
Towards a Compositional and User-friendly tool for
Multi-Agent Systems Verification
Angelo Ferrando1, Vadim Malvone2

1University of Modena and Reggio Emilia, Italy
2Télécom Paris, France

Abstract
Verifying software and hardware systems presents considerable challenges due to their inherent complexity,
often making thorough verification impractical. The transition from monolithic architectures to Multi-Agent
Systems (MAS) exacerbates these issues, demanding more sophisticated verification tools. Existing solutions,
such as MCMAS and STV, fall short in terms of modularity, flexibility, and usability. This paper highlights
these limitations and suggests future directions for the development of verification tools for MAS. Then, it
discusses VITAMIN (VerIficaTion of A MultI-ageNt system), a formal verification framework aimed at addressing
these shortcomings by supporting diverse logics and model formalisms while also focusing on ease of use.

Keywords
Model Checking, Multi-Agent Systems, Verification Tools

1. Introduction

The correctness of systems is crucial in both hardware and software design, particularly for critical
systems, where failure is unacceptable. Critical systems refer to those where malfunctions are not
tolerable. The primary approaches for software verification include testing, simulation, and formal
verification. The key limitation of testing and simulation is that while they can identify errors, they
cannot guarantee their absence. To address this issue, formal verification proves to be highly effective.
This approach offers a formalised methodology for modeling systems, specifying properties, and
ensuring that a system meets a given specification.

In formal verification, specifications are typically based on temporal logics. These logics describe
the sequence of events without explicitly mentioning time. Temporal logics are primarily categorised
into linear-time and branching-time logics, each reflecting different conceptions of time. The most
commonly used temporal logics include LTL (Linear-Time Temporal Logic) [2], CTL (Computation Tree
Logic) [3], and its extension CTL∗ [4]. A significant advancement in the field of temporal logics has been
the development of algorithmic methods for verifying properties of finite-state systems represented by
Kripke structures [5]. Thus, the formal verification of a system modelled by a Kripke structure 𝑀 with
respect to a temporal logic specification 𝜑 can be restated as: “Is 𝑀 a model of 𝜑?”. This encapsulates
the concept of model checking (MC), a term introduced by Clarke and Emerson in [3].

Two primary approaches are used to carry out model checking in practice. The first approach involves
using classical ad-hoc algorithms. For instance, PSpace-Complete recursive algorithms are employed
to solve model checking problems for LTL. Similarly, a linear algorithm has been developed for CTL.
The second approach involves a systematic use of the automata-theoretic method for infinite objects.
Specifically, this involves translating a temporal logic formula 𝜑 into an automaton. Consequently, the
model checking problem is reduced to solving the emptiness problem of the intersection between the
automaton representing the system and the automaton for the complement of the property.

AI4CC-IPS-RCRA-SPIRIT 2024: International Workshop on Artificial Intelligence for Climate Change, Italian Workshop on Planning
and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving problems with combinatorial explosion,
and SPIRIT Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy. November 25-28th, 2024, Bolzano, Italy [1].
Envelope-Open angelo.ferrando@unimore.it (A. Ferrando); vadim.malvone@telecom-paris.fr (V. Malvone)
GLOBE https://angeloferrando.github.io/ (A. Ferrando); https://vadimmalvone.github.io/ (V. Malvone)
Orcid 0000-0002-8711-4670 (A. Ferrando); 0000-0001-6138-4229 (V. Malvone)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:angelo.ferrando@unimore.it
mailto:vadim.malvone@telecom-paris.fr
https://angeloferrando.github.io/
https://vadimmalvone.github.io/
https://orcid.org/0000-0002-8711-4670
https://orcid.org/0000-0001-6138-4229
https://creativecommons.org/licenses/by/4.0/deed.en

Initially, model checking was applied primarily to closed systems, where behaviour is entirely
determined by internal states. However, these techniques have limited practical utility today, as most
systems are open and interact continuously with other systems. To address this challenge, model
checking was extended to Multi-Agent Systems (MAS).

In the design and verification of MAS, temporal logics have recently become central to strategic
reasoning [6, 7, 8, 9, 10, 11]. In particular, classical temporal logics have been extended to accommodate
properties specific to MAS. One of the most significant advancements in this area is Alternating-
Time Temporal Logic (ATL), introduced by Alur, Henzinger, and Kupferman [6]. This logic enables
reasoning about agents’ strategies with the satisfaction of temporal goals as the payoff criterion. More
formally, ATL is a generalisation of CTL in which the existential E and universal A path quantifiers are
replaced by strategic modalities of the form ⟨⟨Γ⟩⟩ and [[Γ]], where Γ represents a set of agents. Despite its
expressiveness, ATL has a significant limitation: strategies are only implicitly handled in the semantics
of its modalities. This restriction makes the logic less suitable for formalising several important solution
concepts, such as the Nash Equilibrium. These considerations led to the development of Strategy Logic
(SL) [12, 9], a more advanced formalism for strategic reasoning. A key feature of this logic is that it treats
strategies as first-order objects, which can be quantified using existential ∃𝑥 and universal ∀𝑥 quantifiers.
These quantifiers can be interpreted as “there exists a strategy 𝑥” and “for all strategies 𝑥”, respectively.
Notably, in SL [9], a strategy is defined as a generic conditional plan that specifies an action at each
step of the MAS. In more detail, there are two main types of strategies: memoryless and memoryful.
In the case of memoryless strategies, agents select an action based solely on the current game state.
Conversely, memoryful strategies involve agents making decisions based on the entire history of the
game. Therefore, this plan is not intrinsically glued to a specific agent, but an explicit binding operator
(𝑎, 𝑥) allows to link an agent 𝑎 to the strategy associated with a variable 𝑥. Unfortunately, the high
expressivity of SL comes at a price. Indeed, it has been proved that the model-checking problem for
SL becomes non-elementary complete and the satisfiability undecidable. To gain back elementariness,
several fragments of SL have been considered. Among various approaches, Strategy Logic One-Goal
focuses on SL formulas in a specific prenex normal form, which involves a single temporal goal at a
time. Here, a goal is defined as a sequence of bindings followed by a temporal logic formula. It has been
demonstrated that Strategy Logic One-Goal strictly subsumes ATL∗, and its model-checking problem
is 2Exptime-Complete, the same complexity class as for ATL∗. Additionally, Strategy Logic with
Simple-Goals [13] deals with SL formulas where strategic operators, binding operators, and temporal
operators are combined. It has been shown that Strategy Logic with Simple-Goals strictly subsumes
ATL, and its model-checking problem is P-Complete, similar to ATL.

To conclude this section, we focus on a crucial aspect in MAS: the visibility of agents. Specifically, we
distinguish between perfect and imperfect information MAS [14]. In perfect information, every agent
has complete knowledge of the MAS. However, in real-world scenarios, agents often operate without
full access to all relevant information. In computer science, such situations arise, for example, when
some system variables are internal or private and not visible to the external environment [15, 16]. In
MAS models, imperfect information is typically represented by an indistinguishability relation over the
MAS’s states [15, 14, 17]. This means that, during the evolution of the MAS, some agents may not be
able to precisely determine their current state but can only observe a set of indistinguishable states. As
a result, these agents cannot base their strategies on the exact state of the MAS, which implies that they
can only use the same move within indistinguishable sets, or that some perfect information strategies
are no longer applicable. This characteristic significantly impacts the complexity of model checking. For
instance, ATL becomes undecidable in the context of imperfect information and memoryful strategies
[18]. To address this challenge, some research has focused on approximations to perfect information
[19, 20, 21], developed concepts of bounded memory [22, 23], or provided hybrid techniques [24, 25].

2. Limitations of Current Tools for MAS Verification

As mentioned before, the verification of MAS presents significant challenges, surpassing the complexity
of traditional monolithic systems. MAS are characterised by the autonomous behaviour of agents,
their interactions, and the strategic reasoning required, making formal verification in these systems a
demanding task. Two prominent tools used for this purpose are MCMAS [26] and STV [27]. Despite
their widespread use, both tools have notable limitations, especially when applied outside academic
settings. In this section, we explore these limitations, focusing on modularity, user accessibility, and
maintainability.

2.1. MCMAS: A Research-Centric Tool with Limitations

MCMAS, the Model Checker for Multi-Agent Systems [26], has long been a foundational tool in MAS
verification, particularly in academic research. Its early development as a proof-of-concept model
checker made it a preferred tool for researchers. However, several limitations restrict its application
beyond academia, particularly in industrial contexts.

Lack of Modularity. The most significant limitation of MCMAS is its lack of modularity. Its veri-
fication process is rigid and hard-coded, which makes it difficult to adapt or extend the tool for new
logics and models. The absence of a modular architecture has resulted in a monolithic codebase that is
hard to maintain and prone to bugs. Contributions from different research groups over time have led to
inconsistencies, as the lack of a unified development approach has complicated the implementation of
new features.

Inadequate Documentation. MCMAS also suffers from a lack of thorough documentation. External
documentation is scarce, leaving new developers or users without clear guidance. The internal docu-
mentation, when available, is often insufficient and primarily useful only for those directly involved in
its development. This documentation gap significantly hinders the tool’s accessibility, making it difficult
for new researchers to install, execute, or extend the tool without encountering problems—compounded
by the need for external tools like Eclipse1 to run it effectively.

Narrow Research-Only Focus. Designed primarily as a research tool, MCMAS’s limitations are
evident in its inability to support a wider variety of logics and models required for real-world MAS
verification. The tool was not intended for practical, large-scale application beyond academia. This
narrow focus limits MCMAS’s scalability and adaptability for real-world verification tasks, which
demand flexible architectures capable of addressing complex and diverse MAS scenarios.

2.2. STV: A Specialised Tool with Limited Extensibility

STV, StraTegic Verifier [27], another model checker for multi-agent systems, offers a graphical interface
that sets it apart from MCMAS. However, while this interface makes STV more user-friendly, the tool
faces its own set of limitations in terms of scalability, adaptability, and industry application.

Limited Scope and Extensibility. STV was specifically developed for addressing narrow theoretical
research problems. Its design reflects this focus, limiting its ability to be extended by other researchers or
applied in broader contexts. This lack of extensibility hampers STV’s development into a more versatile
tool that could support multiple logics and models necessary for comprehensive MAS verification.

1https://www.eclipse.org/

https://www.eclipse.org/

Unsuitable for Industrial Use. Another significant limitation of STV is its unsuitability for industrial
use. The tool was not designed for environments where users may lack expertise in formal verification
techniques. Industrial contexts require tools that can be operated by non-experts, yet STV remains
inaccessible to this broader audience due to its reliance on specialised formal methods knowledge. As
a result, STV fails to meet the practical needs of industry users, where ease of use and scalability are
critical.

Documentation and Usability Challenges. Like MCMAS, STV also suffers from insufficient docu-
mentation, both for developers and end-users. Although it provides a graphical interface, its usability is
still limited by the need for expertise in formal methods. The lack of clear documentation and tutorials
exacerbates the challenge, making it difficult for those unfamiliar with formal verification techniques to
use the tool effectively.

2.3. Broader Challenges in MAS Verification

The limitations observed in both MCMAS and STV reflect the broader challenges inherent in the
verification of multi-agent systems. The transition from monolithic systems to MAS intensifies the
verification complexities, as MAS involve not only traditional system behaviours but also intricate agent
interactions and strategic reasoning. While tools like MCMAS and STV have advanced theoretical
research, they fall short in meeting the practical requirements of scalable, modular, and user-friendly
verification solutions.

Modularity and Extensibility. A key challenge in MAS verification is the need for modular tools
that can accommodate new models and logics without compromising the integrity of existing modules.
Both MCMAS and STV lack the modularity required for this extensibility. Future verification tools
must be designed with modular architectures that allow for the addition of new features in a way that
preserves the correctness and stability of the existing system.

Accessibility for Non-Experts. Another critical challenge is making MAS verification accessible
to users who are not experts in formal methods. Neither MCMAS nor STV has been designed with
ease of use in mind, as both tools require a deep understanding of formal verification techniques. For
broader adoption, particularly in industrial settings, future tools must include user-friendly interfaces
and comprehensive documentation, along with tutorials that guide non-expert users through the
verification process.

3. Moving Beyond the Limitations

WhileMCMAS and STV have been crucial in advancingMAS verification research, their limitations—par-
ticularly the lack of modularity, extensibility, and accessibility—underscore the need for the next gen-
eration of MAS verification tools. Addressing these shortcomings is essential for creating tools that
bridge the gap between academic research and industrial application.

To overcome the limitations of MCMAS and STV, the development of future MAS verification tools
must focus on the following key areas:

• Modularity: A modular architecture is critical for enabling the independent development of
new logics and models without affecting the existing system. This ensures that the tool remains
adaptable and scalable over time.

• User Accessibility: Future tools must be designed with user-friendly interfaces and thorough
documentation that can support both experts and non-experts in formal methods. This will help
broaden the tool’s usability in industrial contexts.

• Industry Scalability: Verification tools must be optimised for use in industrial settings, where
users may lack formal verification expertise. This requires developing features that simplify the
generation of formal models and properties, along with incorporating optimisation techniques to
manage the execution complexity of large-scale MAS verification tasks.

By focusing on these areas, future MAS verification tools can address the weaknesses of existing
solutions, unlocking new possibilities for both research and practical application in industry.

To open MAS verification to industrial contexts, we must eliminate the weaknesses of current model
checkers. This involves creating a modular tool with a user-friendly interface and comprehensive
documentation for future developers, all while ensuring the correctness of the core verification engine.
Importantly, this modular system would allow for new developments to be treated as black boxes,
guaranteeing that future extensions do not compromise the integrity of existing functionality. Finally,
simplifying the execution complexity and incorporating optimisation techniques—many of which have
already been introduced in our research—will be key to making MAS verification viable for large-scale,
real-world applications.

Towards VITAMIN. Given the limitations of MCMAS and STV, it is evident that futureMAS verification
tools must prioritise modularity, user accessibility, and scalability to meet the diverse needs of both
academia and industry. Recent research, such as that by [28, 29], outlines a promising path forward
with a novel framework called VITAMIN, designed to enhance the modularity, extensibility, and user-
friendliness ofMAS verification frameworks. This approach emphasises a compositional model-checking
architecture, enabling independent modules tailored to specific logics and models. Currently, VITAMIN
supports a variety of specifications, including Alternating-time Temporal Logic (ATL) [30], ATL with
Fuzzy functions (ATLF) [31], Natural ATL (NatATL) [32], Natural SL (NatSL) [33], Resource-BoundedATL
(RB-ATL) [34, 29], Resource Action-based Bounded ATL [35], Capacity ATL (CapATL) [36], Obstruction
Logic (OL) [37], and Obstruction ATL (OATL) [38]. Additionally, VITAMIN’s documentation is designed
to support both developers and end-users, facilitating its use and extension. Adopting such a framework
will allow the next generation of verification tools to not only address the rigidity of current solutions
like MCMAS and STV but also integrate new advances in MAS verification without compromising the
integrity of existing modules. This shift towards a more adaptable and scalable architecture has the
potential to bridge the gap between academic research and real-world application, leading to more
robust, industry-ready MAS verification tools.

4. Conclusions and Future Work

In this paper, we have explored the limitations of the current model checkers, MCMAS and STV, in
the context of MAS verification. Both tools have made significant contributions to academic research,
but their lack of modularity, limited extensibility, and insufficient documentation hinder their broader
adoption, particularly in industrial contexts. MCMAS, while widely recognised for its theoretical
contributions, suffers from a rigid, hard-coded architecture and documentation issues that prevent it
from evolving into a versatile tool. STV, though offering a graphical interface, faces similar limitations in
scope and usability, making it difficult to apply in environments that lack formal verification expertise.

To address these challenges, we pointed out to VITAMIN, a novel verification tool designed to overcome
the weaknesses of MCMAS and STV. VITAMIN’s modularity enables it to support multiple logics and
models in a scalablemanner, without compromising on ease of use or flexibility. By allowing independent
modules for each formalism, VITAMIN ensures that future developments can be incorporated without
affecting the correctness of existing components. This makes it suitable for both academic research and
practical applications, including industrial contexts where ease of use is essential.

Future efforts will concentrate on expanding VITAMIN’s capabilities in several critical areas. First,
the framework will be extended to handle more complex case studies, ensuring its scalability for real-
world MAS applications, including autonomous vehicles and security protocols. Second, feedback

from the broader MAS community will be solicited, particularly on the usability of VITAMIN in both
academic and industrial contexts. This feedback will guide further improvements to the tool’s interface,
documentation, and modular architecture. Third, optimising the execution complexity of VITAMIN
will be a critical area for future research. Incorporating advanced optimisation techniques, such as
those explored in prior work, will help reduce the computational overhead of verifying large-scale
systems. Further development on automated model and property generation techniques will be carried
out, which will simplify the verification process for non-experts, making VITAMIN more accessible to a
wider range of users.

By addressing these future directions, we believe that VITAMIN has the potential to become the
next-generation MAS verification tool, bridging the gap between academic research and industrial
applications, and providing a robust, scalable solution for formal verification in multi-agent systems.

References

[1] D. Aineto, R. De Benedictis, M. Maratea, M. Mittelmann, G. Monaco, E. Scala, L. Serafini, I. Serina,
F. Spegni, E. Tosello, A. Umbrico, M. Vallati (Eds.), Proceedings of the International Workshop
on Artificial Intelligence for Climate Change, the Italian workshop on Planning and Scheduling,
the RCRA Workshop on Experimental evaluation of algorithms for solving problems with com-
binatorial explosion, and the Workshop on Strategies, Prediction, Interaction, and Reasoning in
Italy (AI4CC-IPS-RCRA-SPIRIT 2024), co-located with 23rd International Conference of the Italian
Association for Artificial Intelligence (AIxIA 2024), CEUR Workshop Proceedings, CEUR-WS.org,
2024.

[2] A. Pnueli, The Temporal Logic of Programs., in: Foundation of Computer Science’77, IEEE
Computer Society, 1977, pp. 46–57.

[3] E. Clarke, E. Emerson, Design and Synthesis of Synchronization Skeletons Using Branching-Time
Temporal Logic., in: Logic of Programs’81, LNCS 131, Springer, 1981, pp. 52–71.

[4] E. Emerson, J. Halpern, “Sometimes” and “Not Never” Revisited: On Branching Versus Linear
Time., Journal of the ACM 33 (1986) 151–178.

[5] S. Kripke, Semantical Considerations on Modal Logic., Acta Philosophica Fennica 16 (1963) 83–94.
[6] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic., Journal of the ACM 49

(2002) 672–713.
[7] W. Jamroga, W. van der Hoek, Agents that Know How to Play., Fundamenta Informaticae 63

(2004) 185–219.
[8] K. Chatterjee, T. Henzinger, N. Piterman, Strategy Logic., Information and Computation 208 (2010)

677–693.
[9] F. Mogavero, A. Murano, M. Vardi, Reasoning About Strategies., in: Foundations of Software

Technology and Theoretical Computer Science’10, LIPIcs 8, Leibniz-Zentrum fuer Informatik, 2010,
pp. 133–144.

[10] E. Lorini, A Dynamic Logic of Agency II: Deterministic DLA, Coalition Logic, and Game Theory.,
Journal of Logic, Language, and Information’ 19 (2010) 327–351.

[11] J. van Eijck, PDL as a Multi-Agent Strategy Logic., in: Theoretical Aspects of Rationality and
Knowledge’13, 2013, pp. 206–215.

[12] K. Chatterjee, T. Henzinger, N. Piterman, Strategy Logic., in: Concurrency Theory’07, LNCS 4703,
Springer, 2007, pp. 59–73.

[13] F. Belardinelli, W. Jamroga, V. Malvone, A. Murano, Strategy logic with simple goals: Tractable
reasoning about strategies, in: 28th International Joint Conference on Artificial Intelligence (IJCAI
2019), 2019, pp. 88–94.

[14] J. H. Reif, The complexity of two-player games of incomplete information, JCSS 29 (1984) 274–301.
[15] O. Kupferman, M. Vardi, Module checking revisited, in: CAV ’96, volume 1254 of LNCS, Springer-

Verlag, 1997, pp. 36–47.

[16] R. Bloem, K. Chatterjee, S. Jacobs, R. Könighofer, Assume-guarantee synthesis for concurrent
reactive programs with partial information, in: TACAS, 2015, pp. 517–532.

[17] A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize, in: FOCS, 1990, pp.
746–757.

[18] C. Dima, F. Tiplea, Model-checking ATL under Imperfect Information and Perfect Recall Semantics
is Undecidable., Technical Report, arXiv, 2011.

[19] F. Belardinelli, A. Lomuscio, V. Malvone, An abstraction-based method for verifying strategic
properties in multi-agent systems with imperfect information, in: Proceedings of AAAI, 2019.

[20] F. Belardinelli, V. Malvone, A three-valued approach to strategic abilities under imperfect infor-
mation, in: Proceedings of the 17th International Conference on Knowledge Representation and
Reasoning, 2020, pp. 89–98.

[21] F. Belardinelli, A. Ferrando, V. Malvone, An abstraction-refinement framework for verifying
strategic properties in multi-agent systems with imperfect information, Artif. Intell. 316 (2023)
103847. URL: https://doi.org/10.1016/j.artint.2022.103847. doi:10.1016/j.artint.2022.103847.

[22] F. Belardinelli, A. Lomuscio, V. Malvone, Approximating perfect recall when model checking
strategic abilities, in: KR2018, 2018, pp. 435–444.

[23] F. Belardinelli, A. Lomuscio, V. Malvone, E. Yu, Approximating perfect recall when model checking
strategic abilities: Theory and applications, J. Artif. Intell. Res. 73 (2022) 897–932. URL: https:
//doi.org/10.1613/jair.1.12539. doi:10.1613/jair.1.12539.

[24] A. Ferrando, V. Malvone, Towards the combination of model checking and runtime verification on
multi-agent systems, in: F. Dignum, P. Mathieu, J. M. Corchado, F. de la Prieta (Eds.), Advances in
Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The
PAAMS Collection - 20th International Conference, PAAMS 2022, L’Aquila, Italy, July 13-15, 2022,
Proceedings, volume 13616 of Lecture Notes in Computer Science, Springer, 2022, pp. 140–152. URL:
https://doi.org/10.1007/978-3-031-18192-4_12. doi:10.1007/978-3-031-18192-4_12.

[25] A. Ferrando, V. Malvone, Towards the verification of strategic properties in multi-agent systems
with imperfect information, in: N. Agmon, B. An, A. Ricci, W. Yeoh (Eds.), Proceedings of
the 2023 International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2023, London, United Kingdom, 29 May 2023 - 2 June 2023, ACM, 2023, pp. 793–801. URL: https:
//dl.acm.org/doi/10.5555/3545946.3598713. doi:10.5555/3545946.3598713.

[26] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: an open-source model checker for the verification of
multi-agent systems, Int. J. Softw. Tools Technol. Transf. 19 (2017) 9–30. URL: https://doi.org/10.
1007/s10009-015-0378-x. doi:10.1007/S10009-015-0378-X.

[27] D. Kurpiewski, W. Jamroga, M. Knapik, STV: model checking for strategies under imperfect
information, in: E. Elkind, M. Veloso, N. Agmon, M. E. Taylor (Eds.), Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal,
QC, Canada, May 13-17, 2019, International Foundation for Autonomous Agents and Multiagent
Systems, 2019, pp. 2372–2374. URL: http://dl.acm.org/citation.cfm?id=3332116.

[28] A. Ferrando, V. Malvone, VITAMIN: A compositional framework for model checking of multi-
agent systems, CoRR abs/2403.02170 (2024). URL: https://doi.org/10.48550/arXiv.2403.02170. doi:10.
48550/ARXIV.2403.02170. arXiv:2403.02170.

[29] A. Ferrando, V. Malvone, Hands-on VITAMIN: A compositional tool for model checking of
multi-agent systems, in: M. Alderighi, M. Baldoni, C. Baroglio, R. Micalizio, S. Tedeschi (Eds.),
Proceedings of the 25th Workshop ”From Objects to Agents”, Bard (Aosta), Italy, July 8-10, 2024,
volume 3735 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 148–160. URL: https://
ceur-ws.org/Vol-3735/paper_12.pdf.

[30] R. Alur, T. A. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002) 672–713.
URL: https://doi.org/10.1145/585265.585270. doi:10.1145/585265.585270.

[31] A. Ferrando, G. Luongo, V. Malvone, A. Murano, Theory and practice of quantitative atl, in:
R. Arisaka, V. S. Anguix, S. Stein, R. Aydogan, L. van der Torre, T. Ito (Eds.), PRIMA 2024: Principles
and Practice of Multi-Agent Systems - 25th International Conference, Kyoto, Japan, November
18-24, 2024, Proceedings, volume to appear of Lecture Notes in Computer Science, Springer, 2024.

https://doi.org/10.1016/j.artint.2022.103847
http://dx.doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1613/jair.1.12539
http://dx.doi.org/10.1613/jair.1.12539
https://doi.org/10.1007/978-3-031-18192-4_12
http://dx.doi.org/10.1007/978-3-031-18192-4_12
https://dl.acm.org/doi/10.5555/3545946.3598713
https://dl.acm.org/doi/10.5555/3545946.3598713
http://dx.doi.org/10.5555/3545946.3598713
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/s10009-015-0378-x
http://dx.doi.org/10.1007/S10009-015-0378-X
http://dl.acm.org/citation.cfm?id=3332116
https://doi.org/10.48550/arXiv.2403.02170
http://dx.doi.org/10.48550/ARXIV.2403.02170
http://dx.doi.org/10.48550/ARXIV.2403.02170
http://arxiv.org/abs/2403.02170
https://ceur-ws.org/Vol-3735/paper_12.pdf
https://ceur-ws.org/Vol-3735/paper_12.pdf
https://doi.org/10.1145/585265.585270
http://dx.doi.org/10.1145/585265.585270

[32] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability, Artif. Intell. 277 (2019).
[33] F. Belardinelli, W. Jamroga, V. Malvone, M. Mittelmann, A. Murano, L. Perrussel, Reasoning about

human-friendly strategies in repeated keyword auctions, in: AAMAS 2022, 2022, pp. 62–71.
[34] H. N. Nguyen, N. Alechina, B. Logan, A. Rakib, Alternating-time temporal logic with resource

bounds, J. Log. Comput. 28 (2018) 631–663.
[35] D. Catta, A. Ferrando, V. Malvone, Resource action-based bounded atl: a new logic for mas to

express a cost over the actions, in: R. Arisaka, V. S. Anguix, S. Stein, R. Aydogan, L. van der Torre,
T. Ito (Eds.), PRIMA 2024: Principles and Practice of Multi-Agent Systems - 25th International
Conference, Kyoto, Japan, November 18-24, 2024, Proceedings, volume to appear of Lecture Notes
in Computer Science, Springer, 2024.

[36] G. Ballot, V. Malvone, J. Leneutre, Y. Laarouchi, Strategic reasoning under capacity-constrained
agents, in: M. Dastani, J. S. Sichman, N. Alechina, V. Dignum (Eds.), Proceedings of the 23rd
International Conference onAutonomousAgents andMultiagent Systems, AAMAS 2024, Auckland,
New Zealand, May 6-10, 2024, International Foundation for Autonomous Agents and Multiagent
Systems / ACM, 2024, pp. 123–131. URL: https://dl.acm.org/doi/10.5555/3635637.3662859. doi:10.
5555/3635637.3662859.

[37] D. Catta, J. Leneutre, V. Malvone, Obstruction logic: A strategic temporal logic to reason about
dynamic game models, in: K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, R. Radulescu (Eds.), ECAI
2023 - 26th European Conference on Artificial Intelligence, September 30 - October 4, 2023, Kraków,
Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023),
volume 372 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 365–372. URL:
https://doi.org/10.3233/FAIA230292. doi:10.3233/FAIA230292.

[38] D. Catta, J. Leneutre, V. Malvone, A. Murano, Obstruction alternating-time temporal logic: A
strategic logic to reason about dynamic models, in: M. Dastani, J. S. Sichman, N. Alechina,
V. Dignum (Eds.), Proceedings of the 23rd International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2024, Auckland, New Zealand, May 6-10, 2024, International
Foundation for Autonomous Agents and Multiagent Systems / ACM, 2024, pp. 271–280. URL:
https://dl.acm.org/doi/10.5555/3635637.3662875. doi:10.5555/3635637.3662875.

https://dl.acm.org/doi/10.5555/3635637.3662859
http://dx.doi.org/10.5555/3635637.3662859
http://dx.doi.org/10.5555/3635637.3662859
https://doi.org/10.3233/FAIA230292
http://dx.doi.org/10.3233/FAIA230292
https://dl.acm.org/doi/10.5555/3635637.3662875
http://dx.doi.org/10.5555/3635637.3662875

	1 Introduction
	2 Limitations of Current Tools for MAS Verification
	2.1 MCMAS: A Research-Centric Tool with Limitations
	2.2 STV: A Specialised Tool with Limited Extensibility
	2.3 Broader Challenges in MAS Verification

	3 Moving Beyond the Limitations
	4 Conclusions and Future Work

