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Abstract
In the realm of contemporary industrial control systems, the necessity for robust anomaly detection and classifi-

cation is of critical importance. This paper presents an application of neural network technology in a real-world

industrial scenario focused on elevator control. We employ two fully-connected neural networks to accomplish

both anomaly detection and classification. The first neural network is dedicated to identifying types of anomalies,

while the second predicts their magnitudes. Additionally, we integrate formal verification to certify the local

robustness of these networks. Our findings not only showcase the practical efficacy of our methodology but also

emphasise the crucial role of small neural networks in effectively addressing challenges within industrial settings.
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1. Introduction

In industrial automation and control systems, the smooth operation of critical machinery is essential

across various sectors. Elevator control systems are crucial in settings like commercial buildings, resi-

dential complexes, and industrial facilities, efficiently transporting people and goods under demanding

conditions. As elevator control systems’ complexity has grown to meet modern infrastructure needs, so

have challenges in maintenance and operation. Detecting and classifying anomalies in these systems

is critical for accident prevention, minimising downtime, and reducing maintenance costs. These

anomalies range from mechanical faults to sensor errors, requiring resolution for safe and reliable

elevator operation. Traditionally, rule-based methods and hand-crafted algorithms handled anomaly

detection in elevator control systems. While effective to some extent, they struggle with the diverse and

dynamic nature of real-world anomalies. Additionally, they may lack the ability to quantify the severity

of detected anomalies, limiting the prioritisation of maintenance efforts. The rise of artificial intelligence

(AI), especially neural networks (NNs), has transformed anomaly detection and classification [2, 3].

These technologies, capable of learning intricate patterns from data, offer a promising avenue to enhance

the reliability and effectiveness of anomaly detection in elevator control systems.

This paper introduces a real-world application of NNs in the domain of elevator control systems,

focusing on achieving three primary objectives:

• Anomaly Detection and Classification: This work propose to employ two fully-connected

NNs to identify and categorise anomalies in elevator control systems. The first NN focuses on

discerning the type or category of the identified anomaly, providing valuable insights into its

characteristics. The second NN is specifically tailored for regression, forecasting the magnitude

or severity of the anomaly, thus providing a measure of its impact.

• Formal Verification for Robustness: Recognising the safety-critical nature of elevator control

systems, special emphasis is placed on certifying network robustness. To guarantee the reliability
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of the networks, formal verification techniques [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] can be applied to validate their local robustness. This

verification process ensures that the networks’ behaviour remains stable within a predefined

input space, even when subjected to adversarial perturbations.

• Real-life Application in Elevator Control: The viability and efficacy of this methodology are

showcased through a practical examination in elevator control. Through the application of NN

technology in this authentic industrial setting, our objective is to highlight the significance of

our approach in tackling the challenges inherent in contemporary industrial automation.

Our aim is to contribute to the continual improvement of the safety, reliability, and efficiency of

elevator control systems. Through the utilisation of NNs and formal verification techniques, we present

a sturdy framework for detecting and classifying anomalies, readily applicable in industrial settings.

This guarantees the sustained safe and reliable operation of elevators across diverse and dynamic

environments. Moreover, through our experimental evaluation, we demonstrate that even simple and

compact network architectures remain pertinent in real-world industrial scenarios, thereby affirming

the effectiveness of existing verification techniques within this domain.

The rest of the paper is structured as follows. In Section 2 we introduce some basic concepts and

definitions, while in Section 3 we provide an overview of the related works. In Section 4 we present

the use case of interest and the related dataset and in Section 5 we present our models and the specific

of the properties considered in the experimental evaluation. In Section 6 we present the results of

our experimental evaluation. Finally, in Section 7 we present our conclusions and some of our future

research plans.

2. Background

2.1. Neural Networks

A NN constitutes an intricate structure of computing units, commonly referred to as “neurons”. In

the context of feed-forward NNs, these neurons are systematically organised into sequential layers.

Each neuron within a layer exclusively connects to those in the subsequent layer, forming a sequential

flow of information. In a computational sense, a feed-forward NN with 𝑝 layers can be defined as a

function 𝜈 : R𝑛 → R𝑚
, where 𝜈(𝑥) is calculated iteratively as 𝜈(𝑥) = 𝑓𝑝(𝑓𝑝−1(...𝑓1(𝑥)...)). Here,

𝑓1 : R𝑛 → R𝑛1 , . . . , 𝑓𝑝 : R𝑛𝑝−1 → R𝑚
represent the functions corresponding to the layers of the

network. Notably, the first layer, 𝑓1, is known as the input layer, the final layer, 𝑓𝑝, serves as the output

layer, while any intermediate layers are commonly referred to as hidden layers. We primarily focus on

two types of layers:

• Affine Layers: These layers implement linear transformations, denoted as 𝑓 : R𝑛 → R𝑚
, and are

defined by the equation 𝑓(𝑥) = 𝑊𝑥+ 𝑏. Here, 𝑊 is a weight matrix in R𝑚×𝑛
, and 𝑏 is a bias

vector in R𝑚
. Affine layers are fundamental for processing and transforming input data.

• ReLU Layers: Introducing non-linearity to the NN, ReLU (Rectified Linear Unit) layers are charac-

terised by the function 𝑓 : R𝑛 → R𝑛
, defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). This element-wise operation

enhances the network’s capability to model complex relationships within the data.

In this study, NNs have a dual role, addressing both regression and classification tasks, each with

distinct objectives. For regression, the NN’s aim is to approximate an unknown functional mapping

from 𝜈 : R𝑛 → R𝑚
. This involves predicting continuous output values based on input data. In our

context, this translates to the task of estimating anomaly magnitudes using sensor measurements. In

the case of classification, the focus shifts to categorising input data into predefined classes or categories.

In this work, classification involves the task of identifying anomaly categories based on sensor data.



2.2. Formal Verification

The primary objective of formal verification is to prove that a NN’s behaviour aligns with specific

properties. In particular, our focus is on input-output specifications. These specifications assume that

given a precondition on the input, a corresponding postcondition must hold for the output. For a

practical example of this kind of property we refer to Subsection 5.2. In recent years, considerable

progress has been made in methodologies and tools aimed at addressing verification tasks, as detailed

in [32, 33]. We present a succinct overview of state-of-the-art verification techniques based on the

categorisation proposed in [32]. This classification is derived from the type of guarantees these tech-

niques offer. Deterministic guarantees provide precise information about whether a property is satisfied.

Methodologies in this category transform the verification problem into a set of constraints, which are

then solved using appropriate solvers. Noteworthy examples include methodologies presented in [34, 6],

leveraging SMT solvers, and those in [11, 12, 35], using Mixed Integer Linear Programming (MILP)

solvers. Some of the latest methodologies enhance these solvers with techniques like branch-and-bound

(BnB). One-sided guarantees offer either lower or upper bounds for a variable, serving as sufficient condi-

tions for a property to hold. Approaches in this category can effectively verify larger models and are less

susceptible to numerical instability, a concern in methods relying on floating-point arithmetic. These

methodologies make use of technologies such as abstract interpretation [22, 9, 10, 36], convex optimisa-

tion [37], interval analysis [5], symbolic interval propagation [38], and linear approximation [39, 40].

Finally, converging guarantees offer guarantees converging lower and upper bounds and are particularly

effective for verifying large models. They employ technologies such as layer-by-layer refinement and

analysis [41], reduction to a two-player turn-based game [42, 43], and global optimisation [44, 45].

3. Related Works

In the quest for effective anomaly recognition systems, numerous methodologies and techniques have

been investigated and proposed. Considering the vastness of the literature corpus on this subject and

the extent of our work, we hereby provide an overview of some pertinent studies and delineate how

our work distinguishes itself from them.

In a recent work [46], a novel neural network architecture integrating a variational autoencoder and

a generative adversarial network is proposed for detecting anomalies in software runtime execution

traces. In [47], the authors present an anomaly detection framework for spacecraft multivariate time-

series data, employing temporal convolutional networks. Meanwhile, [48] proposes a recurrent neural

network architecture for identifying anomalies in electrocardiograms. Additionally, [49] introduces

a novel self-supervised attentive generative adversarial network for discerning unexpected events

in videos. Furthermore, [50] and [51] propose two distinct methodologies for anomaly detection in

Industrial Control Systems. The former combines a one-dimensional convolutional neural network with

a bidirectional long short-term memory network, while the latter utilises a lightweight long short-term

memory variational autoencoder to detect cyber-attacks.

This brief overview illustrates the successful application of various neural network architectures

for anomaly detection across diverse domains. However, all these models tend to be complex, and

their reliability cannot be guaranteed using current state-of-the-art methodologies for neural network

verification. In contrast, our paper demonstrates that even simple, straightforward architectures can

achieve satisfactory performance levels when applied to specific real-world applications, such as elevator

control. Furthermore, we establish the feasibility of certifying the local robustness of such models using

state-of-the-art neural network verification tools.

4. Use Case: Elevator Control

IMOCO4.E [52, 53] is a Key Digital Technologies Joint Undertaking (KTD JU) project that commenced

in September 2021. The project involves the collaboration of 46 partners spanning 13 countries and



is dedicated to advancing mechatronic systems by augmenting their intelligence and adaptability.

This objective will be realised through the integration of state-of-the-art technologies, encompassing

innovative sensor data, model-based methods, AI, machine learning (ML), and principles of the industrial

Internet of Things (IoT). By leveraging these advanced technologies, the project aims to catalyse the

evolution of European manufacturing towards Industry 4.0, facilitating the perception and management

of intricate machinery and robotics. The project’s focal point is the delivery of a reference architecture,

subject to testing and validation across diverse industrial domains through various use cases and

pilot projects. These applications span sectors such as packaging, industrial robotics, healthcare, and

semiconductor manufacturing. In our research, we concentrate on a specific use case related to the

application of NNs in the realm of elevator predictive maintenance. Elevators, being intricate machines,

necessitate regular maintenance to ensure their safe and reliable operation. The control of elevator

movement in tall buildings poses substantial challenges due to non-linearities, uncertainties, and the

dynamics of time-varying systems. By harnessing NNs for predictive maintenance, potential issues can

be identified before they escalate into breakdowns or pose safety risks. This proactive approach not

only minimises downtime but also amplifies the overall performance and safety of elevators.

4.1. Dataset

In this specific instance, we employed data generated from simulating an authentic elevator system.

Such simulation was developed and managed by Siemens, which is one of the company involved in the

project. This dataset consists of sensor measurements gathered during various journeys of the simulated

elevator. During these simulations, three distinct types of anomalies were deliberately introduced,

each varying in magnitude, by adjusting the simulation parameters. Specifically, the degradation of

the elevator’s pulley, its sliding motion, and damaged bearings were simulated as independent factors,

in addition to modelling the elevator’s standard behaviour. The data collected from the simulation

underwent preprocessing by domain experts at WEG, another partner of the project, to extract 187

pertinent features for each elevator journey between two different floors. As a result, the resulting

dataset presents a single data point with 187 features for each journey. The target measurements include

the classification of the anomaly type (either ageing, bearing or sliding) and the computation of the

performance index (PI) by WEG. This performance index indicates how much the elevator’s behaviour

deviates from its nominal state, with higher values signifying greater deviation. It is noteworthy that

these target measurements are treated separately: one model is trained for anomaly classification, while

another is designed to compute the performance index. It is essential to highlight that all numeric data,

including the PI, underwent normalization to fall within the range of 0 to 1.

The complete dataset consists of 2517 samples, distributed among three classes: 112 in the ageing class,

820 in the bearing class, and 1585 in the sliding class. The substantial imbalance in sample numbers

across classes requires careful consideration during both training and testing phases. Additional

information on how this imbalance is addressed will be outlined in the following section.

5. Methodology

5.1. Models

We employed three distinct NN architectures for our tasks, maintaining a consistent design for both

anomaly classification and PI prediction. The models in consideration are fully-connected NNs featuring

ReLU activation functions and comprised of two hidden layers. The initial set of models includes 32

hidden neurons in the first layer and 16 in the second layer. The second set has 64 in the first layer and

32 in the second layer, while the third set comprises 128 in the first layer and 64 in the second layer. It

is important to highlight that the networks used for classification and those used for PI prediction differ

in their output layers. The classification models have three outputs corresponding to the three classes

of interest, while the PI prediction models possess a single output representing the predicted PI. We

designate the regression models as EA_[𝑛1-𝑛2], where 𝑛1 signifies the number of hidden neurons in



the first layer, and 𝑛2 denotes the same for the second layer. Similarly, the classification models follow

a parallel naming convention and are denoted as EAC_[𝑛1-𝑛2].

To train the models for both regression and classification tasks, we followed a similar methodology.

In both instances, we utilised pyNeVer[22], a comprehensive tool for managing, training, and verifying

NNs. pyNeVer operates on the PyTorch[54] backend, offering users an intuitive custom training

loop. Specifically, for both tasks, we employed the Adam optimizer with a learning rate set at 0.001
for 50 epochs. During training, we allocated 20% of the dataset for testing and 30% for validation.

Additionally, a batch size of 16 was used for training, and 8 for validation. In the regression task, we

adopted the standard mean square error (MSE) as both the training loss and the evaluation metric. For

the classification task, the selection of the loss function involved more experimentation, as detailed in

the previous section, owing to the significant class imbalance. To address this, we chose the weighted

version of the Cross Entropy loss function, with weights inversely proportional to the number of

samples in each class within the training set. We also implemented a procedure to ensure an equal

representation of samples from each class in both the training and test sets. To evaluate the algorithm’s

performance on the test set, we computed accuracy for predicting each class individually and for all

classes combined.

5.2. Properties

All our models underwent evaluation for similar local robustness properties. Specifically, for the

classification models, we assessed their ability to withstand adversarial examples. Adversarial examples

are inputs that have been subtly perturbed to mislead a machine learning model into making incorrect

predictions. In our evaluation, this property was formally expressed as:

∀𝑥.∀𝑦.(|𝑥− 𝑥̂|∞ ≤ 𝜀 ∧ 𝑦 = 𝜈(𝑥)) ⇒ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑦) = 𝑦 (1)

In simpler terms, this means that when a slight perturbation within the 𝜀 Chebyshev norm is applied to

a given input sample 𝑥̂, the NN must still predict the same class as it would for the original, unperturbed

input.

For the regression models, we examined a related property:

∀𝑥.∀𝑦.(|𝑥− 𝑥̂|∞ ≤ 𝜀 ∧ 𝑦 = 𝜈(𝑥)) ⇒ |𝑦 − 𝑦|∞ < 𝛿 (2)

In this case, when the input is perturbed within the 𝜀 Chebyshev norm, the corresponding output must

remain within a specified range bounded by the constant 𝛿.

These formulations, however, are challenging to verify due to the universal quantification involved.

Consequently, we reformulated the safety properties in their negated versions:

∃𝑥.∃𝑦.(|𝑥− 𝑥̂|∞ ≤ 𝜀 ∧ 𝑦 = 𝜈(𝑥)) ⇒ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑦) ̸= 𝑦 (3)

and

∃𝑥.∃𝑦.(|𝑥− 𝑥̂|∞ ≤ 𝜀 ∧ 𝑦 = 𝜈(𝑥)) ⇒ |𝑦 − 𝑦|∞ > 𝛿 (4)

If a verification tool can confirm that the negated versions of these properties do not hold, it certifies

that the network under scrutiny adheres to the safety property.

6. Experimental Results

The experiments were carried out on a MacBook Air laptop, equipped with 24 GB of RAM and an Apple

M2 CPU. The operating system utilised was macOS Sonoma 14.1.1, MPS was employed for training the

NNs. For verifying the properties of interest, we utilised the pyNeVer verification tool, employing the

over-approximate algorithm. The code necessary to reproduce our experiments is available at [55].

All NNs assessed in our experiments demonstrated adequate levels of precision for their respective

tasks. In Table 1, we present the Mean Squared Error (MSE) calculated on the test set for the regression



Table 1
Summary of our experimental evaluation. Model ID corresponds to the identifier assigned to specific NNs. Test
Loss indicates the Mean Squared Error (MSE) obtained by each model on the test set. Epsilon and Delta denote
the values for 𝜀 and 𝛿, respectively, considered for the property of interest. Lastly, Result and Time signify the

outcome of the verification query and the time required (in seconds) by pyNeVer to resolve the query.

Model ID Test Loss Epsilon Delta Result Time

EA_[32-16] 0.012

0.001 0.002 TRUE 11.56

0.01 0.02 TRUE 11.52

0.1 0.2 TRUE 11.55

EA_[64-32] 0.015

0.001 0.002 TRUE 13.81

0.01 0.02 TRUE 12.88

0.1 0.2 TRUE 13.86

EA_[128-64] 0.007

0.001 0.002 TRUE 14.79

0.01 0.02 TRUE 16.30

0.1 0.2 TRUE 27.09

Table 2
Summary of our experimental evaluation. Model ID, Epsilon, Result, and Time are the same of Table 1.

Accuracy reports the percentage of samples classified correctly by each model on the test set. SLD, BEA, and
AGE report, respectively, the percentage of samples belonging to the sliding, bearing, and ageing anomaly which

are classified correctly by each model on the test set.

Model ID Accuracy SLD BEA AGE Epsilon Result Time

EAC_[32-16] 92% 95% 95% 90%

0.001 FALSE 8.21

0.01 FALSE 8.50

0.1 TRUE 8.76

EAC_[64-32] 89% 86% 97% 85%

0.001 FALSE 10.01

0.01 TRUE 10.57

0.1 TRUE 13.08

EAC_[128-64] 97% 100% 100% 95%

0.001 FALSE 12.85

0.01 FALSE 12.46

0.1 TRUE 24.53

models under consideration. It is noteworthy that, even in the worst-case scenario, the MSE remains

below 1.5× 10−2
. Table 2 reports both the overall accuracy on the test set and the specific accuracy

pertaining to each class. The relative accuracy signifies the proportion of correctly predicted samples

belonging to a particular class among all the samples in that class. We introduced this additional

performance metric to address the considerable class imbalance in the dataset. Interestingly, the

complexity of the models does not necessarily correlate with their performance and precision. Even our

smallest networks exhibited satisfactory performance for the given task. This emphasises the idea that,

while larger NNs are gaining popularity, smaller models can still hold relevance in real-life industrial

applications.

Regarding the formal verification of the models, Tables 1 and 2 illustrate that pyNeVer successfully

verified the property of interest for all our models within a reasonable time frame. Notably, the size of



the input space considered by the property appears to be as critical as the complexity of the models

themselves in determining the verification time required by the tool. Additionally, the regression models

seemed to be less robust to adversarial perturbations, as pyNeVer couldn’t ensure the safety of any

model. In other words, it consistently identified at least one data point that contradicted the safety

property of interest. Conversely, the classification models exhibited greater resilience to adversarial

perturbations, as pyNeVer was able to certify the safety of these models for various magnitudes of

perturbations considered.

7. Conclusions and Future Work

In this work, we harnessed NN technology to tackle practical challenges in the elevator control domain,

as part of the IMOCO4.E project. Our comprehensive approach covered both anomaly detection and

magnitude prediction, employing fully-connected NNs for classification and regression tasks. Through

experimentation, we showcased that even moderately-sized NN architectures delivered satisfactory

precision and performance, emphasising the continued relevance of smaller models in practical industrial

applications. Additionally, we explored the crucial aspect of local robustness, assessing the models’

resistance to adversarial perturbations. Our findings, validated using the pyNeVer tool, underscored

the tool’s effectiveness in certifying safety properties for our models within reasonable time frames.

Our future endeavours will primarily concentrate on extending the experimental evaluation within

the elevator control domain. We aim to enrich our dataset by introducing additional anomaly classes to

the classification task, thereby augmenting the diversity and complexity of the data. This expansion

will allow us to assess our models’ performance across a broader spectrum of anomaly scenarios. To

bolster the robustness of our regression models against adversarial perturbations, we plan to explore

advanced techniques such as adversarial training, input preprocessing, and repair [56, 57, 58, 59, 60].

This initiative aims to further enhance the reliability and safety of our predictive maintenance systems

for elevators in practical settings. By persistently refining our experiments and delving into these

avenues, our goal is to offer more comprehensive solutions and insights for leveraging trustworthy

NNs in elevator control and predictive maintenance.
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