
KATH: A no-coding data processing aid for genetic 
researchers*

Kajus Cerniauskas1,†, Dainius Kirsnauskas2,*,†, Paulius Preiksa3,†, Gabrielius Salyga4,†, Nojus 
Sajauskas5,†, Junius Vaitkus6,†, Gerda Zemaitaityte7,†, Kazimieras Bagdonas8,†

1 Kaunas University of Technology, Kaunas, Lithuania

Abstract

This paper presents KATH - a No-Coding Data Processing system designed to assist genetic researchers at 
Harvard University in their work on mutations in the human genome related to eyesight pathologies. We 
aim to deploy a no-coding solution that enables R & D researchers who are untrained in programming skills 
to process data from open-source gene databases with advanced DNA processing algorithms by applying a 
Large Language Model (LLM) based instruction interpreter. The paper presents an overview of the design 
system and the project's current status.

Keywords
No-coding, AI, LLM, DNA, Data analysis, Data processing, Open Source Database

1. Introduction

The exponential decrease in price for human DNA sequencing has reduced the cost from $3.8 
billion for the Human Genome Project to under $1,000 currently, with expectations of reaching a $100 
price tag shortly [1]. Such development enables geneticists to acquire vast amounts of genetic data for 
their research activities. However, the rapid price decrease and rapid increase in available data need 
to meet the increased capability to analyze this data, as training geneticists is a high-cost and long-
term endeavor. Further, by devoting their time to studying genetics, these world-class specialists in 
genetics need to gain the IT skills to use the most sophisticated tools, such as Artificial Intelligence 
(AI), which computer scientists often develop without considering the broader research community's 
ability to use them. The limited number of IT specialists trained in software development and genetics 
are known as Bioinformaticians and are highly sought after in industry and research institutions [2]. 
These experts' skills and limited time are best used for developing advanced software tools for DNA 
data processing and analysis. However, in day-to-day research and development (R&D) activities, 
many tasks of relatively simple or moderate complexity require expertise in IT or computer science. 
Currently, these tasks are being performed by geneticists themselves, which in the best-case scenario 
ends up taking significant time from their primary functions, may stall the R&D activity until a 
bioinformatician colleague can allocate time to solve the issue, or, in the worst case, the skill gap may 
become prohibitive to proceed with the intended R&D activity.

Due to the recent developments in AI and specifically the introduction of Large Language Models 
(LLM) [3, 4] that are capable of processing human speech, new opportunities have emerged to apply 
the no-coding  [5] paradigm in order to aid geneticists in their R&D activities, by filling in the 
aforementioned IT skill gap with specialized AI systems. LLM is a rapidly evolving technology that 
has seen significant improvements in both proprietary and open-source models. Some models are 
trained for general purposes and can understand human-produced text, speech, and even video. In 
contrast, others are trained for specialized purposes, e.g., aiding in writing computer software  [6, 7]. 

* IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
2,∗ Corresponding author
†  These author contributed equally.

 kajus.cerniauskas@ktu.edu (K. Cerniauskas); dainius.kirsnauskas@ktu.edu (D. Kirsnauskas); paulius.preiksa@ktu.edu (P. Preiksa); 
gabrielius.salyga@ktu.edu (G. Salyga); nojus.sajauskas@ktu.edu (N. Sajauskas); junius.vaitkus@ktu.edu (J. Vaitkus); 
gerda.zemaitaityte@ktu.edu (G. Zemaitaityte); kazimieras.bagdonas@ktu.edu (K. Bagdonas)

0000-0002-7052-0584 (K. Bagdonas)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.zotero.org/google-docs/?CNwr3q
https://www.zotero.org/google-docs/?zebuSQ
https://www.zotero.org/google-docs/?rKRuOg
https://www.zotero.org/google-docs/?lZiThE
https://www.zotero.org/google-docs/?t3B4jk
https://www.zotero.org/google-docs/?ltSkj4


The ability of geneticists to rapidly perform DNA analysis and effectively employ state-of-the-art 
software tools can significantly benefit the scientific community and society as the discoveries in 
genetics and pathologies of gene expressions directly influence the development of new medicine and 
therapies.

Currently, there are open-source scientific and medical databases of human DNA mutations and 
associated pathologies that are being amended daily by researchers and physicians [8]. These open-
source tools provide new opportunities for scientific and medical discoveries,  with the existing 
bottleneck of geneticists and bioinformaticians having sufficient time and skills required to perform 
data analysis. The most prominent software tools for DNA data analysis focus on sequence alignment 
or data mining. For example, Ensembl [9] gives access to genomes of various organisms and provides 
data like gene annotations, genetic variation ratio, and more. Additionally, there is a possibility of 
integrating other existing analysis tools like AlphaMissense [10] or REVEL [11] to make results more 
precise. Another project might be the ENCODE framework, which provides information on where 
and when the genes become active in cells—however, this software and similar software hinges on 
expertise in genetics.

2. Related work

2.1. Creation of the Database of genetic information

The first step in creating the database is aggregating the data. It can be downloaded or web-
scraped. Web scraping is the extraction of information from a website through computer software. 
The software can use Hypertext Transfer Protocol (HTTP) methods or simulate a browser. The 
program manipulates the captured unstructured web data into a demanded structure and moves it 
into a database [12].

The first stage is called the “fetching stage.” Requesting the website via Uniform Resource Locator 
(URL) returns its Hypertext markup language (HTML). “Curl” and “wget” command line tools or 
Python’s  request  library,  Perl’s  Mechanize  module,  or  Java’s  Apache HttpClient  can make the 
requests [13]. To interact with a webpage's Document Object Model (DOM), "Selenium" is one of the 
tools [14]. The extraction stage utilizes regular expressions, HTML parsing libraries, and XML Path 
Language (XPath) queries. After downloading a web page, the scraper uses the following tools: 
Python's regular expressions library, BeautifulSoup library, and Lxml library [12]. During the final 
stage, the transformation stage, the remaining data becomes structured. Python's Pandas library is 
one of the tools that manipulates and transforms the data [15].

Another crucial step after initial data gathering would be modeling the database. It is known that 
gathered data from different sources will likely contain different properties or attributes. The data 
needs to be normalized to store this different data in a database. This phase involves analyzing 
gathered data and identifying different entities, attributes, and relations within the data. This allows 
us to create a base blueprint of our database model based on how the data structure would look. Upon 
establishing the conceptual model, the next step involves its formal representation using established 
modeling tools and methodologies, such as the Unified Modeling Language (UML), a widely adopted 
standard for creating and displaying system architectures and data structures [16]. Entities within the 
model are frequently connected through relationships, prompting the creation of Entity-Relationship 
(ER) diagrams to visualize relations.

2.2. No-coding technologies

No-coding technologies provide a new perspective on using complex software for people needing 
extensive coding knowledge or even informatics. These tools use artificial intelligence, particularly 
large language models (LLMs), to provide users with a simple user interface (UI) that is intuitive and 
easy to use yet utilizes powerful capabilities of complex algorithms. This enables people, especially 
professional researchers without experience in coding, to focus and allocate more time to their 
specific work rather than learning the complex intricacies of coding. Because of that, people can 

https://www.zotero.org/google-docs/?VNQ4yV
https://www.zotero.org/google-docs/?BPc5E1
https://www.zotero.org/google-docs/?9K2R2k
https://www.zotero.org/google-docs/?CWL9BO
https://www.zotero.org/google-docs/?Ax0BLV
https://www.zotero.org/google-docs/?YmVojv
https://www.zotero.org/google-docs/?IGzzC7
https://www.zotero.org/google-docs/?sRyMKO
https://www.zotero.org/google-docs/?ULYI1r
https://www.zotero.org/google-docs/?f8QzbK


accelerate the product's development, allowing for a broader range of individuals to collaborate and 
contribute. No-coding technologies can be used in software development, data analysis, research, or 
business specifics and in any field that uses complex software. This approach revolutionizes tasks and 
improves efficiency and innovation across all industries. Many businesspeople see this technology as 
the next step in the industry's future [17].

In genetic research, no-coding technologies present a solution for not being able to use a specific 
tool  for an algorithm that requires some expertise in coding to execute.  As mentioned before, 
geneticists  often need bioinformaticians'  help to set  up and use specific tools.  Because of  this, 
researchers are wasting their time learning how to set up software, while bioinformaticians complete 
a trivial  but time-consuming task for them. This is  a  significant inconvenience that no coding 
technologies can solve. By making a universal tool and user-friendly UI, researchers can provide data 
and instructions that the software can interpret and provide the requested output. 

2.3. AI - LLMs

A Large Language Model (LLM) is an (AI) program trained on large amounts of data and is used to 
recognize and generate text. LLMs are built on machine learning. They use neural networks and their 
transformer model [18].

Table 1
LLM models for user assistance 

Model Release Date Params (B) Context Length
OLMo 2024/02 1,7 2048

Gemma 2024/02 2-7 8192

SOLAR 2023/12 10.7 4096

phi-2 2023/12 2.7 2048

Zephyr 2023/11 7 8192

Large Language Models (LLMs) provide a great way to skip the knowledge gaps to deliver results. 
Current models  already demonstrate general  intelligence across various fields  [19].  They show 
remarkable capabilities,  matching or exceeding expert's  performance in the domain.  The LLMs 
significantly augment the professional's ability to forecast results in various fields [7]. The improved 
fine-tuned models have even greater accuracy  [6]. One possible usage case is to act as a bridge 
between genetics and Python script writing. The LLMs can hide the programming of the algorithms 
with a no-coding approach using visual programming methods [20]. As of 2024 03 25, the up-to-date 
list of available open-source LLMs is presented in a GitHub repository [21].

Table 2
LLM models for script generation

https://www.zotero.org/google-docs/?09ATUs
https://www.zotero.org/google-docs/?l7N77l
https://www.zotero.org/google-docs/?zDsh8U
https://www.zotero.org/google-docs/?c9LVPc
https://www.zotero.org/google-docs/?fK2idq
https://www.zotero.org/google-docs/?5y3AC8
https://www.zotero.org/google-docs/?UoLgj0


Language Model Release date Parameters (B) Context Length

Dolphin Nov-23 7 32768

DeciCoder-1B Aug-23 1.1 2048

CodeGen2.5 Jul-23 7 2048

XGen-7B Jun-23 7 8192

StarCoder May-23 1.1-15 8192

MPT-7B-Instruct May-23 59k (Samples) NA

data bricks-dolly-15k Apr-23 15k (Samples) NA

OIG Mar-23 44,000k (Samples) NA

StarChat Alpha May-23 16 8192

2.4. DNA data processing algorithms (tools)

Tensor processing units lack the memory to process genomes efficiently; therefore, researchers 
implemented an algorithm for DNA sequence alignment that can be used within quantum simulation 
to address performance problems [22]. This paper [23] analyzes major ML algorithms for data mining 
and  reviews  current  DNA  sequence  alignment,  classification,  clustering,  and  data  mining 
applications. Another research [24] explores the features of DNA-binding proteins using extraction 
methods. Although this technique is already precedent, in other words, the tool outperforms many 
algorithms of that kind in the UniSwiss dataset. The ENCODE consortium platform [25] aims to 
narrow the data variations by supplying the pipelines since experimental labs use different protocols 
for carrying out the research. DNA methylation analysis helps to switch repetitive genes off without 
altering the DNA. This can be done with software like RnReads[26] and DunedinPoAm [27]; the 
latter, however, is focused on predicting biological age.

In the following table, we analyzed tools for scoring DNAs. Geneticists from Harvard provided a 
list of tools as possible integration options with KATH. We analyzed them for compatibility with our 
system's architecture and their overall purpose [10, 11, 28, 29, 30, 31, 32].

Table 3
DNA tools comparison

Tool Purpose Runs 
locally

CADD CADD  is  a  tool  for  scoring  the  deleteriousness  of  single-nucleotide 
variants, multi-nucleotide substitutions, and insertion/deletion variants in 
the human genome.

No

REVEL REVEL  is  an  ensemble  method  for  predicting  the  pathogenicity  of 
missense variants based on a combination of scores from 13 individual 
tools.

Yes

SpliceAI SpliceAI is a deep-learning-based tool used to score variants. Yes

Pangolin Pangolin  is  a  deep-learning-based  method  for  predicting  splice  site 
strengths.

Yes

https://www.zotero.org/google-docs/?QqYqzO
https://www.zotero.org/google-docs/?oTWqtH
https://www.zotero.org/google-docs/?2zWLUL
https://www.zotero.org/google-docs/?q5Gqtt
https://www.zotero.org/google-docs/?yg2xiU
https://www.zotero.org/google-docs/?xeR9bU
https://www.zotero.org/google-docs/?fHalGZ


Eve EVE is a model for predicting the clinical significance of human variants 
based on sequences of diverse organisms across evolution.

No

Metadome MetaDome analyses the mutation tolerance at each position in a human 
protein.

No

AlphaMissens AI model that predicts whether genetic mutations in proteins are likely to 
be harmless or disease-causing.

Yes

3. The proposed no-coding system architecture 

The  proposed  system comprises  four  major  components:  user  interface,  AI,  DNA analysis, 
processing and generation tools, and data storing and collection modules. The structure of the KATH 
system is presented in Figure 1. All interactions and their directions of subsystems are shown below 
in the diagram. The general flow is represented, although the final implementation architecture 
might differ from the provided diagram.

Figure 1: The structural diagram of the proposed no-coding system

3.1. User interface

A user using a user interface (UI) can write his request to LLM, which is pre-configured with a 
prime prompt. As the most simple implementation and lightweight solution, a web graphic interface 
was proposed as a UI. The user interface should allow the user to see output from analysis tools, 
represent data in the most convenient way, and interact with data.

A simple and understandable interface should not restrict users' access to the implementation of 
KATH and its code but provide the most efficient way to interact with the system. It saves time for  
geneticists and also allows more advanced users to update the system according to their needs.

3.2. LLMs and prompt priming 

3.2.1. Prompt priming

Our model will have a predefined set of functions, ranging from data retrieval from databases to 
complex  data  manipulation  operations  such  as  merging,  frequency  calculations,  and  mutation 
generation. These functions serve as the foundational building blocks for completing user requests, 
which often require a combination of multiple predefined functions. To reduce errors and efficiently 
complete user requirements, it is essential to ensure these functions' precise and efficient use. This is 
where prompt priming plays a crucial role.

Prompt priming serves as a mechanism to acquaint the LLM with the set of functions and to guide 
its usage in accordance with the task at hand. Given the infinite range of prompts users may provide, 
equipping the model to comprehend and execute requests is crucial. We take a methodical approach 
to achieve this.



Initially, the user's request is deconstructed into discrete steps, each corresponding to using a 
predefined function within our model. This breakdown ensures that a specific function can execute 
each part of the user's request. Furthermore, the order in which these functions must be used to 
achieve the desired outcome is determined.

3.2.2. User assistant LLM

User assistant LLM is introduced to simplify nonspecialists' IT work with KATH. Its purpose is to 
familiarize  users  with  the  system's  basic  functionality  and  assist  in  writing  and  checking  the 
correctness of written requests. It decreases the threshold of entry for new users and minimizes 
possible errors from both users and the script-generating tool.

3.2.3. Script generating LLM

It converts user requests to the list of instructions to be executed: where to get data, what tool to 
use to process it, and so on. This module entirely relies on the prime prompt. Therefore, the quality of 
the result depends not only on a well-trained model but also on correct and understandable LLM 
prompts that can "explain" to LLM what the output result should look like.

3.3. Tool integration 

3.3.1. Mutation generator

As there are many different types of gene mutations, we must provide a tool for generating 
different mutations by specifying a category of mutation and parameters. These mutations include 
many alterations, ranging from single nucleotide changes to structural adjustments.

Our tool will provide functionality to generate point mutations, deletions, inversions, insertions, 
and duplications. A point mutation involves changing the specific nucleotide within the sequence, 
possibly  causing  a  cell  to  produce  a  different  amino  acid.  Deletion,  insertion,  inversion,  and 
duplication involve a structural change of a gene by adding, removing, or rearranging nucleotide 
sequences, potentially causing the frame to shift and affecting the splicing procedure, leading to 
completely different protein production.

As  the  user  selects  a  type  of  mutation,  our  tool  prompts  them  to  provide  corresponding 
parameters. These parameters include the location or region of mutation on a specific gene, amino 
acid change, and some information on genetic background.

3.3.2. Tools API

API facilitates the integration of tools represented by a predefined set of various functions. It 
introduces scalability, allowing us to add functionality to our toolkit and modularity, encapsulating 
each tool's functionality within defined interfaces. API allows standardized communication protocols 
between tools, ensuring seamless data and results transactions.

Initially,  the API accepts input data in a standardized format,  ensuring compatibility across 
different tools. Upon receiving input data and the name of the target tool, the API identifies the 
corresponding tool within our model. The API initiates the execution of the requested function 
within the specified tool, using provided data as parameters. Lastly, it waits for the results and 
outputs them for the user.

3.4. Data collection and refactoring

All databases have an official website where it is possible to download the data about gene 
mutations by pressing a button. However, each database has a different way of downloading data 
about gene mutations. LOVD has a static Uniform Resource Locator (URL) for all genes. Data can be 
retrieved using Python script.  Some links  are  accessible  to  anyone,  and others  have restricted 
permission to download them. ClinVar and GnomAd have dynamic URLs, meaning we cannot apply 
the same solution as for LOVD.



For this reason, we get this data by executing JavaScript code on the pages to press the "download" 
button. The last approach also provides a universal way of downloading data for any website as long 
as pages do not change their hypertext markup language (HTML) structure. However, it is always 
better to search for another way to retrieve data for the system's time efficiency.

Due to structural differences in formats across databases, refactoring to the universal structure 
was required. According to the preferences of Harvard scientists, LOVD's database format became 
the basis for the system. The main tasks while merging were to solve the inconsistency of data in 
LOVD and extract relevant information required by geneticists.

Data about mutation positions is mixed with the usage of new and old coding notations. For some 
mutations, databases contain protein positions instead of cDNA positions. Tools in the refactoring 
package are applied to align data from other databases with data from LOVD, solving the mentioned 
problems.

Figure 2: Proposed class diagram for KATH system

3.5. Methodology

The system's design was driven by a decision-making methodology prioritizing user accessibility, 
flexibility, and scalability. 

One  of  the  critical  decisions  was  incorporating  large  language  models  (LLMs).  LLMs  can 
understand and generate human-like text, making them well-suited for natural language processing 



tasks. By leveraging LLMs, the system could provide a user-friendly interface that allows geneticists 
to interact with the system using natural language, eliminating the need for complex coding or 
command-line interfaces.

The decision to employ two distinct LLMs, the User Assistant LLM and the Script Generating LLM, 
was  strategic:  the  User  Assistant  LLM serves  as  a  conversational  interface,  assisting  users  in 
formulating  their  requests  and  providing  explanations  or  clarifications  when  needed.  This 
component was designed to make the system more accessible to non-technical users by allowing 
them to communicate their requirements naturally and intuitively. The Script Generating LLM, on 
the other hand, was chosen to translate the user's requests into executable instructions, bridging the 
gap between natural language and programmatic instructions.

A Prompt Priming Module was incorporated to ensure the effectiveness of the Script Generating 
LLM. This module plays a crucial role in preparing the user's request for the LLM, ensuring that the 
LLM receives the request in a format that it can effectively understand and process. The quality of the 
output generated by the Script Generating LLM heavily depends on the effectiveness of the prompt 
priming process, and this decision aimed to optimize the LLM's performance.

Throughout the design process,  decisions were made to create a user-friendly,  flexible,  and 
scalable system.

4. Results

The KATH system architecture was developed to facilitate the no-coding approach and meet the 
needs of geneticists performing R&D activities. Specifications and system requirements have been 
analyzed, and the minimal viable prototype for the KATH system has been defined.

The analysis of existing public DNA data processing tools has been carried out, and candidates for 
integration into minimal viable prototypes have been selected. 

The analysis of existing public gene mutation and pathogenicity databases was performed. An API 
was  implemented  to  automate  the  periodic  retrieval  and  refactoring  of  the  data  from LOVD, 
gnomAD, and Clinvar databases. Due to the unique format of LOVD data, the additional function to 
parse the downloaded data was integrated into the data collection pipeline. The most significant data 
for Harvard scientists from Clinvar and gnomAd is extracted and refactored. Data from databases is 
merged on values from cDNA mutations' coding variables.

An  analysis  of  candidate  LLMs  for  the  UI  and  script  generation  functionalities  has  been 
performed, and candidate models were preselected for the testing and integration stages of the 
project. We evaluated the effectiveness of different large language models (LLMs) - OLMO, Dolphin, 
ChatGPT, and DeciCoder-1b - in converting prompts from scientists into Python code for processing 
genetic data. The LLMs were tasked with generating code to download data from genetic databases, 
merge data, convert to VCF format, and process with the SpliceAI tool.

OLMO struggled to understand some prompts and provided incomplete or incorrect responses. 
Dolphin  successfully  generated  the  expected  code  for  all  prompts.  ChatGPT also  exhibited  an 
adequate  understanding,  providing correct  code.  However,  DeciCoder-1b  failed  to  provide  any 
answers and, therefore, was not included in the results table.

The results highlighted LLMs' varying capabilities in handling code generation tasks from natural 
language prompts. While some models,  like Dolphin and ChatGPT, performed reasonably well, 
others, like OLMO and DeciCoder-1b, exhibited limitations or failed to generate the expected output.



Table 4
LLM testing results

LLM Model User Prompt LLM Response

OLMO
Download  data  from 

GNOMAD
Done!

print  "store_database('lovd')" 
and nothing more

I don't understand... what do you mean? Print a 
random example and nothing more?

pass  "lovd"  argument  to 
"store_database(database_name)" 
function and print result

ok, that's all right, thank you! The end

download  data  from  clinvar 
and lovd. Merge data, convert to 
vcf format and pass to SpliceAI.

We downloaded the data from ClinVar and LovD, 
merged them using the merge_lovd_with_clinvar 
and  merge_lovd_with_gnomad  functions 
respectively, and converted the...

Dolphin
Download  data  from 

GNOMAD
store_database('gnomad')

download  data  from  clinvar 
and lovd. Merge data, convert to 
vcf format and pass to SpliceAI

store_database('clinvar')  store_database('lovd') 
merge_lovd_with_clinvar()  convert_to_vcf() 
process_with_splice_ai()

download  data  from  clinvar 
and lovd. Merge data, convert to 
vcf format and pass to SpliceAI. 
Display results.

processed_data  = 
process_with_splice_ai(convert_to_vcf(merge_lo
vd_with_clinvar(store_database('clinvar'), 
store_database('lovd'))))
processed_data.display()

ChatGPT Download  data  from 
GNOMAD

store_database('gnomad')

download  data  from  clinvar 
and lovd. Merge data, convert to 
vcf format and pass to SpliceAI

Hey, here is your code
store_database('clinvar')
store_database('lovd')
merge_lovd_with_clinvar()
convert_to_vcf()
process_with_splice_ai()

download  data  from  clinvar 
and lovd. Merge data, convert to 
vcf format and pass to SpliceAI. 
Display results.

store_database('clinvar')
store_database('lovd')
merge_lovd_with_clinvar()
convert_to_vcf()
processed_data = process_with_splice_ai()
processed_data.display()



5. Future Work

The following steps in realizing the minimal viable prototype of  the KATH system involve 
improving and generalizing the database module. We seek to implement the conversion of disparate 
notations of the gene location in the genome and the merging of different public databases into a 
homogeneous  solution.  The unified relational  database  management  system is  also  planned to 
facilitate higher performance and scalability. 

The AI module is scheduled to be implemented during Q2 of 2024. To evaluate the performance of 
selected candidates, an extensive test campaign will be conducted for both user assistance AI based on 
a general LLM and script-generating AI based on code-generating LLM. The prompt priming module 
will be integrated into the subsystem, and subsystem-level validation tests will be conducted. 

For the minimal viable prototype, the selected DNA analysis tools will be integrated with the 
KATH system, which will be tested at Massachusetts Eye and Ear, Harvard University. The minimum 
viable prototype will be focused on the Eyes shut homolog (EYS) gene data. The user interface will be 
implemented in a chat-based system that will enable researchers to express their desired results in 
text and receive the results of the DNA analysis as textual output and as files stored in the database. 

6. Conclusions

The paper describes a proposed architecture for a no-coding data processing system for genetic 
researchers. The KATH system consists of a UI designed for a user with no significant programming 
skills or IT training that enables them to express their desired function colloquially. The user's input 
is provided to the first LLM, which is used to convert it to a concrete action plan and subsequently 
converted to commands by a specialized LLM. These commands are provided to one or several 
integrated DNA analysis tools. A data retrieval and database refactoring module is designed to 
automatically update the local database and refactor the gathered data into a homogeneous data 
structure. The data is aggregated and refactored from publicly available data on human genetic 
mutations and associated pathologies obtained from open-access scientific databases such as LOVD, 
gnomAD, and Clinvar. The refactored data and the obtained results from integrated open-source 
analysis tools for genetic data, such as REVEL, Metadome, AlphaMissens, etc., are stored locally.

We expect the minimum viable system to be deployed in Q3 2024. Further tests and development 
are expected to occur in collaboration with academic partners from the US and Germany and the 
leading industry R&D partners from Lithuania.

Acknowledgments

We would like to acknowledge the assistance of associate professor Ph.D.  Kinga M. Bujakowska, 
Ph.D. Egle Galdikaite-Braziene and Ph.D. Riccardo Sangermano from Massachusetts Eye and Ear, 
Harvard University, and express our sincere gratitude for their guidance and expert support.

References 

[1] “DNA  Sequencing  Costs:  Data.”  Accessed:  Mar.  24,  2024.  [Online].  Available: 
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

[2] M. Rocha, L. Massarani, S. J. de Souza, and A. T. R. de Vasconcelos, “The past, present and 
future of genomics and bioinformatics: A survey of Brazilian scientists,” Genet Mol Biol, vol. 
45, no. 2, p. e20210354, doi: 10.1590/1678-4685-GMB-2021-0354.

[3] A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing 
Systems,  Curran  Associates,  Inc.,  2017.  Accessed:  Mar.  24,  2024.  [Online].  Available: 
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a8
45aa-Abstract.html

https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr


[4] A.  Radford,  K.  Narasimhan,  T.  Salimans,  and  I.  Sutskever,  "Improving  Language 
Understanding by Generative Pre-Training."

[5] L. Faes et al., “Automated deep learning design for medical image classification by health-care 
professionals with no coding experience: a feasibility study,” The Lancet Digital Health, vol. 
1, no. 5, pp. e232–e242, Sep. 2019, doi: 10.1016/S2589-7500(19)30108-6.

[6] T.  D.  Ross  and  A.  Gopinath,  “Chaining  thoughts  and  LLMs  to  learn  DNA  structural 
biophysics.”  arXiv,  Mar.  02,  2024.  Accessed:  Mar.  20,  2024.  [Online].  Available: 
http://arxiv.org/abs/2403.01332

[7] P. Schoenegger, P. S. Park, E. Karger, and P. E. Tetlock, “AI-Augmented Predictions: LLM 
Assistants Improve Human Forecasting Accuracy.” arXiv, Feb. 12, 2024. Accessed: Mar. 20, 
2024. [Online]. Available: http://arxiv.org/abs/2402.07862

[8] H.  Gunasekaran,  K.  Ramalakshmi,  A.  Rex  Macedo  Arokiaraj,  S.  Deepa  Kanmani,  C. 
Venkatesan, and C. Suresh Gnana Dhas, “Analysis of DNA Sequence Classification Using 
CNN and Hybrid Models,” Computational and Mathematical Methods in Medicine, vol. 2021, 
p. e1835056, Jul. 2021, doi: 10.1155/2021/1835056.

[9] “Ensembl  genome  browser  111.”  Accessed:  Mar.  24,  2024.  [Online].  Available: 
https://www.ensembl.org/index.html

[10] J. Cheng et al., “Accurate proteome-wide missense variant effect prediction with 
AlphaMissense,”  Science,  vol.  381,  no.  6664,  p.  eadg7492,  Sep.  2023,  doi: 
10.1126/science.adg7492.

[11] “REVEL: Rare Exome Variant Ensemble Learner.” Accessed: Mar. 23, 2024. [Online]. 
Available: https://sites.google.com/site/revelgenomics/

[12] M. Khder, “Web Scraping or Web Crawling: State of Art, Techniques, Approaches 
and  Application,”  IJASCA,  vol.  13,  no.  3,  pp.  145–168,  Dec.  2021,  doi: 
10.15849/IJASCA.211128.11.

[13] “Web scraping technologies in an API world | Briefings in Bioinformatics | Oxford 
Academic.”  Accessed:  Mar.  20,  2024.  [Online].  Available: 
https://academic.oup.com/bib/article/15/5/788/2422275

[14] S. Nyamathulla, D. P. Ratnababu, N. S. Shaik, and B. L. N, “A Review on Selenium 
Web Driver with Python,” Annals of the Romanian Society for Cell Biology, pp. 16760–16768, 
Jun. 2021.

[15] “Algorithmic Enumeration of Ideal Classes for Quaternion Orders | SIAM Journal on 
Computing.”  Accessed:  Mar.  23,  2024.  [Online].  Available: 
https://epubs.siam.org/doi/10.1137/080734467

[16] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency is handled in 
model-driven software engineering and UML: an expert opinion survey,” Software Qual J, 
vol. 31, no. 1, pp. 1–54, Mar. 2023, doi: 10.1007/s11219-022-09585-2.

[17] S. F. A. Razak, Y. P. Ernn, F. I. Yussoff, U. A. Bukar, and S. Yogarayan, “Enhancing 
Business Efficiency through Low-Code/No-Code Technology Adoption: Insights from an 
Extended UTAUT Model,” Journal of Human, Earth, and Future, vol. 5, no. 1, Art. no. 1, Mar. 
2024, doi: 10.28991/HEF-2024-05-01-07.

[18] “Large  language  models  (LLM) and ChatGPT:  what  will  the  impact  on nuclear 
medicine be? | European Journal of Nuclear Medicine and Molecular Imaging.” Accessed: 
Mar.  21,  2024.  [Online].  Available:  https://link.springer.com/article/10.1007/s00259-023-
06172-w

[19] S. Bubeck et al., “Sparks of Artificial General Intelligence: Early experiments with 
GPT-4.”  arXiv,  Apr.  13,  2023.  Accessed:  Mar.  20,  2024.  [Online].  Available: 
http://arxiv.org/abs/2303.12712

[20] Y. Cai et al., “Low-code LLM: Visual Programming over LLMs.” arXiv, Apr. 20, 2023. 
Accessed: Mar. 20, 2024. [Online]. Available: http://arxiv.org/abs/2304.08103

[21] E. Yan, “eugeneyan/open-llms.” Mar. 22, 2024. Accessed: Mar. 22, 2024. [Online]. 
Available: https://github.com/eugeneyan/open-llms

https://github.com/eugeneyan/open-llms
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
http://arxiv.org/abs/2304.08103
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
http://arxiv.org/abs/2303.12712
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://link.springer.com/article/10.1007/s00259-023-06172-w
https://link.springer.com/article/10.1007/s00259-023-06172-w
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://epubs.siam.org/doi/10.1137/080734467
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://academic.oup.com/bib/article/15/5/788/2422275
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://sites.google.com/site/revelgenomics/
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.ensembl.org/index.html
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
http://arxiv.org/abs/2402.07862
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
http://arxiv.org/abs/2403.01332
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr


[22] G. D. Varsamis et al., “Quantum gate algorithm for reference-guided DNA sequence 
alignment,”  Computational  Biology  and  Chemistry,  vol.  107,  p.  107959,  Dec.  2023,  doi: 
10.1016/j.compbiolchem.2023.107959.

[23] A.  Yang,  W.  Zhang,  J.  Wang,  K.  Yang,  Y.  Han,  and L.  Zhang,  “Review on the 
Application of Machine Learning Algorithms in the Sequence Data Mining of DNA,” Front. 
Bioeng. Biotechnol., vol. 8, Sep. 2020, doi: 10.3389/fbioe.2020.01032.

[24] A. Sun, H. Li, G. Dong, Y. Zhao, and D. Zhang, “DBPboost:A method of classification 
of DNA-binding proteins based on improved differential evolution algorithm and feature 
extraction,” Methods, vol. 223, pp. 56–64, Mar. 2024, doi: 10.1016/j.ymeth.2024.01.005.

[25] Y. Luo et al., “New developments on the Encyclopedia of DNA Elements (ENCODE) 
data  portal,”  Nucleic  Acids  Research,  vol.  48,  no.  D1,  pp.  D882–D889,  Jan.  2020,  doi:  
10.1093/nar/gkz1062.

[26] F. Müller et al., “RnBeads 2.0: comprehensive analysis of DNA methylation data,” 
Genome Biol, vol. 20, no. 1, p. 55, Mar. 2019, doi: 10.1186/s13059-019-1664-9.

[27] D. W. Belsky et al., “Quantification of the pace of biological aging in humans through 
a blood test, the DunedinPoAm DNA methylation algorithm,” eLife, vol. 9, p. e54870, May 
2020, doi: 10.7554/eLife.54870.

[28] P. Rentzsch, M. Schubach, J. Shendure, and M. Kircher, “CADD-Splice—improving 
genome-wide variant effect prediction using deep learning-derived splice scores,” Genome 
Med, vol. 13, no. 1, p. 31, Dec. 2021, doi: 10.1186/s13073-021-00835-9.

[29] K.  Jaganathan  et  al.,  “Predicting  Splicing  from  Primary  Sequence  with  Deep 
Learning,” Cell, vol. 176, no. 3, pp. 535-548.e24, Jan. 2019, doi: 10.1016/j.cell.2018.12.015.

[30] T. Zeng and Y. I. Li, “Predicting RNA splicing from DNA sequence using Pangolin,” 
Genome Biology, vol. 23, no. 1, p. 103, Apr. 2022, doi: 10.1186/s13059-022-02664-4.

[31] “Evolutionary model of Variant Effect.” Accessed: Mar. 23, 2024. [Online]. Available: 
https://evemodel.org/

[32] “MetaDome  web  server.”  Accessed:  Mar.  23,  2024.  [Online].  Available: 
https://stuart.radboudumc.nl/metadome/

https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://evemodel.org/
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr
https://www.zotero.org/google-docs/?ahhsqr

	Abstract
	1. Introduction
	2. Related work
	2.1. Creation of the Database of genetic information
	2.2. No-coding technologies
	2.3. AI - LLMs
	2.4. DNA data processing algorithms (tools)

	3. The proposed no-coding system architecture
	3.1. User interface
	3.2. LLMs and prompt priming
	3.2.1. Prompt priming
	3.2.2. User assistant LLM
	3.2.3. Script generating LLM

	3.3. Tool integration
	3.3.1. Mutation generator
	3.3.2. Tools API

	3.4. Data collection and refactoring
	3.5. Methodology

	4. Results
	5. Future Work
	6. Conclusions
	Acknowledgments
	References

