Figure 1, which report
the execution time for each system ordered from best to worst. Specifically, in a cactus plot, instances
are sorted by their execution time, and a point (𝑖, 𝑗) indicates that a solver can solve the 𝑖-th instance
within 𝑗 seconds.

As it is evident from Figure (1a), the asp-based approach is the fastest system among compared ones,
solving every instance within few seconds. Specifically, asp-based and the other compared systems can
solve all instances of the benchmarks referring to Declare patterns (i.e., 𝐴𝑅(𝑘), 𝐶𝑅(𝑘), 𝑅(𝑘), and 𝑅𝐸(𝑘))
almost instantaneously (less than 0.5 seconds per instance) even for larger values of 𝑘 (up to 1000),
demonstrating a significant positive outcome for declarative process mining, which is an important
application for LTL𝑓 reasoning.
Regarding the scalability of our approach on synthetic formulas, we note that for the first two

benchmarks (i.e., 𝐸(𝑘) and 𝑆(𝑘)), all the compared systems are instantaneous, similarly to the Declare
patterns. However, the last benchmark, 𝐸𝐿(𝑘, 𝑧), proved to be more challenging than the previous
ones. Figure (1b) reports the execution times of the compared systems on such benchmarks. Our
approach exhibits a negligible overhead on very simple instances (less than 0.5 seconds) due to the
Python interpreter. The strength of the asp-based approach is clear, in the evaluation of hard LTL𝑓
formulas, where the execution is orders of magnitude smaller than compared systems.

7. Related Work

The primary task in LTL𝑓 is satisfiability checking, for which various approaches have been proposed.
Some of these rely on translation of LTL𝑓 formulas to symbolic Deterministic Finite Automata (DFA)[10,
30]. These translations convert LTL𝑓 semantics into First Order Logic and Monadic Second Order logic,
and then uses tools like MONA [31] to obtain the symbolic DFA. However, these approaches require
the full materialization of the automata, which is exponential w.r.t. the size of the input formula. On
the contrary, our approach incrementally searches for an accepting run of the underlying automata
without materializing it.

Actual implementations [22, 26, 27] are based on translations to SAT [32, 33]. The aaltaf system [22]
uses SAT-solving to create a transition system for an LTL𝑓 formula, turning satisfiability checking
into a path-search problem. Additionally, the introduced CDLSC (Conflict-Driven LTLf Satisfiability
Checking) algorithm uses SAT solver data for both satisfiable and unsatisfiable results. Another strategy
for transforming an LTL𝑓 formula into propositional formulas (cfr. [26]) can be used to verify the
existence of a temporal model of length at most 𝑛, until the theoretical upper bound for 𝑛 is reached.
The approach used in black [27] encodes the one-pass and tree-shaped tableau by Reynolds [34]. In
this approach the underlying tableau tree is built in a breadth-first way, by means of Boolean formulae
encoding the possible tableau branches up to a given depth 𝑘, which is increased at each step. All the
SAT-based approaches generate a specific SAT encoding for each formula. Conversely our approach
provides a general uniform ASP encoding based on 𝜑-automata that can be used for evaluating any
LTL𝑓 formula, that is also efficient.

Thanks to its declarative nature, ASP found also various applications in the field of LTL𝑓 satisfiability.
Among such works, an ASP-based method for reasoning over weighted LTL𝑓 formulas has been
proposed [35]. In this approach a satisfiability checker [26] is used to verify the satisfiability of the
input formula, and then an ASP solver searches for optimal models. While our first-order constraints
resemble the variable-free ones in their model-checker program, our goal differs as we directly determine
the satisfiability of an LTL𝑓 formula, whereas their approach relies on an initial satisfiability checker.
Furthermore, ASP has been applied to compute minimal unsatisfiable cores of LTL𝑓 formulae [36,
37]. The approach proposed in [38, 39] leverages algorithms for minimal unsatisfiable subprogram
enumeration [40] applied to an ASP encoding for bounded satisfiability [41].

ASP has been also used for bounded model checking [42], where it is demonstrated that a 1-safe Petri
net and its behavioral requirements (in LTL) can be translated into a logic program, so bounded model
checking amounts to computing its stable models. Moreover, recent applications of ASP to declarative

process mining have been proposed [43, 44, 45]. However, in these works the authors do not address the
problem of satisfiabilty of LTL𝑓 but targeted related tasks such as Conformance Checking that indeed
falls in lower complexity classes.
The extensions of ASP for modeling temporal properties are also related. The system telingo [46]

extends clingo by adding to ASP future and past temporal operators and incrementally solving the
corresponding temporal logic programs using clingo’s multi-shot solving interface. Roughly, LTL
relates to SAT in the same way the temporal extension supported by telingo relates to ASP. Thus,
the formalism implemented by telingo is more expressive than LTL𝑓, and so, one could even envision
modeling our task in telingo. However, the goal of this paper is to provide an efficient encoding of LTL𝑓
in plain ASP. Finally, we also mention methods for modeling temporal constraints in ASP that are based
on alternating automata [47].

8. Conclusion

A core challenge in the LTL𝑓 literature is the development of methods for satisfiability checking. This
area is being dominated by logic-based approaches [22, 26, 27], which are based on propositional SAT
solving.

This paper presents a fresh perspective for tackling this reasoning task, by presenting an automata-
based approach implemented in ASP. The resulting approach is based on a more direct modeling
of the problem that does not require the input formula to be highly pre-processed or rendered a
normal form; moreover, it gives as a byproduct a meaningful witness of the satisfiability outcome.
A first experimental analysis demonstrates that our approach is also viable in practice, delivering
good performance, comparable to the state-of-the-art CDSLC approach on declarative process mining
benchmarks.
Our proposal paves the way for new research and development opportunities in the field. On

the one hand, the generation of witnesses of satisfiability in our approach lays a foundation for the
development of explainability techniques in LTL𝑓 reasoning. On the other hand, this initial encoding
in ASP presents potential for optimizations at both the encoding and system levels. Indeed, the usage
of novel grounding-less evaluation techniques [48, 49, 50] could beneficial for obtaining even better
performances.

Acknowledgments

This work was partially supported by MISE under project EI-TWIN n. F/310168/05/X56 CUP
B29J24000680005, and MUR under projects: PNRR FAIR - Spoke 9 - WP 9.1 CUP H23C22000860006,
Tech4You CUP H23C22000370006, and PRIN PINPOINT CUP H23C22000280006 and H45E21000210001.
Finally, we mention that Francesco Ricca is member of Gruppo Nazionale Calcolo Scentifico of INDAM
(GNCS-INDAM).

References

[1] D. Aineto, R. De Benedictis, M. Maratea, M. Mittelmann, G. Monaco, E. Scala, L. Serafini, I. Serina,
F. Spegni, E. Tosello, A. Umbrico, M. Vallati (Eds.), Proceedings of the International Workshop
on Artificial Intelligence for Climate Change, the Italian workshop on Planning and Scheduling,
the RCRA Workshop on Experimental evaluation of algorithms for solving problems with com-
binatorial explosion, and the Workshop on Strategies, Prediction, Interaction, and Reasoning in
Italy (AI4CC-IPS-RCRA-SPIRIT 2024), co-located with 23rd International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2024), CEUR Workshop Proceedings, CEUR-WS.org,
2024.

[2] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in:
IJCAI, 2013, pp. 854–860.

[3] G. De Giacomo, F. M. Maggi, A. Marrella, S. Sardiña, Computing trace alignment against declarative
process models through planning, in: ICAPS, 2016, pp. 367–375.

[4] G. De Giacomo, M. Y. Vardi, Automata-theoretic approach to planning for temporally extended
goals, in: ECP, volume 1809 of LNCS, 1999, pp. 226–238.

[5] F. Bacchus, F. Kabanza, Planning for temporally extended goals, Ann. Math. Artif. Intell. 22 (1998)
5–27.

[6] D. Calvanese, G. De Giacomo, M. Y. Vardi, Reasoning about actions and planning in LTL action
theories, in: KR, 2002, pp. 593–602.

[7] G. De Giacomo, M. Dumas, F. M. Maggi, M. Montali, Declarative process modeling in BPMN, in:
CAiSE, volume 9097 of LNCS, 2015, pp. 84–100.

[8] A. Cecconi, G. De Giacomo, C. D. Ciccio, F. M. Maggi, J. Mendling, Measuring the interestingness
of temporal logic behavioral specifications in process mining, Inf. Syst. 107 (2022) 101920.

[9] Y. Tsay, M. Y. Vardi, From linear temporal logics to Büchi automata: The early and simple principle,
in: Model Checking, Synthesis, and Learning, volume 13030 of LNCS, 2021, pp. 8–40.

[10] S. Zhu, G. Pu, M. Y. Vardi, First-order vs. second-order encodings for \textsc ltl_f -to-automata
translation, in: Theory and Applications of Models of Computation - 15th Annual Conference,
TAMC 2019, Kitakyushu, Japan, April 13-16, 2019, Proceedings, volume 11436 of LNCS, 2019, pp.
684–705.

[11] Handbook of Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and
Applications, 2021.

[12] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Com. ACM 54 (2011)
92–103.

[13] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Generation Comput. 9 (1991) 365–386.

[14] Y. Lierler, M. Maratea, F. Ricca, Systems, engineering environments, and competitions, AI Magazine
37 (2016) 45–52.

[15] M. Alviano, C. Dodaro, M. Maratea, Nurse (re)scheduling via answer set programming, Intelligenza
Artificiale 12 (2018) 109–124.

[16] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, F. Scalise, An asp-based system for team-building
in the gioia-tauro seaport, in: PADL, volume 5937 of Lecture Notes in Computer Science, Springer,
2010, pp. 40–42.

[17] V. Barbara, M. Guarascio, N. Leone, G. Manco, A. Quarta, F. Ricca, E. Ritacco, Neuro-symbolic
AI for compliance checking of electrical control panels, Theory Pract. Log. Program. 23 (2023)
748–764.

[18] A. Pnueli, The temporal logic of programs, in: Proc. of 18th Annual Symposium on Foundations
of Computer Science, 1977, pp. 46–57.

[19] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, New York, NY, 1990, pp.
425–435.

[20] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in:
Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, 2013,
pp. 854–860.

[21] C. Y. Lee, Representation of switching circuits by binary-decision programs, The Bell System
Technical Journal 38 (1959) 985–999.

[22] J. Li, G. Pu, Y. Zhang, M. Y. Vardi, K. Y. Rozier, SAT-based explicit LTLf satisfiability checking,
Artificial Intelligence 289 (2020) 103369.

[23] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, 1979.
[24] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Surveys in computer science,

1990.
[25] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: Propositional

case, Ann. Math. Artif. Intell. 15 (1995) 289–323.
[26] V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical reasoner,

J. Artif. Intell. Res. 63 (2018) 557–623.

[27] L. Geatti, N. Gigante, A. Montanari, A sat-based encoding of the one-pass and tree-shaped
tableau system for LTL, in: Automated Reasoning with Analytic Tableaux and Related Methods -
28th International Conference, TABLEAUX 2019, London, UK, September 3-5, 2019, Proceedings,
volume 11714 of LNCS, 2019, pp. 3–20.

[28] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Multi-shot ASP solving with clingo, TPLP 19
(2019) 27–82.

[29] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: full support for loosely-structured
processes, in: IEEE International Enterprise Distributed Object Computing Conference (EDOC),
2007, pp. 287–300.

[30] S. Zhu, L. M. Tabajara, J. Li, G. Pu, M. Y. Vardi, Symbolic ltlf synthesis, in: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, 2017, pp. 1362–1369.

[31] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, A. Sandholm,
Mona: Monadic second-order logic in practice, in: Tools and Algorithms for Construction and
Analysis of Systems, First International Workshop, TACAS ’95, Aarhus, Denmark, May 19-20,
1995, Proceedings, volume 1019 of LNCS, 1995, pp. 89–110.

[32] J. Li, G. Pu, L. Zhang, M. Y. Vardi, J. He, Accelerating LTL satisfiability checking by SAT solvers, J.
Log. Comput. 28 (2018) 1011–1030.

[33] K. Y. Rozier, M. Y. Vardi, A multi-encoding approach for LTL symbolic satisfiability checking, in:
FM, volume 6664 of LNCS, 2011, pp. 417–431.

[34] M. Reynolds, A new rule for LTL tableaux, in: Proceedings of the Seventh International Sympo-
sium on Games, Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16
September 2016, volume 226 of EPTCS, 2016, pp. 287–301.

[35] C. Dodaro, V. Fionda, G. Greco, LTL on weighted finite traces: Formal foundations and algorithms,
in: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, 2022, pp. 2606–2612.

[36] T. Niu, S. Xiao, X. Zhang, J. Li, Y. Huang, J. Shi, Computing minimal unsatisfiable core for ltl over
finite traces, Journal of Logic and Computation 34 (2024) 1274–1294.

[37] M. Roveri, C. D. Ciccio, C. D. Francescomarino, C. Ghidini, Computing unsatisfiable cores for ltlf
specifications, J. Artif. Intell. Res. 80 (2024) 517–558.

[38] A. Ielo, G. Mazzotta, R. Peñaloza, F. Ricca, Towards asp-based minimal unsatisfiable cores enu-
meration for ltlf, in: OVERLAY, volume To appear of CEUR Workshop Proceedings, CEUR-WS.org,
2024.

[39] A. Ielo, G. Mazzotta, R. Peñaloza, F. Ricca, Enumerating minimal unsatisfiable cores of ltlf formulas,
CoRR abs/2409.09485 (2024).

[40] M. Alviano, C. Dodaro, S. Fiorentino, A. Previti, F. Ricca, ASP and subset minimality: Enumeration,
cautious reasoning and muses, Artif. Intell. 320 (2023) 103931.

[41] V. Fionda, A. Ielo, F. Ricca, Ltlf2asp: Ltlf bounded satisfiability in ASP, in: LPNMR, volume 15245
of Lecture Notes in Computer Science, Springer, 2024, pp. 373–386.

[42] K. Heljanko, I. Niemelä, Bounded LTL model checking with stable models, TPLP 3 (2003) 519–550.
[43] F. Chiariello, F. M. Maggi, F. Patrizi, Asp-based declarative process mining, in: Thirty-Sixth

AAAI Conference on Artificial Intelligence, AAAI 2022, AAAI Press, 2022, pp. 5539–5547. URL:
https://doi.org/10.1609/aaai.v36i5.20493. doi:10.1609/AAAI.V36I5.20493.

[44] I. Kuhlmann, C. Corea, J. Grant, Non-automata based conformance checking of declarative process
specifications based on ASP, in: J. D. Weerdt, L. Pufahl (Eds.), Business Process Management
Workshops - BPM 2023 International Workshops, Utrecht, The Netherlands, September 11-15,
2023, Revised Selected Papers, volume 492 of Lecture Notes in Business Information Processing,
Springer, 2023, pp. 396–408. URL: https://doi.org/10.1007/978-3-031-50974-2_30. doi:10.1007/
978-3-031-50974-2_30.

[45] F. Chiariello, V. Fionda, A. Ielo, F. Ricca, A direct ASP encoding for declare, in: PADL, volume
14512 of Lecture Notes in Computer Science, Springer, 2024, pp. 116–133.

[46] P. Cabalar, R. Kaminski, P. Morkisch, T. Schaub, telingo = ASP + time, in: Logic Programming and

https://doi.org/10.1609/aaai.v36i5.20493
http://dx.doi.org/10.1609/AAAI.V36I5.20493
https://doi.org/10.1007/978-3-031-50974-2_30
http://dx.doi.org/10.1007/978-3-031-50974-2_30
http://dx.doi.org/10.1007/978-3-031-50974-2_30

Nonmonotonic Reasoning - 15th International Conference, LPNMR 2019, Philadelphia, PA, USA,
June 3-7, 2019, Proceedings, volume 11481 of LNCS, 2019, pp. 256–269.

[47] P. Cabalar, M. Diéguez, S. Hahn, T. Schaub, Automata for dynamic answer set solving: Preliminary
report, in: Proceedings of the International Conference on Logic Programming 2021 Workshops
co-located with the 37th International Conference on Logic Programming (ICLP 2021), Porto,
Portugal (virtual), September 20th-21st, 2021, volume 2970 of CEUR Workshop Proceedings, 2021.

[48] G. Mazzotta, F. Ricca, C. Dodaro, Compilation of aggregates in ASP systems, in: AAAI, AAAI
Press, 2022, pp. 5834–5841.

[49] C. Dodaro, G. Mazzotta, F. Ricca, Compilation of tight ASP programs, in: ECAI 2023 - 26th
European Conference on Artificial Intelligence, September 30 - October 4, 2023, Kraków, Poland -
Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023), volume
372 of Frontiers in Artificial Intelligence and Applications, 2023, pp. 557–564.

[50] C. Dodaro, G. Mazzotta, F. Ricca, Blending Grounding and Compilation for Efficient ASP Solving,
in: Proceedings of the 21st International Conference on Principles of Knowledge Representation
and Reasoning, 2024, pp. 317–328. URL: https://doi.org/10.24963/kr.2024/30. doi:10.24963/kr.
2024/30.

https://doi.org/10.24963/kr.2024/30
http://dx.doi.org/10.24963/kr.2024/30
http://dx.doi.org/10.24963/kr.2024/30

	1 Introduction
	2 Linear Time Temporal Logic on Finite Traces
	3 Automata for LTLf satisfiability
	4 Answer Set Programming
	5 ASP-based Satisfiability Checking
	5.1 Input Data
	5.2 Encoding

	6 Experiments
	7 Related Work
	8 Conclusion

