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Abstract
This research aims to detect basketball board, rim, net, and shooting box using different versions of the 
YOLO algorithm: YOLOv5, YOLOv7, and YOLOv9. The study found that the YOLOv9-C model provided 
the best performance with a precision of 0.996, recall of 1, mAP_0.5 of 0.995, and mAP_0.5-0.95 of 0.899. 
YOLOv7 demonstrated the fastest inference time for the detection task and the smallest model size. 
Meanwhile, YOLOv5 exhibited architectural flexibility and the potential to be the optimal model in terms of 
detection speed, model size, and precision.
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1. Introduction

Object detection and recognition are getting more and more powerful due to the popularity of 
smartphones, public cameras, AI solutions, and other algorithms that our devices are more 
capable of computing than any time before.

People try different solutions to detect objects, for example, some of them use sensors to 
detect and recognize the habits of different living species [1], others recognize the activities of the 
people [2], and some people use Computer Vision to detect hands and other objects [3], and some 
try different AI solutions for it [4, 5].

Detection of objects in sports is ever widely employed. The analysis conducted by AI can 
highly impact the performance of the athlete or the team. The use of AI in the sports field can 
be very wide: from healthcare, and skill improvement, to recognition of the goal in soccer or 
automatically counting shots in basketball [6, 7].

The final goal of our project is to create a model that counts free throws made by basketball 
players from a single static camera. Some of the most important parts to achieve this goal are 
the recognition of the basketball board and the rim, and it may also be useful to detect the 
shooting box and the net.

In this research, we apply one of the most popular machine learning models for detection 
tasks - You Only Look Once (YOLO). We conduct experiments to find out which version of 
the model and with what hyper-parameters performs the best in terms of precision, detection 
speed, and size of the model.
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2. Image Processing Analysis

In this section, we will discuss the different computer vision algorithms for simplicity of 
calculation, noise reduction, and edge detection, different object recognition. In addition, 
mentioned the different solutions from a machine learning perspective.

2.1. Computer Vision Algorithms

This research is a follow-up to a previous study that used computer vision algorithms to identify and 
detect a basketball ball and board [8]. Initially, images were converted to grayscale to 
simplify calculations [9]. Noise reduction was then applied using median filtering [10], Gaussian blur 
[11], and morphological operations [12]. Canny edge detection [13] followed by Hough Lines 
[14] was used to identify lines, which were then analyzed to detect the basketball board. However, 
the results were disappointing in terms of speed and accuracy. Consequently, the use  of more 
advanced machine learning algorithms is being considered.

2.2. Machine Learning Algorithm - YOLO

The YOLO (You Only Look Once) algorithm takes a different approach to object detection 
compared to traditional methods. Instead of repurposing classifiers, YOLO treats object detection as a 
regression problem, allowing for accurate localization of bounding boxes and associated class 
probabilities. The key innovation lies in using a single neural network, which enables end-
to-end optimization and directly improves detection performance [15].

YOLO stands out for its simplicity. It employs a single convolutional network that effi- 
ciently predicts multiple bounding boxes and their corresponding class probabilities. Unlike 
conventional approaches, YOLO trains on complete images and directly optimizes the detection 
performance. This unified model offers several advantages over traditional methods in object 
detection.

To process images using YOLO, a straightforward three-step procedure is followed: the input 
image is resized, a single convolutional network is applied to the image, and the resulting 
detections are filtered based on the model’s confidence threshold [15].

Since its introduction in 2016, the YOLO (You Only Look Once) algorithm has spawned 
several variations and improved versions. Notable mutations of YOLO include YOLOv3 [16] 
and YOLOv4 [17], which introduced enhancements such as multi-scale predictions, feature 
extraction improvements, and advanced architectural modifications.

These iterations of the YOLO algorithm have made significant advancements in real-time 
object detection, resulting in increased accuracy and improved speed. One notable variant is 
YOLOv5. To gain a deeper understanding of the capabilities of YOLOv5, further investigation 
and analysis will be conducted [18].

The evolution and mutation of YOLO demonstrate the continuous efforts to enhance object 
detection performance, adapt to different application scenarios, and optimize the trade-offs 
between speed and accuracy. Another notable mentions include YOLOv7 [19] and YOLOv8 
[20], which further contributed to the advancements in the YOLO series.

Another approach of YOLO, a more optimized version, is Fast YOLO. It is designed to be 
faster and more efficient, and can be used in embedded systems and other devices with limited



computational resources. It uses a faster CNN model, and other techniques to accelerate the 
object detection process.

YOLO were used to experiment with Pascal VOC dataset and the 17.85 FPS speed of object 
detection was achieved [21].

At the time of this study, a new YOLO algorithm method, YOLOv9, was developed [22]. It 
outperforms other models compared to the MS COCO dataset in terms of model size and 
accuracy [23]. However, it is not yet finalized because smaller versions of the model are not 
published, although they are mentioned, and users are not free to change the model architecture.

2.2.1. Description of YOLOv5

YOLOv5, an advanced YOLO variant, has refined the architecture and introduced efficient 
designs, advanced techniques, and a simplified implementation. This evolution has led to 
YOLOv5’s popularity for its balance between accuracy and speed, making it suitable for real- 
time object  detection tasks. Its  ability to balance precise object  detection and real-time processing 
positions YOLOv5 as a preferred algorithm for various real-world applications [24].

There are different variants of YOLOv5: small, medium, large, and extra-large are available. 
These variants  differ  in  their  model  sizes  and complexity,  with larger  versions offering potentially 
higher accuracy at the cost of increased computational demands [25].

For this  work,  the architecture of  YOLOv5 created by Ultralytics  was taken from the Roboflow 
template. It consists of three main components: anchors, backbone, and head [25]:

• Anchors: These are predefined bounding box sizes that are used for object detection. 
YOLOv5s has three sets of anchors, each associated with a specific feature map level (P3, P4, 
P5) in the model.

• Backbone: This part of the architecture extracts features from the input image. It consists of 
several convolutional layers, including Focus, Conv, and BottleneckCSP modules. These layers 
process the input image at different resolutions to capture hierarchical features.

• Head: The head of the model takes the features from the backbone and performs further 
processing. It includes additional Conv, Upsample, Concat, and BottleneckCSP modules. 
The head combines features from different levels (P3, P4) of the backbone using concate- 
nation. It also performs upsampling and additional convolution operations. Finally, it 
utilizes the Detect module to generate the final detection output, which includes bounding box 
coordinates and class predictions.

2.2.2. Description of YOLOv7

YOLOv7 is a real-time object detection algorithm built on convolutional neural networks 
(CNNs). It uses convolutional layers to extract features from images, then applies bounding box 
regression and class prediction to localize and classify objects. YOLOv7’s strength lies in its 
speed and real-time processing [19].

In terms of accuracy, YOLOv7 exhibits competitive performance. It achieves a high average 
precision (AP) score of 56.8% on the challenging MS COCO dataset, demonstrating its ability to 
accurately detect and classify objects across a wide range of categories. This dataset includes a 
diverse range of objects, making YOLOv7 adaptable to different scenarios and domains [19].



In  addition  to  its  architecture  and  performance,  YOLOv7  introduces  innovative  techniques  to 
improve  accuracy  during  training. It  incorporates  a  ”trainable  bag-of-freebies”  approach,  which 
combines various state-of-the-art training strategies and modules to enhance the detection 
capabilities of the network. This approach addresses challenges in network training and object 
detection, contributing to the improved accuracy and robustness of YOLOv7 [19].

The architecture of YOLOv7 algorithm looks almost the same as YOLOv5 but has many more 
parts in backbone and head. The algorithm shares common components, including anchors, 
backbone, and head. However, it is intentionally designed to be wider, deeper, and overall more 
complex in order to enhance its performance [26].

2.2.3. Description of YOLOv9

YOLOv9 is a significant advancement in the field of object detection. It introduces two key con- 
cepts: Programmable Gradient Information (PGI) and a new lightweight network architecture, the 
Generalized Efficient Layer Aggregation Network (GELAN) [22].

PGI is designed to address the information bottleneck problem, a common issue in deep 
networks where input data loses information during the feedforward process. PGI generates 
reliable  gradients  through  an  auxiliary  reversible  branch,  allowing  deep  features  to  maintain  key 
characteristics for executing the target task. This ensures that the model can obtain complete 
input  information  for  the  target  task,  enabling  reliable  gradient  information  for  network  weight 
updates. GELAN, on the other hand, is a highly efficient and lightweight neural network. It uses 
conventional convolution to achieve higher parameter utilization than depth-wise convolution 
designs based on advanced technology. GELAN shows great advantages in terms of being light, 
fast, and accurate [22].

When combined, PGI and GELAN enhance the object detection performance of YOLOv9. The 
model outperforms existing real-time object detectors in all aspects. Specifically, compared to its 
predecessor, YOLOv8, YOLOv9 reduces the number of parameters by 49% and the amount of 
calculations by 43%, while still achieving a 0.6% AP improvement on the MS COCO dataset. 
This demonstrates that YOLOv9 is not only more efficient but also more accurate [22].

The architecture of the YOLOv9 is similar to older versions. Common elements of the 
algorithm are the anchors, backbone, and head. Although, the head, in the YOLOv9, is has more 
elements and is more complex [23].

3. Dataset

For the experiments, self-recorded free basketball shots were captured. These shots were taken with 
different levels of accuracy (0, 1, 2, 3 out of 3) in a single video using two different mobile devices: 
the Samsung Galaxy J5 and the Samsung Galaxy A52s. In total, 153 recordings were  made 
with these specifications. The camera position is shown on the left side in Figure 1 (marked 
in red) was set at approximately 45 degrees, with a variation of approximately 10  degrees, 
relative to the basketball’s location. A different spot was chosen for each video, ensuring variations in 
the shooting perspective.

The dataset includes pictures with a clearly visible basketball. The labeling process involved 
marking the basketball board, rim, net, and shooting box. We used the Roboflow tool to label the



Figure 1: Positions of the camera in the basketball court (left) and Example of labeled data for board 
detection (right)

dataset, and the example of the labeled data on the website is shown on the right side in Figure
1. The dataset can be accessible publicly: https://app.roboflow.com/ktu-bo8mo/magister-yhpnv. Data is 
resized to 640x640.

4. Experiments

For the detection of basketball boards, net, rim, and shooting boxes, the three algorithms 
described in Section 2.2 were selected: YOLOv5, YOLOv7, and YOLOv9 (C and E).

4.1. Experiment setup

The experiments  of  three models  conducted in the Google  Colab using Python and implementing 
models from libraries or from the source code directly. In each experiment, the virtual GPU 
was used. For the hyper-parameter tuning, the three main parameters were chosen:

• Image Size: It was changed to observe the influence of different dimensions of the input 
images on detection accuracy and speed.

• Batch Size: The number of images processed simultaneously was adjusted to assess its 
impact on training efficiency and model performance.

• Epochs: The model was trained for a specified number of iterations to evaluate how the 
YOLO algorithm evolves and improves over time.

The depth and width of the YOLOv5 model were adjusted, while for the other models, they 
were kept at the default (1) settings. During training, pre-trained weights of YOLOv7 and 
YOLOv9 were used.

4.2. Evaluation metrics

In order to obtain preliminary results for the evaluation of the board detection, four main 
indicators of the recognition problem were selected and computed on a validation set with an 
image size of 640x640 (in addition to these metrics, we will take a look at the detection inference time 
and the model size itself):



• Precision: the true positives divided by the sum of true positives and false positives.
• Recall: the true positives divided by the sum of true positives and false positives.
• mAP_0.5: Mean Average Precision (mAP) at an Intersection over Union (IoU) threshold of

0.5. This metric calculates the average precision at a specific IoU threshold. A prediction is 
considered correct if its overlap with the ground truth is more than 50%. It gives us an idea 
of the model’s performance at a fairly lenient threshold.

• mAP_0.5-0.95: mAP at IoU thresholds ranging from 0.5 to 0.95. This metric calculates 
the average precision at multiple IoU thresholds. It gives us a more comprehensive view of 
the model’s performance across various levels of strictness in the overlap between the 
predicted and actual bounding boxes.

5. Results

The YOLOv5 models were trained for 200 epochs, with the numbers in their names indicating 
the depth and width multipliers. The YOLOv7 models were trained for 125 epochs. For YOLOv9, 
both C and E versions were trained for 20 epochs, with the top three results and their hyper- 
parameter configurations presented in the Table 1.

Table 1
Results of models for validation set with hyper-parameters over the epochs

Model 
(YOLO)

Image 
Size

Batch 
Size

Size (MB) Inference 
Time (ms)

Precision Recall mAP 0.5 mAP 
0.5:0.95

v5-1/1 512 32 95.4 37.7 0.979 0.989 0.995 0.774
v5-0.4/0.9 544 32 49.4 21.4 0.992 0.998 0.995 0.823
v5-0.6/0.9 576 32 61.9 24.4 0.995 0.994 0.995 0.824
v5-0.6/0.9 608 32 61.9 24.6 0.991 1 0.995 0.84

v5-1/1 640 26 95.4 31.3 0.993 0.996 0.995 0.849
v7 512 32 74.8 15.4 0.989 0.996 0.995 0.775
v7 544 32 74.8 15.6 0.991 1 0.995 0.753
v7 576 26 74.8 15.3 0.990 1 0.995 0.765
v7 608 26 74.8 15.8 0.997 1 0.995 0.811
v7 640 24 74.8 15.8 0.993 1 0.995 0.793

v9-C 544 8 102.8 55.3 0.988 0.955 0.993 0.802
v9-C 640 8 102.8 59.2 0.964 0.998 0.994 0.863
v9-C 736 6 102.8 59.1 0.996 1 0.995 0.899
v9-E 640 8 140.0 73.5 0.991 0.993 0.995 0.874
v9-E 736 6 140.0 73.1 0.997 1 0.995 0.887
v9-E 832 5 140.0 70.3 0.997 1 0.995 0.893

The table presents an evaluation of various YOLO model variants on a validation set, high- 
lighting key performance metrics and hyperparameters. YOLOv9-E models are the largest and 
slowest, with inference times up to 73.5 ms, but offer one of the highest mAP_0.5:0.95 values, 
reaching up to 0.893. YOLOv9-C models, slightly smaller and faster, excel in accuracy with 
high precision and recall, achieving the best mAP_0.5:0.95 value of 0.899. YOLOv7 models, the



fastest with inference times around 15.6 ms, balance speed and performance, showing high 
precision and recall with notable mAP_0.5:0.95 values. YOLOv5 models, particularly the v5-1/1 at 
640 image size, offer a good trade-off between speed and accuracy, achieving a mAP_0.5:0.95 of 
0.849 with a moderate inference time.

The results are as expected — larger training image sizes lead to higher precision and recall, 
although the difference is not substantial. Interestingly, increasing the image size, even beyond the 
original, improved all metrics. The other metrics remained similar, except the mAP_0.5:0.95 score, 
which was highest at 736x736 using YOLOv9-C.

The graph in Figure 2 illustrates the comparison of YOLO models based on training image 
size and mAP_0.5-0.95 score. The blue curve - YOLOv5 model, the red - YOLOv7, and the 
yellow/orange - two versions of YOLOv9.

Figure 2: Comparison of the performance of YOLO models

The YOLOv9 model demonstrated superior performance compared to other models in terms of 
mAP_0.5-0.95 score. The difference between YOLOv9 models C and E versions is minimal. 
Meanwhile, YOLOv5 and YOLOv7 exhibited similar performance, with YOLOv5 slightly edging 
out the YOLOv7.

The Figure 3 shows the results of best performances of mAP_0.5-0.95 score for each model and 
different architecture.

Among the YOLO models, YOLOv9 stands out as the most precise, albeit the slowest and 
biggest. In contrast, YOLOv7 is the fastest but sacrifices precision when the default depth and 
width are set to 1. The results from YOLOv5 demonstrate that optimal configurations can be 
achieved through architectural experimentation.



Figure 3: Relationship Between Model Size and Inference Time for mAP_0.5-0.95 Score of Board Detection

6. Conclusions

In this research, it was found that for the detection of basketball boards, rims, nets, and shooting boxes, 
the best performance was achieved with the YOLOv9-C model, which yielded a precision of 0.996, 
recall of 1, mAP_0.5 of 0.995, and mAP_0.5-0.95 of 0.899. Additionally, YOLOv9 models were noted 
for their rapid training with a low number of epochs when using pre-trained weights. Other models, 
YOLOv5 and YOLOv7, also achieved satisfactory evaluation metrics. The most  significant 
difference was observed in mAP_0.5-0.95, where YOLOv5 outperformed YOLOv7 at  the same 
training image size. However, YOLOv7, with its smaller size (depth and width equal
to 1 for both models), was the fastest.

Varying the depth and width of the YOLOv5 model showed that the results do not always 
decrease with smaller model size. In addition, the detection time of the model also decreases.

It was found that increasing the size of the training image improves model performance, 
leading to the conclusion that, if time and resources permit, training should be conducted with the 
largest possible image size, even if it exceeds the size of the source images.

Future work will incorporate more data from various publicly available sources and experi- ment 
with different models. A key focus will be optimizing YOLO models for this task by testing 
different architectures (varying depths and widths), as well as different optimizers, learning 
rates,  and  activation  functions. Additionally,  it  would  be  beneficial  to  test  on  different  basketball 
courts not included in the training and validation set and to analyze results from video files.

The ultimate goal is to develop a free-throw counting program for basketball enthusiasts, 
which will involve recognizing a moving ball in combination with the results of this study.
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