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Abstract
In this paper we investigate the relation of temporal logics and properties of Yablo sentences. We provide an
(first in the literature) analysis of Yablo sentences (as formalized in temporal logic vocabulary) in 𝐿𝑇𝐿𝑓, i.e., the
Linear Temporal Logic over finite traces.
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1. Introduction

Yablo’s Paradox is a semantic phenomenon discovered by Stephen Yablo in 1993. In his paper [2] the
author provided a by now famous example of a semantic paradox which, according to the author, does
not involve self-reference. Recall the paradox arises when one considers the following sequence of
sentences:

𝑌0 For any 𝑘 > 0, 𝑌𝑘 is false.
𝑌1 For any 𝑘 > 1, 𝑌𝑘 is false.
𝑌2 For any 𝑘 > 2, 𝑌𝑘 is false.

⋮
𝑌𝑛 For any 𝑘 > 𝑛, 𝑌𝑘 is false.

⋮

Take any sentence 𝑌𝑛 from the sequence and ask what would happen if it was true. Suppose it is.
Then, things are as it says, and for any 𝑗 > 𝑛 𝑌𝑗 is false. In particular 𝑌𝑛+1 is false and also for any
𝑗 > 𝑛 + 1 𝑌𝑗 is false.
But the second conjunct is exactly what 𝑌𝑛+1 states, so it turns that 𝑌𝑛+1 is true after all. The

assumption that 𝑌𝑛 is true led therefore to a contradiction. So it is false. This means that not all
sentences following 𝑌𝑛 are false, and so one of them, say 𝑌𝑘, is true. But then, we can again obtain a
contradiction by repeating for 𝑌𝑘 the same reasoning that we have just given for 𝑌𝑛. So, whether 𝑌𝑛 is
true, or false, a contradiction follows. Hence the paradox.
Yablo’s Paradox has already been demonstrated relevant to the field of multiagent systems. In

particular, it has been investigated from the perspective of epistemic game theory, starting from the
assumption that other people’s beliefs about our beliefs shape our decision-making strategies. Epistemic
game theory formalizes how players think about each other’s beliefs, examining their reasoning
processes before making final decisions in a game. A paper [3] introduced a non-self-referential
paradox, termed the ’Yablo-like Brandenburger-Keisler paradox’, within epistemic game theory. This
paradox demonstrated that it is impossible to comprehensively model players’ epistemic beliefs and
assumptions. Additionally, the authors proposed an interactive temporal belief and assumption logic
to appropriately formalize this paradox, transforming it into a theorem within this logic framework.
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Specifically, the so-called Assumption Logic is a multi-modal logic designed to formalize the beliefs and
assumptions of agents within a multi-agent system. Initially introduced by Bonanno for belief revision,
it was later simplified by Brandenburger and Keisler to articulate their paradox in epistemic game
theory. To reframe their two-player impossibility result within a modal logic framework, Brandenburger
and Keisler developed an interactive version of Assumption Logic, featuring two operators. Temporal
Assumption Logic extends this framework, allowing for the study of how agents’ beliefs change over
time.

Ensuring the reliability of both software and hardware systems is a complex task, particularly when
these systems are distributed. Over the past fifty years, researchers have proposed various solutions to
this challenge. One notable success is the application of formal methods techniques [4]. These methods
allow for the verification of a system’s correctness by formally assessing whether a mathematical model
of the system meets a formal representation of its intended behavior. Linear Time Temporal Logic (LTL)
[5] is a formalism used to describe sequences of events in a linear, chronological order. It allows for the
specification and verification of temporal properties in systems, such as safety and liveness conditions
and it is extensively used as a specification language in formal methods. LTL over finite traces (𝐿𝑇𝐿𝑓)
[6] adapts Linear Time Temporal Logic to handle finite sequences of events, making it ideal for systems
that eventually stop. Unlike standard 𝐿𝑇𝐿, which assumes events continue indefinitely, 𝐿𝑇𝐿𝑓 focuses
on properties within a limited timeframe. This is especially useful for scenarios like workflows or test
cases where the process has a clear endpoint. This is particularly relevant in areas such as Planning
and Business Process Management. A key computational advantage of finite-trace interpretation is the
ability to use standard finite-state automata for modeling and reasoning, instead of the more complex
omega-automata needed for infinite traces. In this paper, we give a formalization of Yablo’s Paradox
within the framework of 𝐿𝑇𝐿𝑓.

1.1. Related Work

Yablo’s paradox is one of major phenomena in formal semantics and has been investigated from many
logical, mathematical, computer-scientific and philosophical points of view. A body of works that
is particuarly interesting and relevant from the point of view of this paper, concerns topics such as
the metalogical properties of Yablo sequences, as formalized in arithmetic and axiomatic theories of
truth, metalogical properties of Yablo sequences when interpreted over potentially infinite domains
with the semantics formalizing the notion of truth in the limit, and last, but not least, properties of
Yablo sentences, as formalized in the temporal logic 𝐿𝑇𝐿. S. Salehi and A. Karimi in [7] have initiated
the study of Yablo’s sentences in 𝐿𝑇𝐿, obtaining some preliminary results on the semantics of Yablo’s
sentences in 𝐿𝑇𝐿. The study was further extended by A. Karimi in [8], where syntactic proofs using an
appropriate axiomatization of 𝐿𝑇𝐿 were given for Yablo’s paradox in its various variants.
A fruitful study of Yablo’s paradox formalized over arithmetic performed e.g. in [9] and in [10] has

revealed that the reasoning has the following interesting feature. If we formalize the Yablo sentences
over arithmetic, then in order to derive the contradiction, one needs to use a strong assumption
concerning the notion of truth: namely one has to assume “for all 𝑛, 𝑌𝑛 if and only if ⌜𝑌𝑛⌝ is true.”
∀𝑛 (𝑌𝑛 ≡ 𝑇 𝑟(𝑌𝑛)). If we wanted to replace this uniform disquotation with an infinity of local disquotation
instances, contradiction could be obtained only if we used some infinitary inference rule (requiring an
infinite number of premises) such as the 𝜔-rule.
So far, the story is rather well-known. What is somewhat less known, is that there is a way of

handling the paradox which relies on finitistic assumptions. After all, if the world is finite, there aren’t
enough things in the world to interpret all sentences from the Yablo sequence, and the last interpreted
one is vacuously true without any threat of paradox. Yablo’s paradox can be thought of as an infinitary
version of the Liar paradox, so perhaps thinking it can be dealt with by tackling the notion of infinity
isn’t extremely implausible.



1.2. Our contributions

In this paper we fill a certain gap in the literature concerning the relation of temporal logics and
properties of Yablo sentences and for the first time in the literature, we perform the analysis of Yablo
sentences (as formalized in temporal logic vocabulary) in 𝐿𝑇𝐿𝑓, i.e., the Linear Temporal Logic over
finite traces.

2. Yablo’s Paradox in LTL

In this section, we give a formalization of Yablo’s Paradox within the framework of LTL. Before doing
so let us recall the syntax and semantics of LTL.

Definition 1 (Syntax of 𝐿𝑇𝐿). Let 𝑉 be a set of propositional variables. The alphabet of a basic propositional
languageℒ𝐿𝑇𝐿 is given by:

• the set 𝑉,
• logical connectives: →, and ¬,
• the bracket symbols: (, and ),
• logical operators: ○, and 𝒰.

We use the following recursive definition of the set of formulas ofℒ𝐿𝑇𝐿:

1. every propositional variable 𝑝 ∈ 𝑉 is a formula,
2. if 𝜑 is a formula, then ¬𝜑, ○𝜑 are formulas
3. if 𝜑, and 𝜓 are formulas, then (𝜑 → 𝜓) and 𝜑𝒰𝜓 are formulas,

and nothing else is a formula.

Semantical interpretations in classical propositional logic are given by boolean valuations. For LTL we
have to extend this concept according to our informal idea that formulas are evaluated over sequences
of states (’time scales’).

Definition 2 (Semantics of 𝐿𝑇𝐿). A temporal (Kripke) structure for 𝑉 is an infinite sequence 𝐾 =
(𝜂0, 𝜂1, 𝜂2, …) of mappings 𝜂𝑖 ∶ 𝑉 → {0, 1} called states. The mapping 𝜂0 is called initial state of 𝐾. Observe
that states are just valuations in the classical logic sense. For 𝐾 and 𝑖 ∈ ℕ we define 𝐾, 𝑖 ⊧ 𝜑 (in another
formalism denoted by 𝐾𝑖(𝜑) = 1), informally meaning the ’truth value of 𝜑 in the 𝑖th state of 𝐾’ for every
formula 𝜑 inductively as follows:

1. 𝐾, 𝑖 ⊧ 𝑣 iff 𝜂𝑖(𝑣) = 1 for each 𝑣 ∈ 𝑉,
2. 𝐾, 𝑖 ⊧ ¬𝜑 iff 𝐾, 𝑖 ̸⊧𝜑,
3. 𝐾, 𝑖 ⊧ 𝜑 → 𝜓 iff 𝐾, 𝑖 ⊧ ¬𝜑 or 𝐾, 𝑖 ⊧ 𝜓,
4. 𝐾, 𝑖 ⊧ ○𝜑 iff 𝐾, 𝑖 + 1 ⊧ 𝜑,
5. 𝐾, 𝑖 ⊧ 𝜑𝒰 𝜓 iff there exists 𝑗 ≥ 𝑖 s.t. 𝐾, 𝑗 ⊧ 𝜓 and for each 𝑖 ≤ 𝑙 < 𝑗 it holds that 𝐾, 𝑙 ⊧ 𝜑

The Boolean connectives ∨, ∧ and ⊤ (and their semantics) can be defined as usual. We write ♦𝜑 as a
shortcut for ⊤𝒰𝜑 and □𝜑 as a shortcut for ¬♦¬𝜑.

Definition 3 (Validities of 𝐿𝑇𝐿). A formula 𝜑 ofℒ𝐿𝑇𝐿 is called valid in the temporal structure 𝐾 for 𝑉
(or 𝐾 satisfies 𝜑), denoted by 𝐾 ⊧ 𝜑, if 𝐾, 𝑖 ⊧ 𝜑 for every 𝑖 ∈ ℕ. A formula 𝜑 is called a consequence of
a set Δ of formulas Δ ⊧ 𝜑 if 𝐾 ⊧ 𝜑 holds for every 𝐾 such that 𝐾 ⊧ 𝜓 for all 𝜓 ∈ Δ. A formula 𝜑 is called
(universally) valid ⊧ 𝜑 if ∅ ⊧ 𝜑. Then we also say that the formula 𝜑 is a law of 𝐿𝑇𝐿 or that 𝐿𝑇𝐿 entails it,
denoted as 𝐿𝑇𝐿 ⊧ 𝜑. A formula 𝜑 is called (locally) satisfiable if there is a temporal structure 𝐾 and 𝑖 ∈ ℕ
such that 𝐾, 𝑖 ⊧ 𝜑.



It can be easily seen that the following are examples of formulas that are universally valid in 𝐿𝑇𝐿:

○□𝜑 ↔ □ ○ 𝜑,

and
¬ ○ 𝜑 ↔ ○¬𝜑.

The latter, called the duality law for Next operator of 𝐿𝑇𝐿, will be of particular importance when
analyzing the main differences between behavior of Yablo sentences in 𝐿𝑇𝐿 and 𝐿𝑇𝐿𝑓.

It immediately follow from the equivalences below that the following equivalences hold universally
as well:

○□¬𝜑 ↔ □ ○ ¬𝜑 ↔ □¬ ○ 𝜑.

The Yablo formula in 𝐿𝑇𝐿 is defined as the equivalence:

𝜑 ↔ ○□¬𝜑.

The Yablo Paradox means that the following theorem holds:

Theorem 1 (A. Karimi, S. Salehi [7]). The following is a theorem of 𝐿𝑇𝐿:

¬□ (𝜑 ↔ ○□¬𝜑.)

The proof goes by an argument demonstrating that the formula

□ (𝜑 ↔ ○□¬𝜑.)

is unsatisfiable in 𝐿𝑇𝐿. We will show below that this is in contrast with what happens in 𝐿𝑇𝐿𝑓.
As Yablo’s paradox comes in several varieties, in the paper [7] by S. Salehi and A. Karimi it has also

been demosntrated that other variants of Yablo formulas are paradoxical in the same sense as obve,
when formalized in the framework of temporal logic rather than arithmetic.

The original version of Yablo’s sequence consists of the so-called Always-Y-sentences: 𝑌𝑛 ↔ ∀𝑘 >
𝑛 𝑌𝑘 is not true, which when formalized inℒ𝐿𝑇𝐿 gives the formula mentioned above, i.e., 𝜑 ↔ ○□¬𝜑.
Other natural variants considered in the literature are:

1. Sometimes-Y-sentences: 𝑌𝑛 ↔ ∃𝑘 > 𝑛 𝑌𝑘 is not true, which has the following form when
formalized inℒ𝐿𝑇𝐿:

𝜑 ↔ ○♦¬𝜑,

2. Almost-Always-Y-sentences: 𝑌𝑛 ↔ ∃𝑘 > 𝑛∀𝑗 > 𝑘 𝑌𝑗 is not true, which has the following form
when formalized in ℒ𝐿𝑇𝐿:

𝜑 ↔ ○♦□¬𝜑,

3. Unboundedly-Often-Y-sentences: 𝑌𝑛 ↔ ∀𝑘 > 𝑛∃𝑗 > 𝑘 𝑌𝑗 is not true, which has the following
form when formalized inℒ𝐿𝑇𝐿:

𝜑 ↔ ○□♦¬𝜑.

A. Karimi and S. Salehi show in [7] that all the formulas above they are paradoxical in the sense
that for each equivalence 𝜓 of the above (Sometimes, Almost-Always, and Unboundedly-Often) the
following holds:

𝐿𝑇𝐿 ⊧ ¬□𝜓 ,

meaning that the formula □𝜓 is unsatisfiable.
Below, we demonstrate that this is in contrast with the situation in 𝐿𝑇𝐿𝑓.



3. 𝐿𝑇𝐿𝑓
The syntax of 𝐿𝑇𝐿𝑓 is identical to the syntax of 𝐿𝑇𝐿. The semantics of 𝐿𝑇𝐿𝑓 is given in terms of
𝐿𝑇𝑓-interpretations, i.e., interpretations over finite traces denoting a finite sequence of consecutive
instants of time. 𝐿𝑇𝑓-interpretations are represented here as finite words 𝜋 over the alphabet of {0, 1}𝑉,
i.e., as alphabet we have all the possible propositional interpretations of the propositional symbols in 𝑉.

We use the following notation. We denote the length of a trace 𝜋 as |𝜋 |. We denote the positions, i.e.,
instants, on the trace as 𝜋(𝑖) with 0 ≤ 𝑖 ≤ max, where max = |𝜋| − 1 is the last element of the trace. We
denote by 𝜋[𝑖, 𝑗] the segment (i.e., the subword) obtained from 𝜋 starting from position 𝑖 and terminating
in positon 𝑗, 0 ≤ 𝑖 ≤ 𝑗 ≤ max.

Definition 4 (Semantics of 𝐿𝑇𝐿𝑓). A temporal ( Kripke) structure for 𝑉 is a finite sequence 𝜋 =
(𝜂0, 𝜂1, 𝜂2, … , 𝜂max) of mappings 𝜂𝑖 ∶ 𝑉 → {0, 1} called states. The mapping 𝜂0 is called initial state
of 𝜋. Observe that states are just valuations in the classical logic sense. For 𝜋 and 𝑖 ∈ ℕ we define 𝜋, 𝑖 ⊧ 𝜑
(in another formalism denoted by 𝜋𝑖(𝜑) = 1), informally meaning the ’truth value of 𝜑 in the 𝑖th state of 𝐾’
for every formula 𝜑 inductively as follows:

1. 𝜋, 𝑖 ⊧ 𝑣 iff 𝜂𝑖(𝑣) = 1 for each 𝑣 ∈ 𝑉,
2. 𝜋, 𝑖 ⊧ ¬𝜑 iff 𝜋, 𝑖 ̸⊧𝜑,
3. 𝜋, 𝑖 ⊧ 𝜑 → 𝜓 iff 𝜋, 𝑖 ⊧ ¬𝜑 or 𝜋, 𝑖 ⊧ 𝜓,
4. 𝜋, 𝑖 ⊧ ○𝜑 iff 𝑖 < max and 𝜋, 𝑖 + 1 ⊧ 𝜑,
5. 𝜋, 𝑖 ⊧ ♦𝜑 iff there exists 𝑖 ≤ 𝑗 ≤ max s.t. 𝜋, 𝑗 ⊧ 𝜑.

Thus, by the semantics above, for each formula 𝜑 of the language ℒ𝐿𝑇𝐿 we have that for any trace 𝜋
the following holds:

𝜋,max ⊧ ¬ ○ 𝜑,

but simultaneously
𝜋,max ̸⊧ ○ ¬𝜑,

which proves that the law of duality of Next of 𝐿𝑇𝐿 does not hold universally for 𝐿𝑇𝐿𝑓, i.e., it is not a
validity of the logic.

4. Yablo’s sentences in 𝐿𝑇𝐿𝑓
The Yablo sentences employ a very interesting feature in models of 𝐿𝑇𝐿𝑓, and allow us to recover the
counterpart of the arithmetical result on non-paradoxicality of the Yablo sequence when considered
under 𝑠𝑙-semantics over 𝐹𝑀-domains.

We now present a result that shall e interpreted as one stating that there is no Yablo Paradox in linear
temporal logic over finite traces.

Theorem 2. The formula
□ (𝜑 ↔ ○□¬𝜑)

is satisfiable in 𝐿𝑇𝐿𝑓

Proof. We demonstrate a stronger result, namely that for each natural number 𝑛 ≥ 2 there exists an 𝐿𝑇𝑓-
interpretation (i.e., a finite trace) of size 𝑛 that satisfies the Yablo formula. Recall that max = 𝑛 − 1.
Let 𝑛 ≥ 2 be arbitrary natural number. Consider a finite trace 𝜋 with |𝜋 | = 𝑛. Let 𝜑 be formula

mentionted in the Yablo equivalence, i.e., defined as equivalent to ○□¬𝜑.
We define the valuation of 𝜑 in subsequent states of the trace 𝜋.
For each 𝑖 = 0… , 𝑛 − 3 (observe that if 𝑛 = 2, then there are no such 𝑖’s, but it does not result in any

problems for the valuation) put:
𝜋, 𝑖 ⊧ ¬𝜑.



For 𝑖 = 𝑛 − 2 = max−1 put:
𝜋, 𝑖 ⊧ 𝜑.

Finally, for 𝑖 = max = 𝑛 − 1 define:

𝜋, 𝑖 ⊧ ¬𝜑.

As it can be easily seen, it holds that

𝜋, 0 ⊧ □ (𝜑 ↔ ○□¬𝜑) .

This implies that
𝐿𝑇𝐿𝑓 ̸⊧¬□ (𝜑 ↔ ○□¬𝜑)

in contrast to the status of the formula in 𝐿𝑇𝐿.

Observe the valuation above is the only consistent one that can be defined on any given finite trace
of size at least 2.

We also obtain similar results concerning the avoidance of paradoxicality of other Yablo sentences in
𝐿𝑇𝐿𝑓.

Theorem 3. The temporal Sometimes-Y-formula formula

□ (𝜑 ↔ ○♦¬𝜑)

is satisfiable in 𝐿𝑇𝐿𝑓

Proof. We demonstrate a stronger result, namely that for each natural number 𝑛 ≥ 2 there exists an
𝐿𝑇𝑓- interpretation (i.e., a finite trace) of size 𝑛 that satisfies the Sometimes-Y formula. Recall that
max = 𝑛 − 1.
Let 𝑛 ≥ 2 be arbitrary natural number. Consider a finite trace 𝜋 with |𝜋 | = 𝑛. Let 𝜑 be formula

mentionted in the Yablo equivalence, i.e., defined as equivalent to ○□¬𝜑.
We define the valuation of 𝜑 in subsequent states of the trace 𝜋.
For each 𝑖 = 0… , 𝑛 − 2 put:

𝐾, 𝑖 ⊧ 𝜑.

Finally, for 𝑖 = max = 𝑛 − 1 define:

𝐾, 𝑖 ⊧ ¬𝜑.

As it can be easily seen, it holds that

𝜋, 0 ⊧ □ (𝜑 ↔ ○♦¬𝜑) .

This implies that
𝐿𝑇𝐿𝑓 ̸⊧¬□ (𝜑 ↔ ○♦¬𝜑)

in contrast to the status of the formula in 𝐿𝑇𝐿.

The valutaion constructed in the proof of satisfiability of the Sometimes-Y-formulas in 𝐿𝑇𝐿𝑓 gives us
also proofs of satisfiability of the Almost-Always-Y-formula and the Unboundedly-Often-Y-formula:

Theorem 4. The temporal Almost-Always-Y-formula

□ (𝜑 ↔ ○♦□¬𝜑)

is satisfiable in 𝐿𝑇𝐿𝑓

Finally, we have:



Theorem 5. The temporal Unboundedly-Often-Y-formula

□ (𝜑 ↔ ○□♦¬𝜑)

is satisfiable in 𝐿𝑇𝐿𝑓

Theorem 6. Let 𝜑 be the Unboundedly-Often-Y-formula, i.e., □ (𝜑 ↔ ○□♦¬𝜑). Then: 𝜑 ∈ 𝑠𝑙(Π), where Π
is the class of all finite traces over the set of propositional variables 𝑉.

5. Conclusions

In this paper we have investigated the relation of temporal logics and properties of Yablo sentences,
providing the analysis of Yablo sentences (as formalized in temporal logic vocabulary) in 𝐿𝑇𝐿𝑓, i.e., the
Linear Temporal Logic over finite traces.
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