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Abstract
In our study, we implemented and compared two machine learning algorithms: K-Nearest Neighbors (KNN) and Naive 
Bayes. For each algorithm, we conducted 10 test runs to evaluate their performance. The results indicated that the KNN 
algorithm achieved an accuracy ranging from 0.80 to 0.82, demonstrating its robustness in predicting weather conditions  based 
on the London’s historical weather data. On the other hand, the Naive Bayes algorithm achieved an accuracy ranging 
from 0.74 to 0.76. Although slightly lower than KNN, these results still reflect the Naive Bayes algorithm’s 
effectiveness in handling the weather data. Overall, this analysis provides valuable insights into the predictive capabilities of 
these algorithms.
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1. Introduction

Artificial intelligence methods show us examples and uses of machine learning algorithms. This is very 
important in today’s world, because more and more systems have more or less developed ai algorithms 
implemented. For example, they can be used for deep neural network models for unbalanced medical data of IoT 
systems[1] or to predict COVID-19 virus spread [2] This artificial intelligence system was developed to 
explore and validate the effectiveness of the K-Nearest Neighbors (KNN) and Gaussian Naive Bayes algorithms. To 
achieve this, we selected a weather database, which is particularly well-suited for testing these algorithms due to 
its  mix  of  numerical  and  categorical  data.  The database  includes  columns  with  numerical  values  such  as 
temperature, humidity, and wind speed, alongside a column containing categorical information about weather 
conditions at the time of observation, including categories like ’Clear’, ’Overcast’, and ’Foggy’. This rich and 
diverse dataset facilitates effective training and testing, enabling a thorough evaluation of the algorithms’ 
performance.

The numerical data is good for the KNN algorithm, which predicts outcomes based on the distance between 
data points. For KNN, we use Euclidean distance measure to find the closest neighbors to a given data point 
and make predictions based on these neighbors. On the other hand, the categorical weather classifications 
are well-suited for the Naive Bayes algorithm. Naive Bayes works by calculating the probability of each class 
based on the feature distributions and assumes that features are independent given the class label, making it 
efficient for categorical data.

We then divided the dataset into a 70:30 ratio for training and testing. This split provides a substantial 
amount of data for training the models while reserving enough data to accurately assess their performance. Our 
benchmark tests involved evaluating the algorithms using standard performance metrics such as accuracy,  precision, 
recall, and F1-score. These metrics offer a comprehensive view of the algorithms’ ability to classify weather 
conditions correctly. Additionally, we performed cross-validation to ensure that our results were not  overly 
dependent on a particular train-test split, further validating the robustness and reliability of our models.
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2. Methodology

2.1. K Nearest Neighbors

2.1.1. Description

The KNN classifier[3], or k nearest neighbor algorithm, is used to classify and predict the value based on the 
variable specified in the decision column in the database. The algorithm compares the values in the columns 
that explain the phenomenon with the values of the variables that are included in the learning set.  It contains 
information about the k closest observations from the learning set.

An important aspect in the creation of a classifier is the selection of an appropriate metric that calculates the 
distance between the observations of the learning set and the training set. The most popular metrics are 
Euclidean, Minkowski or Manhattan.

With successive iterations, the division of the data is corrected against the given metric. The algorithm 
moves data between classes so that the variance within each class is as smallest

2.1.2. Formulas

1. Calculating Distance Between Points:
The Euclidean distance 𝑑 between two points 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛) and 𝑥𝑗 = (𝑥𝑗1, 𝑥𝑗2, . . . , 𝑥𝑗𝑛) is given by:

2. Finding Nearest Neighbors

To find the 𝑘 nearest neighbors for a test point, compute the Euclidean distances from the test point to all 
points in the training set and select the 𝑘 points with the smallest distances.
3. Classification by Majority Voting

For classification, the class of the test point is determined by the classes of its 𝑘 nearest neighbors. The class
𝐶 of the test point is given by:

where 1(𝑦𝑖 = 𝑐) is an indicator function that equals 1 if 𝑦𝑖 = 𝑐 and 0 otherwise.

2.1.3. Classifier Algorithm

The KNN classifier algorithms are shown below:

Algorithm 1 KNN Algorithm
Require: 𝑋_ ,𝑡𝑟𝑎𝑖𝑛  𝑦_ ,𝑡𝑟𝑎𝑖𝑛  𝑋_ ,𝑡𝑒𝑠𝑡  𝑦_𝑡𝑒𝑠𝑡

1: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← []
2: for 𝑥 in 𝑋_𝑡𝑒𝑠𝑡 do
3: Calculate and sort distances from 𝑥 to 𝑋_𝑡𝑟𝑎𝑖𝑛.
4: Select 𝑘 nearest neighbors’ labels.
5: Perform majority voting to determine the most frequent label.
6: Add the most frequent label to 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠.
7: Calculate the accuracy by comparing 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 to 𝑦_𝑡𝑒𝑠𝑡.
8: end for
9:  return 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠



𝑛

𝑛

2.2. Naive Bayes

2.2.1. Description

Before describing Gaussian Naive Bayes, we would like to describe how the naive bayes algorithm works. 
A naive Bayes classifier considers each of these features to contribute independently to the probability that this 
fruit is an apple, regardless of any possible correlations between the color, roundness, and diameter 
features. Based on prior knowledge of conditions that may be related to an event, Bayes theorem describes the 
probability of the event.

So what is Gaussian Naive Bayes?[4] Gaussian Naive Bayes is a type of Naive Bayes method where continuous 
attributes are considered and the data features follow a Gaussian distribution throughout the dataset.  In Sklearn library 
terminology, Gaussian Naive Bayes is a type of classification algorithm working on continuous normally distributed  
features that is based on the Naive Bayes algorithm. Before diving deep into this topic we must gain a basic 
understanding of the principles on which Gaussian Naive Bayes work. Here are some terminologies that can 
help us gain knowledge and ease our further study. The Naive Bayes classifier is based on Bayes’ theorem 
and the assumption of conditional independence of features. The formula is as follows:

2.2.2. Formulas

Where:

𝑃 (𝐶𝑘 |x) = 
𝑃     (  𝐶  𝑘)     ·     𝑃     (  x  |  𝐶  𝑘)  

𝑃 (x) (3)

• 𝑃 (𝐶𝑘|x) is the posterior probability of class 𝐶𝑘 given the sample x,
• 𝑃 (𝐶𝑘) is the prior probability of class 𝐶𝑘,
• 𝑃 (x|𝐶𝑘) is the likelihood of sample x given class 𝐶𝑘,
• 𝑃 (x) is the total probability of the sample x.

Assuming conditional independence of features x = (𝑥1, 𝑥2, . . . , 𝑥𝑛), we can write:

𝑃 (x|𝐶𝑘) = 𝑃 (𝑥1, . . . , 𝑥𝑛|𝐶𝑘) = 
∏︁ 
𝑃 (𝑥𝑖|𝐶𝑘) (4)

𝑖=1

Therefore, the final formula for the Naive Bayes classifier is:

𝑃 (𝐶𝑘|x) ∝ 𝑃 (𝐶𝑘) · 
∏︁ 

𝑃 (𝑥𝑖|𝐶𝑘) (5)
𝑖=1

2.2.3. Classifier Algorithm

The Naive Bayes classifier algorithms are shown below:

Algorithm 2 Description of the Naive Bayes Algorithm
Require: 𝑋_ ,𝑡𝑟𝑎𝑖𝑛  𝑦_ ,𝑡𝑟𝑎𝑖𝑛  𝑋_𝑡𝑒𝑠𝑡

1: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← []
2: Calculate the prior probabilities for each class using 𝑦_𝑡𝑟𝑎𝑖𝑛.
3: Calculate the mean and variance for each feature for each class using 𝑋_𝑡𝑟𝑎𝑖𝑛 and 𝑦_𝑡𝑟𝑎𝑖𝑛.
4: for 𝑥 in each point in 𝑋_𝑡𝑒𝑠𝑡 do
5: Calculate the likelihood of 𝑥 for each class using the Gaussian probability density function.
6: Calculate posterior probabilities for each class based on the features of point 𝑥.
7: Select the class with the highest posterior probability as the predicted label for point 𝑥.
8: Add the predicted label to the predictions list.
9: end for

10: return 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠



3. Experiments

3.1. Dataset preparing

Weather Dataset[5] contains data from years 1979 to 2021., extracted by MUTHUKUMAR.J. Records, that did not 
meet following dependency have been removed from the original database:

• Formatted Date
• Apparent Temperature (C)
• Precip Type
• Loud Cover
• Daily Summary
• Humidity
• Wind Bearing (degrees)

In the first phase of testing, we worked on three abstract classes: ’rain,’ ’clear,’ and ’overcast.’ The accuracy of the 
classifiers was around 90% for KNN and 80% for Naive Bayes. However, the confusion matrices revealed that the 
count of entities labeled ’rain’ in the ’Summary’ column was very low. Consequently, the next step was  to 
identify the abstract class with the highest count of entities. To address this, we analyzed the distribution of 
the ’Summary’ column values across the different classes. This analysis helped us determine which class had 
the highest representation, allowing us to focus our efforts on balancing the dataset and improving the overall 
performance of the classifiers.Based on this, records in which the abstraction class is not included were  removed. 
These other classes had a negative impact[6] on the model’s performance. For example: "Breezy and  Mostly 
Cloudy", "Windy and Foggy", "Windy and Dry", "Dry and Partly Cloudy".

Figure 1: Choosing the best k value

3.2. Tests

3.2.1. KNN tests

The first phase of testing involved appropriately reducing the number of classes in the project’s dataset to 
decrease the computational complexity of the model. After data preparation, model testing commenced. Next, the 
optimal value of 𝑘 for the model was determined. The Matplotlib library[7], which generates graphs, was helpful 
in this regard. In Figure 1, we observe that our model performs best for  𝑘 = 6. However, in the interval [1, 10], the 
values exhibit significant variability, with stabilization occurring only in the interval (10, 30).



Figure 2: Cumulative Distribution Function for Naive Bayes Classifier

3.2.2. Naive Bayes tests

The Bayes classifier has a good distribution when:

• The lines for each class increase rapidly, indicating high probabilities assigned by the model to the 
correct classes.

• Lines for different classes should be separated from each other, indicating that the model distinguishes 
classes well.

• The CDF lines should be close to zero at low probabilities

As you can see from fig.2, all of these things are almost maintained, indicating that the classifier predicts quite 
well. We can confirm this because the classifier has an accuracy of about 75%. It is worth noting on the sudden 
intersection of the foggy class. The abrupt intersection of the line indicates that the model is uncertain about 
assigning probabilities to this particular class, which may be the result of an overlap in feature space between this 
class and other classes.

3.3. Analysis

Figure 3: Confusion Matrix for K Nearest Neighbors Figure 4: Confusion Matrix for Naive Bayes



On fig.3 and fig.4 are confusion matrixes[8] for both classifiers. As you can see, most classes are predicted as 
needed. An interesting aspect is that both classifiers have a problem predicting “overcast”. If they do not 
predict well, their second choice is “clear”.

Figure 5: Comparison of the classifier accuracies

The k-nearest neighbor classifier has about 8 percentage points higher accuracy compared to the Gaussian 
Naive Bayes classifier on fig.5. This difference can be attributed to several factors. First, KNN is a non- 
parametric algorithm, meaning that it does not assume any particular distribution of the data. This flexibility 
allows it to effectively capture complex, nonlinear relationships in the feature space. GNB, on the other hand, 
assumes that the features have a Gaussian distribution and are independent of the class label. When the actual 
data distribution deviates from these assumptions, GNB’s performance can suffer. Second, KNN relies on the 
proximity of data points in the feature space, adapting well to different data distributions without making 
strong assumptions. In addition, KNN can mitigate the impact of outliers and noisy data by considering 
multiple nearest neighbors, which helps smooth out the impact of anomalous data points. On the other 
hand, GNB can be inaccurate under the significant influence of outliers, as they can distort the estimation of the 
parameters of the mean and variance of the Gaussian distribution for each trait. Together, these factors 
contribute to the higher accuracy we observed for KNN in our tests.

Figure 6: Comparison of the classifier times



From the time comparison on fig.6, the classifiers have completely different execution times. The KNN 
algorithm can be more time-consuming, especially for large datasets, due to the need to calculate the distance 
between each pair of points in the training set. Naive Bayes, on the other hand, being based on a simple 
probabilistic model, often exhibits lower computational complexity. In addition, differences in running times may 
also be due to differences in implementations of these algorithms and characteristics of specific data, such as the 
number of dimensions or the size of the dataset.

3.3.1. F1-Score

Figure 7: F1 Score

The F1-score or F1-measure is a measure of predictive performance. It is calculated from the precision and recall 
of the test, where the precision is the number of true positive results divided by the number of all samples predicted to 
be positive, including those not identified correctly, and the recall is the number of true positive results divided 
by  the  number  of  all  samples  that  should  have  been  identified  as  positive.  Precision  is  also  known  as positive 
predictive value, and recall is also known as sensitivity in diagnostic binary classification. Using the built-in F1 
metric from the sklearn library[9], nine iterations were conducted with data shuffiing to calculate the results. This 
approach  ensured  robustness  in  evaluating  the  model’s  performance  across  multiple  trials  and  varying  data 
distributions. Each iteration involved computing the F1-score, which provides a balanced measure of the classifier’s 
precision and recall, thus capturing its ability to correctly classify positive instances while  minimizing false 
positives and false negatives. The iterative process allowed for a comprehensive assessment  of  the  model’s 
effectiveness in handling different data configurations and revealed insights into its consistency and reliability.

As seen on the fig.7, the results obtained by the F1-score from the sklearn library closely align with the 
results obtained using the accuracy calculation algorithm implemented by the authors in the tested classifier.

4. Conclusion

To sum up and recap, our study using the London weather dataset provided valuable insights into the 
functioning and performance of K-Nearest Neighbors (KNN) and the Gaussian Naive Bayes classifier (GNB). 
KNN is much easier to implement. Its concept is straightforward: it classifies new data points based on the 
most common class among the nearest neighbors. This simplicity in implementation makes KNN an agttractive option 
for quick and easy classification tasks. However, it has its limitations. KNN can be slower to classify,



especially for large datasets, because it is necessary to calculate the distance between a new point and each 
point in the training set. This distance calculation can become computationally expensive as the size of the 
dataset increases, leading to longer classification times. On the other hand, the Bayes classifier, particularly the 
Naive Bayes classifier, may require more effort at the implementation stage. This is due to the need to 
calculate and model conditional probabilities and to make feature independence assumptions. Despite this 
initial complexity, the Naive Bayes classifier can be faster during the classification phase. It only requires 
calculating the conditional probabilities for each feature and applying Bayes’ rule. Throughout of this study, we 
gained a large dose of knowledge. Implementing these algorithms and benchmarking their performance 
allowed us to gain practical experience with both KNN and GNB. We discovered firsthand the trade-offs 
between ease of implementation and computational efficiency.
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