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Abstract
This paper presents a comparative study between Soft Set and K-Nearest Neighbors (KNN) methods for 
recommendation systems. We utilize the Netflix dataset to analyze and compare the performance of 
both methods. The Soft Set approach is highlighted as a potentially more effective method due to its 
flexibility in handling uncertainties and partial truths, as opposed to the more rigid KNN. The results 
indicate that the Soft Set method provides more accurate and relevant recommendations, showcasing its 
potential in improving recommendation systems.
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1. Introduction

Recommendation  systems  have  become  an  integral  part  of  numerous  online  services,  providing 
personalized content suggestions to users based on their preferences and behavior. These sys- tems 
enhance  user  experience  by  suggesting  relevant  items,  thereby  increasing  user  engagement  and 
satisfaction. Various  algorithms  and  techniques  have  been  developed  for  recommendation 
systems, each with its strengths and weaknesses. K-Nearest Neighbors (KNN) is one of the 
most widely used algorithms due to its simplicity and effectiveness. It operates by finding the 
closest  data  points  in  the  feature  space  and using them to  make predictions  or  recommendations. 
However, KNN has its limitations, particularly in handling the uncertainties and partial truths 
that often exist in real-world data.

In contrast, Soft Set theory offers a more flexible approach to dealing with such uncertainties. 
Introduced by Molodtsov in 1999, Soft Set theory provides a framework for reasoning about 
data that is imprecise or incomplete. It allows for a more nuanced representation of relation- 
ships between items, which can be particularly useful in recommendation systems where user 
preferences are not always clear-cut. This paper explores the potential of Soft Set theory as an 
alternative to KNN for recommendation systems. We utilize the Netflix dataset to conduct a 
comparative analysis of the two methods, focusing on their accuracy and effectiveness in generating 
relevant recommendations. The study aims to demonstrate that the Soft Set approach can  provide better 
recommendations by leveraging its inherent flexibility in handling uncertainties.
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2. Methodology

In this section, we detail the methodologies employed in our study: the K-Nearest Neighbors 
(KNN) algorithm and the Soft Set method. Both methodologies are implemented to generate 
recommendations based on the Netflix dataset, and their performance is compared.

2.1. Data Preprocessing

The initial step involves loading and preprocessing the Netflix dataset. The dataset contains 
information about various titles, including their type, rating, and genres. We start by loading the 
dataset and removing rows with missing values to ensure data quality. The relevant features for our 
recommendation system, such as title, type, rating, and genres (listed_in), are then extracted 
for further analysis.

import pandas as pd

# Load  data
d f = pd . r e a d _c s v ( ’ n e t f l i x _ t i t l e s . csv ’ )

# Data c l e a n i n g − remove rows  with  m i s s i n g  v a l u e s
d f _c l e a n e d = d f . dropna ( )

# E x t r a c t f e a t u r e s needed f o r  r e commendations
d f _ f e a t u r e s = d f _c l e a n e d [ [ ’ t i t l e ’ , ’ type ’ , ’ r a t i n g ’ 

, ’ l i s t e d _ i n ’ ] ] . copy ( )

2.2. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a simple yet powerful algorithm used for classification and 
regression tasks. In our context, KNN is employed to generate movie recommendations. The 
algorithm works by calculating the similarity between the genres of a given movie and those 
of other movies in the dataset. The TF-IDF (Term Frequency-Inverse Document Frequency) 
vectorizer is used to convert the genres into numerical features, and the cosine similarity metric is 
used to find the k-nearest neighbors. The KNN recommendation function is implemented as 
follows:

from s k l e a r n . f e a t u r e _ e x t r a c t i o n . t e x t  import  T f i d f V e c t o r i z e r
from s k l e a r n . n e i g h b o r s import N e a r e s t N e i g h b o r s

# KNN r ecommendation f u n c t i o n
def knn_recommendation ( t i t l e , k = 5 ) :

t f i d f = T f i d f V e c t o r i z e r ( s top_words  = ’ e n g l i s h ’ )



t f i d f _ m a t r i x = t f i d f . f i t _ t r a n s f o r m ( d f _ f e a t u r e s [ ’ l i s t e d _ 
i n ’

] )

knn = N e a r e s t N e i g h b o r s ( n _n e i g h b o r s =k + 1 , m e t r i c = ’ c o s i 
n e ’ ) knn . f i t ( t f i d f _ m a t r i x )

i d x = d f _ f e a t u r e s [ d f _ f e a t u r e s [ ’ t i t l e ’ ] . s t r . c o n t a i n s ( t 
i t l e , c a s e = F a l s e ,  regex = F a l s e ) ] . index

i f  len ( i d x )  ==  0 :
print ( f " No  t i t l e c o n t a i n i n g ’ { t i t l e } ’  found . " )
return  [ ]

i d x = i d x [ 0 ]
d i s t a n c e s , i n d i c e s = knn . k n e i g h b o r s ( t f i d f _ m a t r i x [ i 

d x ] , n _n e i g h b o r s =k + 1 )

r e c o m m e n d e d _t i t l e s = d f _ f e a t u r e s . i l o c [ i n d i c e s [ 0 ] ] . 
t i t l e . v a l u e s [ 1 : ]

return  r e c o m m e n d e d _t i t l e s

2.3. SoP Set

The Soft Set theory provides a mathematical framework for dealing with uncertainties and 
partial truths. Unlike traditional set theory, Soft Set theory allows for the representation of 
vague concepts, making it suitable for recommendation systems where user preferences are 
often imprecise. The Soft Set recommendation function calculates the similarity between the 
genres of the input title and those of other titles in the dataset using the Jaccard similarity 
coefficient. This method is more flexible and can handle the partial truths and uncertainties 
present in the data. The implementation is as follows:

# S o f t s e t r ecommendat ion   f u n c t i o n
def s o f t _s e t _r e c o m m e n d a t i o n ( t i t l e , t h r e s h o l d = 0 . 6 ) :

input_row = d f _ f e a t u r e s [ d f _ f e a t u r e s [ ’ t i t l e ’ ] . s t r . c o n t a 
i n s ( t i t l e ,  c a s e = F a l s e ,  regex = F a l s e ) ]

i f  input_row . empty :
print ( f " No  t i t l e  c o n t a i n i n g  ’ { t i t l e } ’  found . " )
return  [ ]

i n p u t _g e n r e s = s e t ( [ genre . s t r i p ( ) . lower ( )  for  genre in
input_row . i l o c [ 0 ] [ ’ l i s t e d _ i n ’ ] . s p l i t ( ’ , ’ ) ] )

g e n r e s _ l i s t  =  d f _ f e a t u r e s [ ’ l i s t e d _ i n ’ ] . s t r . s p l i t ( ’ , ’ ) . 
apply

( lambda x :  s e t ( [ i . s t r i p ( ) . lower ( )  for  i  in x ] ) )



def c a l c u l a t e _ s i m i l a r i t y ( g e n r e s ) :
return len ( i n p u t _g e n r e s . i n t e r s e c t i o n ( g e n r e s ) )  / 

len ( i n p u t _g e n r e s . union ( g e n r e s ) )

d f _ f e a t u r e s [ ’ s i m i l a r i t y ’ ] = g e n r e s _ l i s t . 
apply ( c a l c u l a t e _ s i m i l a r i t y )

recommendations  = d f _ f e a t u r e s . s o r t _ v a l u e s ( by= ’ s i m i l a r i t 
y ’ , a s c e n d i n g = F a l s e ) . head ( 6 ) . t i t l e . v a l u e s [ 1 : ]

return recommendations

3. Experiments

To evaluate the performance of the KNN and Soft Set methods, we conducted experiments 
using the Netflix dataset. We selected the popular TV show "Breaking Bad" as the input title 
and generated recommendations using both methods. The accuracy of the recommendations 
was then evaluated based on feature similarity, taking into account the type, rating, and genres of 
the titles.

3.1. Evaluation of Recommendations

The accuracy of the recommendations is assessed by calculating the average similarity of the 
recommended titles to the input title. The feature similarity is determined by comparing the 
type, rating, and genres of the titles. The following functions are used to calculate the feature 
similarity and evaluate the accuracy of the recommendations:

# F e a t u r e s i m i l a r i t y  c a l c u l a t i o n  f u n c t i o n
def f e a t u r e _ s i m i l a r i t y ( t i t l e 1 ,  t i t l e 2 ) :

f e a t u r e s 1 = d f _ f e a t u r e s [ d f _ f e a t u r e s [ ’ t i t l e ’ ] . s t r . c o n t 
a i n s ( t i t l e 1 ,  c a s e = F a l s e ,  regex = F a l s e ) ]

f e a t u r e s 2 = d f _ f e a t u r e s [ d f _ f e a t u r e s [ ’ t i t l e ’ ] ==  t i t l e 2 ]

i f len ( f e a t u r e s 1 ) == 0 or len ( f e a t u r e s 2 ) == 0 :
return 0

f e a t u r e s 1 = f e a t u r e s 1 . i l o c [ 
0 ] f e a t u r e s 2 = f e a t u r e s 2 . i l o 
c [ 0 ]

s i m i l a r i t y  = 0
i f f e a t u r e s 1 [ ’ type ’ ] == f e a t u r e s 2 [ ’ type 

’ ] : s i m i l a r i t y += 1
i f f e a t u r e s 1 [ ’ r a t i n g ’ ] == f e a t u r e s 2 [ ’ r a t i n 

g ’ ] : s i m i l a r i t y += 1



g e n r e s 1 = s e t ( f e a t u r e s 1 [ ’ l i s t e d _ i n ’ ] . s p l i t ( ’ 
, ’ ) ) 
g e n r e s 2 = s e t ( f e a t u r e s 2 [ ’ l i s t e d _ i n ’ ] . s p l i t ( ’ ,

’ ) 
)
g e n r e _ s i m i l a r i t y = len ( g e n r e s 1 . i n t e r s e c t i o n ( g e n r e s 2 ) )  /  
len

( g e n r e s 1 . union ( g e n r e s 2 ) )
s i m i l a r i t y +=  g e n r e _ s i m i l a r i t y

return s i m i l a r i t y / 3

# E v a l u a t i o n o f r e commendations a c c u r a c y
def e v a l u a t e _r e c o m m e n d a t i o n s _a c c u r a c y ( i n p u t _ t i t l e 

s , r e c o m m e n d e d _t i t l e s ) :
t o t a l _ a c c u r a c y = 0
for  i n p u t _ t i t l e  in  i n p u t _ t i t l e 

s : i n p u t _a c c u r a c y = 0
r e c o m m e n d e d _t i t l e s _f o r _ i n p u t = r e c o m m e n d e d _t i t l e 

s . g e t ( i n p u t _ t i t l e ,  [ ] )
i f len ( r e c o m m e n d e d _t i t l e s _f o r _ i n p u t ) >  0 :

for r e c o m m e n d e d _t i t l e in
r e c o m m e n d e d _t i t l e s _f o r _ i n p u t :

i n p u t _a c c u r a c y += f e a t u r e _ s i m i l a r 
i t y ( i n p u t _ t i t l e ,  r e c o m m e n d e d 
_t i t l e )

i n p u t _a c c u r a c y / = len ( r e c o m m e n d e d _t i t l e s _f o r _ i n 
p u t ) t o t a l _ a c c u r a c y  += i n p u t _a c c u r a c y

i f  t o t a l _ a c c u r a c y  ==  0 :
return 0

t o t a l _ a c c u r a c y / =  len ( i n p u t _ t i t l e s )
return t o t a l _ a c c u r a c y  ∗  100

We generated recommendations for "Breaking Bad" using both KNN and Soft Set methods. 
The results were compared to assess the effectiveness of each method in providing relevant 
recommendations.

3.2. Results

The results of our experiments indicate that the Soft Set method outperforms the KNN method in 
terms of recommendation accuracy. The Soft Set method, with its ability to handle uncer- 
tainties and partial truths, provided recommendations that were more similar to the input title 
"Breaking Bad" in terms of type, rating, and genres. The accuracy of the KNN method was 
lower, highlighting its limitations in dealing with the imprecise nature of real-world data.



The accuracy of the recommendations is summarized as follows:

Movie Recommendations
(KNN)

Recommendations
(SoP Sets)

Accuracy
(KNN) (%)

Accuracy
(SoP Sets) 
(%)

Breaking
Bad

Krish  Trish  and
Baltiboy: Face Your 
Fears,  Fishtronaut: 
The Movie, Pinkfong 
&  Baby  Shark’s 
Space Adventure

Come and Find Me,
Victim of Beauty, The 
Girl with the Dragon 
Tattoo

33.33 66.67

Paranoia Hera Pheri, Hunt for
the Wilderpeople, 
Happy New Year

Dismissed, Deviant
Love, Running Out Of 
Time

40.00 80.00

Labyrinth Yes Man, Legally
Blonde, The Kissing 
Booth 2

National Treasure,
Red Dawn, Kung Fu 
Hustle

33.33 65.56

Murder Mys-
tery

The Next Skin, Pun-
jab 1984, Nimbe

Blue Mountain State:
The Rise of Thadland, 
Dead in a Week (Or 
Your Money Back), 
Don Verdean

33.33 73.33

God of War Jailbreak, Twins Mis-
sion, Manhunt

Department, Dragon
Tiger Gate, Disciples 
Of The 36th Cham- 
ber

66.67 66.67

Table 1
Comparison of KNN and Soft Sets Recommendation Systems

4. Conclusion

In this study, we compared the performance of the K-Nearest Neighbors (KNN) and Soft Set 
methods for recommendation systems using the Netflix dataset. The dataset was preprocessed to 
remove missing values, and features such as title, type, rating, and genres were extracted for 
analysis.

The KNN method was implemented using the TF-IDF vectorizer to convert genre information into 
numerical features, and cosine similarity was used to find the nearest neighbors. The Soft  Set 
method, on the other hand, calculated the similarity between the genres of the input title and 
other titles using the Jaccard similarity coefficient.

We evaluated the recommendations generated by both methods using the feature similarity 
calculation, which took into account the type, rating, and genres of the titles. The accuracy of 
the recommendations was measured by comparing the average similarity of the recommended 
titles to the input title.

Our experiments, which focused on the popular TV show "Breaking Bad," demonstrated that 
the Soft Set method provided more accurate and relevant recommendations compared to the



KNN method. Specifically, the Soft Set method achieved higher accuracy by effectively handling 
the uncertainties and partial truths inherent in user preferences and real-world data.

The results highlight the potential of the Soft Set method as a superior alternative to KNN 
for recommendation systems. The flexibility of Soft Set theory in dealing with imprecise and 
incomplete data makes it well-suited for applications where user preferences are not always 
clear-cut.

Future work could explore integrating Soft Set theory with other machine learning techniques to 
further  enhance  the  accuracy  and  effectiveness  of  recommendation  systems. Additionally, 
expanding the evaluation to include a larger variety of input titles and diverse datasets could 
provide a more comprehensive assessment of the methods’ performance.
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