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Abstract
In this study, the capability of Large Language Models (LLMs) is explored to automate Concept Induction,
a process traditionally reliant on formal logical reasoning using description logic ontologies, within the
context of explainable AI (XAI). Initially, a pre-trained LLM like GPT-4 is employed to assess its ability to
generate high-level concepts describing data differentials for a scene classification task via prompting. A
human assessment study was conducted which revealed that concepts produced by GPT-4 are preferred
over those from logical concept induction systems in terms of human understandability, despite some
limitations in neuron activation analysis. Building on these insights, further research aims to automate
the concept induction system using LLMs, potentially addressing the shortcomings of traditional logical
reasoners. This approach has the potential to scale and provide a significant avenue for concept discovery
in complex AI models.
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1. Problem statement

Concept Induction [1, 2] is a symbolic reasoning task that involves generating complex class
descriptions from instance examples using deductive reasoning algorithms over Description
Logic knowledge bases. It can be used to depict meaningful explanations by identifying patterns
from complex data. Previous studies [3, 4] have explored the potential of using concept induction
in the context of explainable AI (XAI) to provide human-understandable explanations of machine
learning classifications. However, traditional concept induction systems face several limitations
in adaptability, scalability, and capturing complex data relationships due to their reliance on
predefined rules and limited background knowledge andmay not capture the full scope of human-
like reasoning. In contrast, research in XAI aims to improve the understandability of AI models
without compromising accuracy [5]. Current techniques often rely on post-hoc algorithms [6],
which encounter challenges like visualization and adversarial attacks [7]. Concept-based models
[8, 9] offers a promising alternative by incorporating explicit representations of concepts aligned
with human intuition to explain the model’s behavior. However, generating context-specific
meaningful concepts from complex data remains challenging. This research aims to explore the
feasibility of replacing conventional concept induction systems with Large Language Models
(LLMs) to overcome these limitations and enhance the interpretability of AI models.

Proceedings of the Doctoral Consortium at ISWC 2024, co-located with the 23rd International Semantic Web Conference
(ISWC 2024)
Envelope-Open adrita@ksu.edu (A. Barua)
Orcid 0000-0002-3287-7443 (A. Barua)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:adrita@ksu.edu
https://orcid.org/0000-0002-3287-7443
https://creativecommons.org/licenses/by/4.0


2. Importance

Concept induction plays a crucial role in various domains including XAI, enabling the generation
of interpretable and meaningful insights from complex data. Transitioning to LLM-based
methods for concept induction can improve symbolic reasoning tasks at scale across different
domains such as information retrieval, knowledge extraction, etc. Furthermore, automating
concept discovery through LLMs can make black box models more explainable, aligning with the
ongoing efforts to map network activations with meaningful explanations [10]. This addresses
critical issues of transparency and trust in AI decisions, crucial for stakeholders across industries
impacted byAI. The significance of this work extends to the broader AI community by potentially
advancing neurosymbolic AI, bridging the gap between traditional AI and symbolic reasoning
approaches. We project that the outcomes of this research can contribute to overcoming the
limitations of symbolic concept induction systems and contribute to advancing XAI techniques,
enabling safer and more accountable AI systems.

3. Related work

There are different approaches that utilizes traditional concept induction systems using provably
correct [1] or heuristic [11] deduction algorithms over description logic knowledge bases.
Various applications [12] stand to benefit from a concept induction system that is not constrained
by background knowledge and predefined rules. In the context of XAI, concept induction has
shown significant results to generate human-understandable explanations through post-hoc
analysis of input data to explain the machine learning classification outputs [4, 13]. However,
these methods are limited by their reliance on background knowledge and heuristic nature of
explanation generation, potentially overlooking common-sense interpretations that are evident
to humans. Leveraging LLMs has the potential to bridge this gap by automating higher-level
concept generation by utilizing minimal text-based information. Methods like TCAV [8] focus
on global explanations by employing high-level concepts to estimate their importance for
predictions, but relys on human-provided concepts. Alternatively, ACE [14] leverages image
segmentation and clustering to curate automated concepts that may result in some information
loss. Other approaches, such as Concept Bottleneck Models (CBM) [15] and Post-hoc CBM [16],
map DNNmodels to human-understandable concepts but often depend on hand-picked concepts,
highlighting the need for automated methods to generate higher-level concepts. Another study
[17] employing a similar approach utilizes GPT-3 with a few-shot method to produce automated
concepts. But none of these methods cater to the generation of complex description logic
concepts. Our study delves into LLMs’ ability to generate such explanations that can replace
the symbolic reasoners at scale, to be used as a stand alone system.

4. Research question(s) and hypotheses

The objective of our research is to assess whether LLMs, leveraging their vast domain knowledge
and reasoning capabilities, can outperform or at least match concept induction systems in
producing accurate and understandable explanations aligned with human intuition, while also



being capable of explaining hidden neuron activations in the domain of XAI. Previous research
[4] has explored the effectiveness of concept induction for creating explanations that ”make
sense” to humans, indicating that while concept induction can explain data differentials in
machine learning classifications, human-generated explanations are generally superior. This
work employed the ECII heuristic concept induction system [11] and utilized the Wikipedia
category hierarchy [18] as background knowledge. Building upon their findings, our study
extends their work by replacing the ECII model with an LLM to generate meaningful and
coherent explanations. Primarily, we seek to identify ”good” concepts that are understandable
to humans and evaluate their alignment with human-generated explanations to potentially
surpass concept induction in terms of accuracy and comprehensibility. Furthermore, we seek to
understand if LLM explanations are preferred over logical concept induction systems in terms of
”meaningfulness to humans”, whether they will still remain effective in demonstrating neuron
activations when mapped to a neural network architecture. There could be a trade-off between
the two approaches; for example, the type of concepts that work well for humans might not
always be useful to depict what the neuron ’sees’ in a DNN architecture. The primary goal is to
utilize pre-trained LLMs like GPT-4 [19] to achieve satisfactory results via prompting [20] and
subsequently fine-tune an LLM to mimic the output of a symbolic reasoner (e.g., generating
complex concepts) that could be verifiable using description logics while making use of the
common-sense capability of LLMs.

5. Research methods

We begin by employing an initial prompting technique to asses the effectiveness of concepts
generated by LLMs in terms of human understandability and their applicability to hidden
neuron activation. This initial assessment serves as a foundation for our broader objective of
fine-tuning it further to automate the system of concept induction.

Prompting method In preliminary investigations [21], we utilized GPT-4 to generate con-
cepts for distinguishing between different image classes as an initial assessment of LLM’s
concept induction capability. Object tags from the ADE20K dataset [22, 23] were used as input
for the GPT-4 model via the OpenAI API, using zero-shot prompting. This dataset comprises
around 20,000 images annotated with scene categories and object tags. We selected 45 image
set pairs, each containing two groups of images representing distinct scene categories(e.g.,
Bathroom vs Park). Our objective was to generate explanations that describe what distinguished
category A from category B in each image set pair. To prompt the GPT-4 model effectively, we
experimented with different techniques, ultimately leveraging only the object labels from each
image set category. The model was instructed to differentiate between the two categories based
on their object tags. The generated concepts were compared with those produced by the ECII
system, which also used the same object tags. Object tags can be any items physically present
in the images, such as stands, food, walls, etc. The process and the prompt used for interacting
with the GPT-4 model are illustrated in Figure 1. The latest version of the GPT-4 model was
used with specific parameter settings, including a temperature of 0.5 and top_p of 1, to ensure
consistent and reproducible answers. We came up with the specific prompt(1) to generate



Figure 1: Prompting Method

generic concepts or object classes that mimic the ontology classes positioned somewhere in
the middle of the hierarchy used by ECII, aiming to provide a balance between more general
concepts and highly specific subclasses within the ontology structure. Each set produced a list
of seven concepts following this method. A detailed description of the experimental setup and
prompting method can be found in [21].

Hidden neuron activation analysis To evaluate whether concepts generated by LLMs can
offer insights into hidden layer activation space, we do a preliminary investigation mentioned
in [10], using two evaluation methods: Statistical Evaluation and Concept Activation Analysis.
In this work, three approaches are compared for generating concepts: GPT-4, ECII, and CLIP-
Dissect [9]. To begin, label hypotheses are obtained to determine which neurons are activated
for specific concept labels. Initially, a trained ResNet50V2 is fed with ADE20K images, and the
activations of the dense layer’s 64 neurons are analyzed individually. For each neuron, positive
examples (𝑃 ) consist of images that activate the neuron with at least 80% of the maximum
activation value, while negative examples (𝑁 ) are images that activate the neuron with at most
20% or not at all. ECII generates concept-label hypotheses for each neuron based on 𝑃, 𝑁, and
background knowledge. Similarly, GPT-4 uses the same sets 𝑃 and 𝑁 but with adjustments. Due
to input constraints, only one image per class is selected for set 𝑁. GPT-4 identifies concepts
present in 𝑃 but not in 𝑁, using a prompting method described earlier in this section. This
yields a list of three concepts per neuron, but only one concept per neuron is chosen at random
for the analysis. To compare with other XAI methods, target labels are also generated using
CLIP-Dissect, a label-free method that associates high-level concepts with individual neurons
using a pre-trained multimodal model. To confirm these label hypotheses, images corresponding
to each concept-label are retrieved from Google Images using the label as a keyword. 80% of
the obtained images are used for hypothesis confirmation, and the remaining 20% for statistical
evaluation. The images are fed to the network to check if the target neuron activates for the
retrieved label and if any other neurons activate. A target label for a neuron is confirmed if it
activates for ≥ 80% of its target images. In total, 19, 5, and 14 distinct confirmed concepts are
obtained from Concept Induction, CLIP-Dissect, and GPT-4, respectively.

Fine-tuning an LLM After reviewing the initial results generated from the prompting tech-
nique, our next step is to fine-tune an open-sourced LLM, to automatically generate meaningful



concepts based on input data, that can effectively explain the reasoning behind specific outputs
from neural network architectures. We want to fine-tune the LLM in a manner that captures the
logical reasoning structure of a symbolic deductive system, ensuring it remains both explainable
and verifiable. This approach aims to address the challenge of using another black box model,
like an LLM, to explain a neural network system, while also mitigating the uncontrolled nature
of a generic LLM by providing a more controlled system for concept generation.

6. Evaluation

Human Assessment We conducted a human assessment study on Amazon Mechanical
Turk using the Cloud Research platform to evaluate the human understandability of concepts
generated fromGPT-4. 300 participants were recruited, with each compensated $5 for completing
the task. The study aimed to evaluate the quality of explanations generated by LLM (GPT-4)
compared to human-generated and ECII explanations. Participants were presented with 45
image set pairs and asked to choose the more accurate explanation among three types: human
vs. ECII, human vs. LLM, and LLM vs. ECII. Each participant completed all three comparisons,
with only two explanation types compared in any given question. Human and ECII explanations
were crafted in the previous study [4], while LLM explanations were generated following the
prompting method specified in section 5. Participants preferred human explanations over ECII
explanations (83% preference) and LLM (GPT-4) explanations (69% preference). However, LLM
explanations were preferred over ECII explanations (63% preference). Ability scores derived
from Bradley-Terry analysis revealed that human explanations had the highest scores (M =
1.77), followed by LLM explanations (M = 0.724), with a significant overall difference (𝑝 < 0.001,
𝜂2 = 0.41). Tukey’s Honestly Significant Difference (HSD) test confirmed significant differences
in ability scores between human vs. ECII explanations, human vs. LLM explanations (both
𝑝 < 0.0001), as well as between LLM vs. ECII explanations (𝑝 = 0.0004). It indicates that the
observed differences in ability scores are highly significant. Detailed ability scores for each
image set pair and a discussion of the nature of the resulting concepts can be found in [21].

Statistical Evaluation To do a statistical analysis on the confirmed labels generated in
hidden neuron activation method described in section 5, we consider each neuron-label pair
as a hypothesis, using the remaining 20% images retrieved from Google Images. For example,
the hypothesis for neuron 1 is that it activates more strongly for images related to ”crosswalk”
than for images related to other keywords. The corresponding null hypothesis is that activation
values are not different. We test 20 hypotheses from Concept Induction, 8 from CLIP-Dissect,
and 27 from GPT-4. Since activation values may not follow a normal distribution, we use
the Mann-Whitney U test [24] for statistical assessment. Among the 20 null hypotheses from
Concept Induction, 19 are rejected at p < 0.05. For CLIP-Dissect, all 8 null hypotheses are rejected
are rejected at p < 0.05, and for GPT-4, 25 out of 27 null hypotheses are rejected. Considering
unique concepts, Concept Induction validates 18 hypotheses statistically, CLIP-Dissect validates
5, and GPT-4 validates 12. Mann-Whitney U results demonstrate that for most neurons (with p
< 0.00001), activation values of target images are significantly higher than those of non-target
images.



Concept Activation Analysis We utilize Concept Activation [25, 26], an XAI technique
that measures the presence of predefined concepts in hidden-layer activations of images. We
evaluate label hypotheses obtained from all three methods using this analysis, and unlike
previous methods, this analysis doesn’t restrict itself to confirmed concepts. Images for each
concept are collected from Google, and a concept classifier is trained using a Support Vector
Machine (SVM). The dataset for each classifier consists of images showing the presence (label=1)
and absence (label=0) of the concept. This dataset is passed through a pre-trained ResNet50V2
model, and the activation values of each image in the dense layer are saved. The transformed
dataset is split into train (80%) and test (20%) datasets, and an SVM classifier is trained using the
train split. Both linear (Concept Activation Vector, CAV) and non-linear (Concept Activation
Region, CAR) kernels are used to assess the decision boundary separating the presence/absence
of a concept. Finally, the test dataset is used to evaluate the concept classifier’s ability to classify
the existence of concepts. All concepts analyzed using Concept Activation achieved a p-value
of less than 0.05 in k-fold cross-validation tests. CLIP-Dissect outperformed GPT-4 on CAR,
and Concept Induction surpassed GPT-4 on CAV. However, there was no statistically significant
difference between Concept Induction and CLIP-Dissect. A detailed result and discussion of
both the neuron activation analysis can be found in [10].

7. Limitations and future work

The human assessment study of concepts generated by LLMs such as GPT-4 has shown that
they have great potential in automating the system for concept induction to provide meaningful
insights into data differentials. However, the evaluation using hidden neuron activation methods
did not yield promising results. It is understandable as the evaluation method of neuron
activations has its own constraints (e.g., verification using the Google image dataset can have
anomalies and does not always depict the accurate concepts that are originally true to the neuron)
and is still under development. Despite these limitations, there is room for improvement in
LLM’s concept generation pipeline to better align with the nature of activated neurons. Efforts to
fully automate XAI systems for concept discovery within DNN are crucial and further refinement
of LLM-based approaches is necessary. While challenges persist, LLMs demonstrate the capacity
to produce human-understandable high-level concepts. Developing standalone systems by fine-
tuning LLMs to leverage their common sense capabilities could potentially replace traditional
Concept Induction systems at scale, offering significant value across various domains, including
XAI. This study underscores the efficient utilization of LLMs in Concept Induction and paves
the way for future research to harness these models to enhance the explainability of AI systems.
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