
Comparison of SoP Set and KNN Methods for
Recommendation Systems*

Piotr Solarczyk1,∗,†, Jakub Stachurski1,†

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
This paper presents a comparative study between Soft Set and K-Nearest Neighbors (KNN) methods for
recommendation systems. We utilize the Netflix dataset to analyze and compare the performance of
both methods. The Soft Set approach is highlighted as a potentially more effective method due to its
flexibility in handling uncertainties and partial truths, as opposed to the more rigid KNN. The results
indicate that the Soft Set method provides more accurate and relevant recommendations, showcasing its
potential in improving recommendation systems.

Keywords
Recommendation Systems, Soft Set, K-Nearest Neighbors, Netflix, Data Analysis

1. Introduction

Recommendation systems have become an integral part of numerous online services, providing
personalized content suggestions to users based on their preferences and behavior. These sys- tems
enhance user experience by suggesting relevant items, thereby increasing user engagement and
satisfaction. Various algorithms and techniques have been developed for recommendation
systems, each with its strengths and weaknesses. K-Nearest Neighbors (KNN) is one of the
most widely used algorithms due to its simplicity and effectiveness. It operates by finding the
closest data points in the feature space and using them to make predictions or recommendations.
However, KNN has its limitations, particularly in handling the uncertainties and partial truths
that often exist in real-world data.

In contrast, Soft Set theory offers a more flexible approach to dealing with such uncertainties.
Introduced by Molodtsov in 1999, Soft Set theory provides a framework for reasoning about
data that is imprecise or incomplete. It allows for a more nuanced representation of relation-
ships between items, which can be particularly useful in recommendation systems where user
preferences are not always clear-cut. This paper explores the potential of Soft Set theory as an
alternative to KNN for recommendation systems. We utilize the Netflix dataset to conduct a
comparative analysis of the two methods, focusing on their accuracy and effectiveness in generating
relevant recommendations. The study aims to demonstrate that the Soft Set approach can provide better
recommendations by leveraging its inherent flexibility in handling uncertainties.

*IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
1,∗ Corresponding author
† These author contributed equally.

 ps309167@student.polsl.pl (P. Solarczyk); js308026@student.polsl.pl (J. Stachurski)

 0009-0005-4831-9242 (P. Solarczyk); 0009-0005-1020-0414 (J.Stachurski)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:js308026@student.polsl.pl
mailto:ps309167@student.polsl.pl
https://orcid.org/0009-0005-1020-0414
https://orcid.org/0009-0005-4831-9242

2. Methodology

In this section, we detail the methodologies employed in our study: the K-Nearest Neighbors
(KNN) algorithm and the Soft Set method. Both methodologies are implemented to generate
recommendations based on the Netflix dataset, and their performance is compared.

2.1. Data Preprocessing

The initial step involves loading and preprocessing the Netflix dataset. The dataset contains
information about various titles, including their type, rating, and genres. We start by loading the
dataset and removing rows with missing values to ensure data quality. The relevant features for our
recommendation system, such as title, type, rating, and genres (listed_in), are then extracted
for further analysis.

import pandas as pd

Load data
d f = pd . r e a d _c s v (’ n e t f l i x _ t i t l e s . csv ’)

Data c l e a n i n g − remove rows with m i s s i n g v a l u e s
d f _c l e a n e d = d f . dropna ()

E x t r a c t f e a t u r e s needed f o r r e commendations
d f _ f e a t u r e s = d f _c l e a n e d [[’ t i t l e ’ , ’ type ’ , ’ r a t i n g ’

, ’ l i s t e d _ i n ’]] . copy ()

2.2. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a simple yet powerful algorithm used for classification and
regression tasks. In our context, KNN is employed to generate movie recommendations. The
algorithm works by calculating the similarity between the genres of a given movie and those
of other movies in the dataset. The TF-IDF (Term Frequency-Inverse Document Frequency)
vectorizer is used to convert the genres into numerical features, and the cosine similarity metric is
used to find the k-nearest neighbors. The KNN recommendation function is implemented as
follows:

from s k l e a r n . f e a t u r e _ e x t r a c t i o n . t e x t import T f i d f V e c t o r i z e r
from s k l e a r n . n e i g h b o r s import N e a r e s t N e i g h b o r s

KNN r ecommendation f u n c t i o n
def knn_recommendation (t i t l e , k = 5) :

t f i d f = T f i d f V e c t o r i z e r (s top_words = ’ e n g l i s h ’)

t f i d f _ m a t r i x = t f i d f . f i t _ t r a n s f o r m (d f _ f e a t u r e s [’ l i s t e d _
i n ’

])

knn = N e a r e s t N e i g h b o r s (n _n e i g h b o r s =k + 1 , m e t r i c = ’ c o s i
n e ’) knn . f i t (t f i d f _ m a t r i x)

i d x = d f _ f e a t u r e s [d f _ f e a t u r e s [’ t i t l e ’] . s t r . c o n t a i n s (t
i t l e , c a s e = F a l s e , regex = F a l s e)] . index

i f len (i d x) == 0 :
print (f " No t i t l e c o n t a i n i n g ’ { t i t l e } ’ found . ")
return []

i d x = i d x [0]
d i s t a n c e s , i n d i c e s = knn . k n e i g h b o r s (t f i d f _ m a t r i x [i

d x] , n _n e i g h b o r s =k + 1)

r e c o m m e n d e d _t i t l e s = d f _ f e a t u r e s . i l o c [i n d i c e s [0]] .
t i t l e . v a l u e s [1 :]

return r e c o m m e n d e d _t i t l e s

2.3. SoP Set

The Soft Set theory provides a mathematical framework for dealing with uncertainties and
partial truths. Unlike traditional set theory, Soft Set theory allows for the representation of
vague concepts, making it suitable for recommendation systems where user preferences are
often imprecise. The Soft Set recommendation function calculates the similarity between the
genres of the input title and those of other titles in the dataset using the Jaccard similarity
coefficient. This method is more flexible and can handle the partial truths and uncertainties
present in the data. The implementation is as follows:

S o f t s e t r ecommendat ion f u n c t i o n
def s o f t _s e t _r e c o m m e n d a t i o n (t i t l e , t h r e s h o l d = 0 . 6) :

input_row = d f _ f e a t u r e s [d f _ f e a t u r e s [’ t i t l e ’] . s t r . c o n t a
i n s (t i t l e , c a s e = F a l s e , regex = F a l s e)]

i f input_row . empty :
print (f " No t i t l e c o n t a i n i n g ’ { t i t l e } ’ found . ")
return []

i n p u t _g e n r e s = s e t ([genre . s t r i p () . lower () for genre in
input_row . i l o c [0] [’ l i s t e d _ i n ’] . s p l i t (’ , ’)])

g e n r e s _ l i s t = d f _ f e a t u r e s [’ l i s t e d _ i n ’] . s t r . s p l i t (’ , ’) .
apply

(lambda x : s e t ([i . s t r i p () . lower () for i in x]))

def c a l c u l a t e _ s i m i l a r i t y (g e n r e s) :
return len (i n p u t _g e n r e s . i n t e r s e c t i o n (g e n r e s)) /

len (i n p u t _g e n r e s . union (g e n r e s))

d f _ f e a t u r e s [’ s i m i l a r i t y ’] = g e n r e s _ l i s t .
apply (c a l c u l a t e _ s i m i l a r i t y)

recommendations = d f _ f e a t u r e s . s o r t _ v a l u e s (by= ’ s i m i l a r i t
y ’ , a s c e n d i n g = F a l s e) . head (6) . t i t l e . v a l u e s [1 :]

return recommendations

3. Experiments

To evaluate the performance of the KNN and Soft Set methods, we conducted experiments
using the Netflix dataset. We selected the popular TV show "Breaking Bad" as the input title
and generated recommendations using both methods. The accuracy of the recommendations
was then evaluated based on feature similarity, taking into account the type, rating, and genres of
the titles.

3.1. Evaluation of Recommendations

The accuracy of the recommendations is assessed by calculating the average similarity of the
recommended titles to the input title. The feature similarity is determined by comparing the
type, rating, and genres of the titles. The following functions are used to calculate the feature
similarity and evaluate the accuracy of the recommendations:

F e a t u r e s i m i l a r i t y c a l c u l a t i o n f u n c t i o n
def f e a t u r e _ s i m i l a r i t y (t i t l e 1 , t i t l e 2) :

f e a t u r e s 1 = d f _ f e a t u r e s [d f _ f e a t u r e s [’ t i t l e ’] . s t r . c o n t
a i n s (t i t l e 1 , c a s e = F a l s e , regex = F a l s e)]

f e a t u r e s 2 = d f _ f e a t u r e s [d f _ f e a t u r e s [’ t i t l e ’] == t i t l e 2]

i f len (f e a t u r e s 1) == 0 or len (f e a t u r e s 2) == 0 :
return 0

f e a t u r e s 1 = f e a t u r e s 1 . i l o c [
0] f e a t u r e s 2 = f e a t u r e s 2 . i l o
c [0]

s i m i l a r i t y = 0
i f f e a t u r e s 1 [’ type ’] == f e a t u r e s 2 [’ type

’] : s i m i l a r i t y += 1
i f f e a t u r e s 1 [’ r a t i n g ’] == f e a t u r e s 2 [’ r a t i n

g ’] : s i m i l a r i t y += 1

g e n r e s 1 = s e t (f e a t u r e s 1 [’ l i s t e d _ i n ’] . s p l i t (’
, ’))
g e n r e s 2 = s e t (f e a t u r e s 2 [’ l i s t e d _ i n ’] . s p l i t (’ ,

’)
)
g e n r e _ s i m i l a r i t y = len (g e n r e s 1 . i n t e r s e c t i o n (g e n r e s 2)) /
len

(g e n r e s 1 . union (g e n r e s 2))
s i m i l a r i t y += g e n r e _ s i m i l a r i t y

return s i m i l a r i t y / 3

E v a l u a t i o n o f r e commendations a c c u r a c y
def e v a l u a t e _r e c o m m e n d a t i o n s _a c c u r a c y (i n p u t _ t i t l e

s , r e c o m m e n d e d _t i t l e s) :
t o t a l _ a c c u r a c y = 0
for i n p u t _ t i t l e in i n p u t _ t i t l e

s : i n p u t _a c c u r a c y = 0
r e c o m m e n d e d _t i t l e s _f o r _ i n p u t = r e c o m m e n d e d _t i t l e

s . g e t (i n p u t _ t i t l e , [])
i f len (r e c o m m e n d e d _t i t l e s _f o r _ i n p u t) > 0 :

for r e c o m m e n d e d _t i t l e in
r e c o m m e n d e d _t i t l e s _f o r _ i n p u t :

i n p u t _a c c u r a c y += f e a t u r e _ s i m i l a r
i t y (i n p u t _ t i t l e , r e c o m m e n d e d
_t i t l e)

i n p u t _a c c u r a c y / = len (r e c o m m e n d e d _t i t l e s _f o r _ i n
p u t) t o t a l _ a c c u r a c y += i n p u t _a c c u r a c y

i f t o t a l _ a c c u r a c y == 0 :
return 0

t o t a l _ a c c u r a c y / = len (i n p u t _ t i t l e s)
return t o t a l _ a c c u r a c y ∗ 100

We generated recommendations for "Breaking Bad" using both KNN and Soft Set methods.
The results were compared to assess the effectiveness of each method in providing relevant
recommendations.

3.2. Results

The results of our experiments indicate that the Soft Set method outperforms the KNN method in
terms of recommendation accuracy. The Soft Set method, with its ability to handle uncer-
tainties and partial truths, provided recommendations that were more similar to the input title
"Breaking Bad" in terms of type, rating, and genres. The accuracy of the KNN method was
lower, highlighting its limitations in dealing with the imprecise nature of real-world data.

The accuracy of the recommendations is summarized as follows:

Movie Recommendations
(KNN)

Recommendations
(SoP Sets)

Accuracy
(KNN) (%)

Accuracy
(SoP Sets)
(%)

Breaking
Bad

Krish Trish and
Baltiboy: Face Your
Fears, Fishtronaut:
The Movie, Pinkfong
& Baby Shark’s
Space Adventure

Come and Find Me,
Victim of Beauty, The
Girl with the Dragon
Tattoo

33.33 66.67

Paranoia Hera Pheri, Hunt for
the Wilderpeople,
Happy New Year

Dismissed, Deviant
Love, Running Out Of
Time

40.00 80.00

Labyrinth Yes Man, Legally
Blonde, The Kissing
Booth 2

National Treasure,
Red Dawn, Kung Fu
Hustle

33.33 65.56

Murder Mys-
tery

The Next Skin, Pun-
jab 1984, Nimbe

Blue Mountain State:
The Rise of Thadland,
Dead in a Week (Or
Your Money Back),
Don Verdean

33.33 73.33

God of War Jailbreak, Twins Mis-
sion, Manhunt

Department, Dragon
Tiger Gate, Disciples
Of The 36th Cham-
ber

66.67 66.67

Table 1
Comparison of KNN and Soft Sets Recommendation Systems

4. Conclusion

In this study, we compared the performance of the K-Nearest Neighbors (KNN) and Soft Set
methods for recommendation systems using the Netflix dataset. The dataset was preprocessed to
remove missing values, and features such as title, type, rating, and genres were extracted for
analysis.

The KNN method was implemented using the TF-IDF vectorizer to convert genre information into
numerical features, and cosine similarity was used to find the nearest neighbors. The Soft Set
method, on the other hand, calculated the similarity between the genres of the input title and
other titles using the Jaccard similarity coefficient.

We evaluated the recommendations generated by both methods using the feature similarity
calculation, which took into account the type, rating, and genres of the titles. The accuracy of
the recommendations was measured by comparing the average similarity of the recommended
titles to the input title.

Our experiments, which focused on the popular TV show "Breaking Bad," demonstrated that
the Soft Set method provided more accurate and relevant recommendations compared to the

KNN method. Specifically, the Soft Set method achieved higher accuracy by effectively handling
the uncertainties and partial truths inherent in user preferences and real-world data.

The results highlight the potential of the Soft Set method as a superior alternative to KNN
for recommendation systems. The flexibility of Soft Set theory in dealing with imprecise and
incomplete data makes it well-suited for applications where user preferences are not always
clear-cut.

Future work could explore integrating Soft Set theory with other machine learning techniques to
further enhance the accuracy and effectiveness of recommendation systems. Additionally,
expanding the evaluation to include a larger variety of input titles and diverse datasets could
provide a more comprehensive assessment of the methods’ performance.

References

[1] Molodtsov, D. (1999). Soft set theory—First results. Computers & Mathematics with Appli-
cations, 37(4-5), 19-31.

[2] Netflix. (2016). Netflix Movies and TV Shows Dataset. Retrieved from https://www.kaggle.
com/shivamb/netflix-shows

[3] Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5), 513-523.

[4] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1), 21-27.

[5] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on
Knowledge and Data Engineering, 17(6), 734-749.

[6] Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et
du Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.

[7] Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of the sixth
new zealand computer science research student conference (NZCSRSC) (pp. 49-56).

[8] Maji, P. K., Biswas, R., & Roy, A. R. (2002). An application of soft sets in a decision making
problem. Computers & Mathematics with Applications, 44(8-9), 1077-1083.

https://www.kaggle.com/shivamb/netflix-shows

	Keywords
	1. Introduction
	2. Methodology
	2.1. Data Preprocessing
	2.2. K-Nearest Neighbors (KNN)
	2.3. SoP Set

	3. Experiments
	3.1. Evaluation of Recommendations
	return 0
	return 0

	3.2. Results

	4. Conclusion
	References

