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Abstract 
This paper deals with the effects of the type of boundary conditions on the spatiotemporal 
pattern formation in the computational modelling the bacterial pattern formation in a one-
dimensional-in-space domain. The computational model was derived from a mathematical 
model used in another research. By running tests with different boundary conditions, the 
output results were analyzed with a special emphasis on the edges of formed patterns. The 
numerical simulation, based on the governing equations of the reaction-diffusion-chemotaxis 
type,  was  carried  out  using  the  finite  difference  technique.  The  developed  numerical 
simulator  was  validated  by  using  published  experimental  data  and  known  numerical 
solutions.
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1. Introduction

Organisms are affected by chemical stimuli in their environment. Whether it is nutritious and 
attractive or harmful and repulsive, movement based on such stimuli is called chemotaxis [23]. One of 
the  most  analyzed  organisms  when  dealing  with  chemotaxis  is  Escherichia  coli.  E.  coli exhibit 
chemotaxis to self-excreted attractant which results in the swarming of bacteria [2, 24].  Cultures of E. 
coli are capable of self-organization forming growth patterns of millimeter-scale and exhibiting strong 
inhomogeneities in their density, mainly near the contact lines and surfaces [2]. 

Starting from pioneer work of Keller and Segel [5], the mathematical modelling plays a substantial 
role in understanding the chemotaxis [7, 27]. Although various mathematical models based on partial 
differential equations have been developed, the system introduced by Keller and Segel remains among 
the most widely used [6, 7, 18, 27].

According to the Keller and Segel approach [5], the dynamics of the bacteria and chemoattractant 
are mathematically modelled by a system of nonlinear equations of the reaction-diffusion-chemotaxis 
type [7]. The processes in bacterial cultures are rather complicated and need to be modelled in three-
dimensional space [3, 14, 27, 28]. Nevertheless, due to the accumulation of cells near the contact line at 
the top surface of the fluid cultures the essentially three-dimensional processes may be approximated 
in one-dimension [1, 19]. 

The bioluminescence pattern formation in suspensions of lux gene engineered  E. coli in right 
circular containers (test-tubes) has been experimentally and numerically studied [1, 8, 9, 28]. When 
modeling the bacterial migration near the three-phase contact line, the one-dimensional in space 
mathematical model is usually defined in an interval – a continuous circle and periodic boundary 
conditions are applied for boundaries of the interval [1, 26, 28]. One dimensional modelling can be also 
used for central axis of the circular container, using different boundary conditions [14].

The aim of this work was to investigate the effects of the type of the boundary conditions on the 
spatiotemporal pattern formation in the computational modelling the bacterial self-organization in a 
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one-dimensional domain. Two types of the boundary conditions were applied in the analysis, the zero 
flux (non-leakage) and the Dirichlet boundary condition when the bacterial density is held at a fixed 
value.  The  numerical  simulation,  based  on  the  governing  equations  of  the  reaction-diffusion-
chemotaxis type [1, 5, 6, 7], was carried out using the finite difference technique [29].

2. Mathematical model

The  dynamics  of  bacterial  population  and  chemoattractant  is  modeled  mathematically  by  a 
coupled  system  of  the  reaction-diffusion-chemotaxis  equations  together  with  some  initial  and 
boundary conditions [1, 5, 6, 7].

2.1. Governing equations

Keller  and Segel  proposed two conservation equations  to  model  the  biological  and physical 
processes in a bacterial population [5, 6, 7, 13]:

∂n
∂ t

=∇ (Dn∇ n−h (n ,c )n∇ c )+ f (n ,c ) ,

(1) 
∂c
∂ t

=∇ (Dc∇ c )+gp (n ,c )n−gd (n ,c )c , x∈ Ω,t>0 ,

where x is space, t is time, n(x, t) is cell density, c(x, t) is the chemoattractant concentration, Dn and 
Dc are the diffusion coefficients (assumed to be constant), f(n, c) is cell growth and death, h(n, c) is the 
chemotactic sensitivity, g p is the production of the chemoattractant and gd is the degradation of the 
chemoattractant [5].

For this chemotaxis model f, g p, gd, h variables are instantiated with concrete expressions. Cell 
growth is often assumed to be logistic f (n ,c )=k3n(1−n /n0 ) [7], where k3 is the growth rate of cell 
population  and  n0 is  the  cell  density  under  steady-state  conditions  (both  constant)  [2]. 

Chemoattractant production is expressed as  g p(n ,c )=k 4n(k5+n
2) specifically for  E. coli rapid 

increase in attractant production (introduced by Tyson et al. [13]), where values of  k 4 , k5 are not 
exactly known. The degradation of chemoattractant is marked as gd (n ,c )=k6, where k6 is also not 

exactly known [13]. Chemotactic sensitivity is noted as h (n ,c )=k1/(k2+c )
2 (expression derived by 

Lapidus and Schiller), where k1 and k2 are constants [10, 13, 20].
The mathematical model was applied to investigate the bacterial self-organization in a small, 

rounded container as detected by bioluminescence imaging [8, 9]. For modeling the experimentally 
observed space-time plots of quasi-one-dimensional bioluminescence measured along the three-phase 
contact line, the mathematical model was defined in a one-dimensional domain – the circumference of 
the vessel. Applying the instantiated expressions of the functions f , g p, gd and h, the following system 
of partial differential equations describes the bacterial self-organization:

∂n
∂ t

=Dn∆n−∇ ( k1n

(k2+c )
2 ∇ c)+k3n(1− nn0),

(2)
∂c
∂ t

=Dc∆c+
k 4n

2

k5+n
2−k6 c , x∈ (0 , l ) , t>0 ,

where  l is the length of an interval,  ∆ is the Laplace operator in the one-dimensional Cartesian 
coordinate. In the case of modelling the bacterial self-organization along the three-phase contact line 
[1, 26, 28], l corresponds to the circumference of the vessel (the length of the contact line).





2.2. Initial and boundary conditions

The initial cell and chemoattractant distribution are assumed to be non-uniform:

n (x ,0 )=n0 x (x ) , c (x ,0 )=c0 x (x ) , x∈ [0 , l ] , (3)

where  n0 x( x ) and  c0 x( x ) are the initial (t = 0) cell density and chemoattractant concentration, 
respectively.

Three types of  boundary conditions were analyzed to model  bacterial  self-organization in a 
cylindrical test-tube container (vessel).

Periodic boundary conditions are used to model the bacterial self-organization at the edge (a 
continuous circle) of the top surface of a cylindrical container (t > 0),

n (0 , t )=n (l , t ) , c (0 , t )=c (l , t ) , ∂ n
∂ x

¿x=0=
∂n
∂ x

¿x=l ,
∂ c
∂ x

¿x=0=
∂c
∂ x

¿x=l , (4)

where l is the circumference of the cylinder. The bacterial pattern formation applying the periodic 
boundary conditions (4) have been already investigated [1, 26, 28].

Zero flux boundary conditions are used on both sides of the interval [0, l] in modelling the one-
dimensional vertical bacterial self-organization in the central axis of the vessel, 

∂n
∂ x

¿x=0=0 ,
∂n
∂ x

¿x=l=0 ,
∂ c
∂ x

¿x=0=0 ,
∂ c
∂ x

¿x=l=0. (5)

where l is the height of the cylinder. The mathematical model defined by (2), (3) and (5) can be also  
used to model the bacterial self-organization in a transverse section of a glass channel [14]. Zero flux 
(non-leakage) boundary conditions defined on both sides of the interval restrict any migration of 
bacteria outside the interval [21]. 

The Dirichlet boundary condition is used when the boundary is held at a fixed density of cells [22]. 
Assuming that the upper part of the liquid bacterial culture is stirred, a thin bottom layer usually 
remains unstirred [4]. The density of bacteria in the stirring layer can be assumed constant if the 
stirring layer is relatively tick in comparison with the stagnant layer. Since the bacterial density 
remains constant above the stagnant layer, the Dirichlet boundary condition can be applied on the 
upper boundary of the stagnant layer [22]. Thus, mixed boundary conditions, the zero-flux and the 
Dirichlet, are used when modelling the bacterial self-organization in the central axis of the vessel [22]: 

∂n
∂ x|x=0= ∂c∂ x|x=0=0 , n (l , t )=a ,c (l , t )=b ,              (6)

where  l is the height of the stagnant layer,  a and  b are the constant concentrations of cells and 
chemoattractant  in  the  bulk,  respectively.  This  condition  simulates  bacterial  movement  in  a 
constantly refreshed and mixed solution, that has a constant bacterial density and chemoattractant 
concentration.



2.3. Dimensionless model

A dimensionless mathematical model is derived from the mathematical model (2) – (4) to define the 
main governing parameters:

u= n
n0
, a¿= a

n0
, v=

k5 k6 c

k 4n0
2 , b

¿=
k5 k6b

k 4n0
2 , t

¿=
k6 t

γ
, x¿=√ k6Dc γ x ,

(7) D=
Dn
Dc
, χ=

k1k 4n0
2

k2
2k5 k5Dc

=
k1α

k2Dc
, r=

k3
k6
, α=

k 4n0
2

k2k5 k6
=
k 4 β

k2k6
, β=

n0
2

k5
.

After dropping the asterisks for simplified noting, the governing equations (2) become:

∂u
∂ t

=D ∂
2u

∂ x2
− ∂
∂ x ( χu

(1+αν )2
∂ v
∂ x )+γru (1−u ) ,

(8)
∂ v
∂ t

= ∂
2 v

∂ x2
+γ( u2

1+β u2
−v), x ϵ (0 ,1) , t>0.

Here u is the dimensionless cell density, v is the dimensionless chemoattractant concentration, α  is 
the receptor sensitivity, β is the suturing of the signal production, and γ  is the spatial and temporal 
scale.

The following initial conditions for the dimensionless model were used:

u (x ,0 )=1+ε (x ) , v (x ,0 )=0 , x∈ [0 ,1 ] , (9)

where ε ( x ) is a 20% random uniform spatial perturbation.
The periodic boundary conditions (4) for the dimensionless model becomes:

u (0 , t )=u (1 , t ) , v (0 , t )=v (1 , t ) , ∂u
∂ x

¿x=0=
∂u
∂ x

¿x=1 ,
∂ v
∂ x

¿x=0=
∂ v
∂ x

¿x=1 . (10)

The zero flux boundary conditions (5) for the dimensionless model becomes:

∂u
∂ x

¿x=0=0 ,
∂u
∂ x

¿x=1=0 ,
∂ v
∂ x

¿x=0=0 ,
∂ v
∂ x

¿x=1=0.  (11)

The mixed boundary conditions (6) take the following dimensionless form:

∂u
∂ x|x=0= ∂ v∂ x|x=0=0 , n (1 , t )=a ,c (1 , t )=b . (12)



3. Numerical simulation

To solve the initial boundary value problem (2)-(12) numerically a uniform discrete grid in space 
and time was introduced. An explicit  finite difference scheme was developed as a result  of the 
difference approximation [30]. The governing equations (2) were approximated as follows:

(13)

v i , j+1=v i , j+∆ t( v i+1 , j−2 v i , j+v i−1 , j∆ x2
+γ( ui , j

2

1+β ui , j
2 −v i , j)),

i=1 ,…,N−1 , j=1 ,…,M−1 ,

where ui,j  u(xi, tj), xi = xi-1 + x,  tj = tj-1 + t, for i = 1,…, N and j = 1,…, M,  x0 = 0, xN = 1, t0 = 0,       tM = T, 
where  T is  the  dimensionless  duration of  simulated  process  [29].  The  initial  (9)  and boundary 
conditions (10)-(12) were approximated accordingly. To obtain an accurate and stable numerical 
solution,  the dimensionless  size  of  time step  t varied between 10-7 and 10-6 depending on the 
boundary conditions. The size of space step x varied from 0.002 to 0.004.
The  numerical  simulator  was  developed  in  Python  language.  The  numerical  solution  of  the 
mathematical  model  was validated by using published experimental  data and known numerical 
solutions [1, 8, 9, 26, 28]. The following typical values of the model parameters were used in all the  
numerical experiments [1]:

D=0.1 , χ=9.2 , r=1 , α=0.7 , β=1.4 , γ=625.     (14)

Values  (14)  of  the  model  parameters  were  determined  experimentally  by  changing  input 
parameters  and  aiming  to  simulate  the  spatiotemporal  patterns  comparable  to  those  observed 
experimentally in the liquid cultures of luminous E. coli [8, 9]. The patterns were fitted semi-formally 
by counting the spatial and temporal accumulations.

For  an  analysis  of  the  process  dynamics  the  average  cell  density  ū(t)  and  chemoattractant 
concentration v̄(t) were calculated as functions of time [1],

u (t )=∫
0

1

u (x , t )dx , v (t )=∫
0

1

v (x , t )dx , t>0 . (15)

To evaluate the bacterial average distribution in a space, the cells density u(x, t) was integrated 
over time and then averaged,

~u (x )= 1
T
∫
0

T

u (x , t )dt , x∈ [0 ,1], (16)

where  ~u stands for average cell  density,  taken across all  the time moments.  The function  ~u(x) 
expresses  the  generally  favored bacteria  distribution and any specific accumulation of  bacteria, 
especially in the edges.



4. Results and discussion

To investigate the effects of the type of the boundary conditions on the spatiotemporal pattern 
formation the bacterial self-organization was simulated using two types of the boundary conditions, 
the zero flux (11) and the mixed (12) boundary conditions. Different boundary conditions correspond 
to different experimental conditions. The simulated patterns were compared with each other, with 
experimental data [8,  9] and with known simulated patterns obtained at the periodic boundary 
conditions (10) [1, 28].

4.1. Zero flux boundaries

The zero flux (non-leakage) boundary conditions (11) were used on both sides of the space interval. 
The simulation results are depicted in Fig. 1.

a) b) 

c) d) 

Fig. 1. Simulated space-time plots of the dimensionless cell density u (a) ant chemoattractant concentration v (b), the 
cell distribution ~u averaged over the time (c) and the corresponding values ū and v̄ averaged on the space interval (d). The 

simulation was performed using the zero flux boundary conditions (11).

The simulated spatiotemporal patterns (Fig. 1a and Fig. 1b) are very similar to the corresponding 
experimental patterns [8, 9] and those simulated using the periodic boundary conditions [1, 28]. The 
evolution of the average cell density and the chemoattractant concentration (Fig. 1c) are practically 
identical to those simulated at periodic boundary conditions [8, 9]. 

Although, the spatiotemporal patterns simulated using the zero flux boundary conditions (11) are 
very similar to those obtained applying the periodic boundary conditions (10), one can see noticeable 
difference near the interval borders x = 0 and x = 1. Fig. 1c easily shows accumulations of bacteria at 
those  edges  of  the  interval,  while  in  the  case  of  the  periodic  boundary  conditions  no  specific 
accumulations were observed due to the continuity of the circle [8, 9]. 

As the application of the zero flux boundary conditions corresponds to modelling the vertical 
bacterial self-organization in the central axis of the vessel, Fig. 1c shows that the bacterial population 



tends to accumulates near the boundaries that restrict the cell migration outside the vessel. Similar 
peaks of the bacterial densities have also been observed in snapshots of cell density on the inner lateral 
surface of the vessel in two-dimensional-in-space modelling the bacterial self-organization [30]. 

4.2. High external bacterial density

The Dirichlet boundary condition was applied on the right boundary of the interval (x = 1) 
assuming the other boundary as zero flux boundary (x = 0). These mixed boundary conditions (12) are 
applied when modelling the bacterial self-organization in the central axis of the vessel keeping the 
constant bacterial density at the top boundary (x = 1). Fig. 2 presents the simulation results at the outer 
bacterial density a = 1 and the outer concentration b = 1 of the chemoattractant.

a) b) 

c)  d) 

Fig. 2. Simulated space-time plots of the dimensionless cell density u (a) and chemoattractant concentration v (b), the 
cell distribution ~u averaged over the time (c) and the corresponding values ū and v̄ averaged on the space interval (d). The 

simulation was performed using the mixed boundary conditions (12) at a = 1 and b = 1.

Fig.  2  shows  that  the  higher  right-side  values  of  the  cell  density  and  the  chemoattractant 
concentration do not last far dropping instantly to below background values in places next to the 
boundary.  Consequently,  the  lower  values  also  mean that  bacteria  close  to  the  edge do is  not 
incentivized to stay long and that pushes the whole structure away from that boundary. The structure 
in the middle shows some signs of branching out to the right side, but those branches quickly fade 
away, as getting close to the edge brings worse conditions for the bacteria.

The large spatial changes in the bacterial density can be explained by large difference between the 
outer bacterial density (u(1, t) = a = 1) and the average inner density ū(t) when t > 1 (Fig. 2d). Fig. 2d 
also shows large difference in the chemoattractant concentration. These differences lead to formation 
of  patterns  (Figs.  2a  and 2b)  very  different  from the  patterns  simulated  at  zero  flux boundary 
conditions (Figs. 1a and 1b).  



4.3. Moderate external bacterial density

Since the patterns, simulated using mixed boundary conditions (12) at relatively high external cell 
density (a = 1) and zero concentration (b = 0) of the chemoattractant, extremely differs from the 
patterns simulated using zero flux boundary conditions (11) and using periodic boundary conditions 
(10) [1, 28], the bacterial self-organization was also simulated at values of a and b comparable with the 
average (background) values of the bacterial density u and the chemoattractant v, respectively. The 
simulation results at a = 0.7 and b = 0.25 are depicted in Fig. 3.

a) b) 

c) d) 

Fig. 3. Simulated space-time plot of the dimensionless cell density u (a) and chemoattractant concentration v (b), the 
cell distribution ~u averaged over the time (c) and the corresponding values ū and v̄ averaged on the space interval (d). The 

simulation was performed using the mixed boundary conditions (12) at a = 0.7 and b = 0.25.

One can see that the simulated spatiotemporal patterns depicted in Figs.  3a and 3b are very 
different from the patterns shown in Figs. 2a and 2b though the same mixed boundary conditions (12) 
were used. Only values of a and b were different.

Values of a and b similar to the background provide stability to the bacterial structure, similar to 
the results obtained using the zero flux boundary conditions (Fig. 1). Only a slight difference can be 
noticed  near  the  right  (outer)  boundary,  x ≥0.95.  Further  form this  boundary  (x <  0.95),  the 
spatiotemporal patterns and the averaged values are approximately the same as in the case of zero flux 
boundary conditions (Fig. 2). 

Zero-flux  boundary  conditions  are  usually  used  for  theoretical  analysis  of  bacterial  pattern 
formation [7, 11, 18, 19]. The results of the numerical simulation obtained with different boundary 
conditions show that type of boundary conditions may be crucial for pattern formation and should be 
taken into consideration in the theoretical analysis of the chemotaxis model. 



5. Conclusions

We have shown that numerical simulation based on the Keller–Segel mathematical model (2) can 
be used as a tool to study the formation of patterns representing the self-organization of the bacteria. 
An  application  of  different  boundary  conditions  (10)-(12)  correspond  to  different  experimental 
conditions.

The application of the zero flux boundary conditions (11) can be used to model the vertical bacterial 
self-organization  in  the  vessel,  where  the  bacterial  population  tends  to  accumulates  near  the 
boundaries that restrict the cell movement outside the vessel (Fig. 1). 

The simulated spatiotemporal patterns inside a one-dimensional-in-space domain (an interval) are 
similar for all three types of the boundary conditions, periodic (10), zero flux (11) and mixed (12), only 
if the outer fixed bacterial density  a and the chemoattractant concentration  b are similar to the 
corresponding average values. 

The spatiotemporal patterns change boldly (Fig. 2) when the mixed boundary conditions (12) are 
used at values of a and b notably different from the corresponding average values.
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