
Language recognition implemented into

machine
learning algorithms*

Żaneta Pawelec1,∗,†, Grzegorz Grochowski1,† and Aleksandra Starowicz1,†

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
Language recognition algorithms play a pivotal role in various domains, offering applications ranging
from automatically detecting the language of textual data to powering multilingual customer support
systems. As the foundation of modern technologies like Artificial Intelligence, these algorithms enable
content localization, facilitate language translation services, and drive personalized marketing strategies by
analyzing linguistic patterns in customer feedback and social media interactions. This project compares five
machine learning algorithms for language recognition, focusing on Bayesian classifiers and K-Nearest
Neighbors (KNN). Through experimentation with different variations of these algorithms, including
custom implementations, the project evaluates their effectiveness in recognizing 17 foreign languages.
Methodologically, the project explores the nuances of each algorithm, discussing their underlying
principles and implementation details. Experimental results reveal insights into the performance of
each algorithm, providing valuable considerations for practical applications. Additionally, the project
discusses the significance of precision, recall, F1-score, and accuracy metrics in assessing algorithm
performance. Overall, this study contributes to advancing language recognition technology, offering
valuable insights into algorithmic approaches and their real-world implications.

Keywords
language recognition, knn, clustering, artificial intelligence, Bayesian classifier, K-Nearest Neighbors

1. Introduction

Language recognition algorithms offer numerous applications across various domains [1, 2, 3, 4].
From automatically detecting the language of textual data to increasing performance of spam
filtering and powering multilingual customer support systems. The importance of these
algorithms enhances every day and becomes the crucial foundation for developing modern
technologies such as Artificial Intelligence. Furthermore, they enable content localization,
facilitate language translation services, and drive personalized marketing strategies [5] by
analyzing linguistic patterns in customer feedback and social media interactions. We can easily
spot them in our daily lives, using social media, web browsers and so on, that is why their
accuracy and efficiency need to be constantly improved in order to make things easier. Moreover,
language recognition algorithms underpin voice assistants and speech recognition systems,
contributing to seamless user experiences. With their ability to discern linguistic nuances and
patterns, language recognition algorithms continue to fuel innovation and efficiency across a
wide array of real-life problems.

*IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
1,∗ Corresponding author
† These author contributed equally.

 zp307912@polsl.pl (Ż. Pawelec); gg307869@student.polsl.pl (G. Grochowski); @as307323.polsl.pl

0009-0003-9824-7609 (Ż. Pawelec); 0009-0009-8977-0442 (G. Grochowski); 0009-0003-0939-8748 (A. Starowicz)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0003-0939-8748
mailto:gg307869@student.polsl.pl
https://orcid.org/0009-0009-8977-0442
https://orcid.org/0009-0003-9824-7609

Our program aims to compare five machine learning algorithms. All algorithms calculate
the effectiveness of recognizing 17 foreign languages using different variations of the Bayesian
classifier [6] and K-Nearest Neighbours classifier [7, 8]. The calculations are based on a longer or
shorter sentence retrieved from a database.

To get a closer look into the applied classifiers, the following paragraphs will briefly describe
them to illustrate how different these calculation methods are from each other.

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes’ theorem,
which calculates the probability of a certain class given a set of features. It assumes that the
features are conditionally independent, hence "naive." It’s widely used for classification tasks,
especially in text classification and spam filtering.

K-Nearest Neighbors (KNN) is a non-parametric supervised learning algorithm used for
classification and regression tasks. In KNN, the class of a new data point is determined by the
majority class among its k nearest neighbors in the feature space. It’s simple to implement and
understand but can be computationally expensive for large datasets (like the one we are using), as
it requires storing all training data and computing distances for each prediction.

Both algorithms have varying time consumption, with KNN being more computationally
expensive due to its need to calculate distances for each prediction. Now, let’s delve into a brief
explanation of each of the applied algorithms and the underlying thought process behind their
selection. The first classifier is the Bayesian classifier from the library, which provides the most
effective results and thus serves as the main benchmark that we tried to achieve in the other
algorithms. Next, we independently create a second Bayesian classifier aiming to mimic the
version from the library. The third classifier is also a modified Bayesian classifier, determining the
language by the probability of neighboring letters. In executing this algorithm, we assumed that
each language has recurring sequences of letters that can enable assigning a given sentence to the
language in which this sequence most commonly occurs. We derived an appropriate formula
that allowed us to implement our idea into the program. The fourth classifier is a K-Nearest
Neighbours from the library, but with implemented different distance calculation methods
which we adjusted to our specific database. The fifth classifier is also the K-Nearest
Neighbours algorithm but in this instance written by us. It was created following open-access
models with an intent to achieve as high accuracy as the one from the imported KNN classifier. In
order to achieve a satisfying outcome it required us to apply many adjustments in the distance
calculating method. After performing the calculations, each algorithm displays a table with the
results of the effectiveness of defining each language.

2. Methodology

Data from the set is divided into subsets X, containing texts in various languages, and Y
containing the language classes of the texts from set X. The initial two Bayes classifiers and
both KNN algorithms operate on a dataset converted into a matrix of token counts using the
CountVectorizer class from the sklearn library. This is a one-dimensional matrix of the length
of the dictionary containing all the words from the dataset. Each text sequence from set X is
represented by such a matrix, where the words occurring in this sequence are represented by

the number of their occurrences in the appropriate matrix position and the rest are filled with
zeros.

First, we used the MultinomialNB class contained in the sklearn library. For calculations, it
uses the formula:

where: 𝜃𝑦𝑖 is the probability P(𝑥𝑖 | 𝑦) of feature 𝑥𝑖 appearing in a sample belonging to class 𝑦.

is the count of occurrences of parameter 𝑖 in class 𝑦 in the training set,
while

is the number of all parameters in set 𝑦. 𝛼 is the smoothing prior, which in
this case is Laplace smoothing - 𝛼 = 1. 𝑛 is the number of classes in set Y.

Next, we attempted to replicate the function contained in the library, aiming to obtain similar
results. However, in our version of the algorithm, we did not consider the smoothing parameter.

Algorithm 1: Method ’OwnMNB.fit’ training the algorithm

Data: sets x_train and y_train
Result: None

1 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 := set of values of 𝑦_𝑡𝑟𝑎𝑖𝑛;
2 𝑡𝑜𝑘𝑒𝑛𝑠 := empty dictionary;
3 foreach 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do
4 𝑥𝑐 := 𝑥_𝑡𝑟𝑎𝑖𝑛 ∈ 𝑐;
5 𝑉 _𝑆𝑢𝑚 := sum of vectors in 𝑥𝑐;
6 𝑡𝑜𝑘𝑒𝑛𝑠[𝑐] := VSum / length of 𝑥𝑐;

Algorithm 2: Method ’OwnMNB.predict’ performing calculations
Data: 𝑥_𝑡𝑒𝑠𝑡
Result: list 𝑦_𝑝𝑟𝑒𝑑

1 𝑦_𝑝𝑟𝑒𝑑 := empty list;
2 foreach 𝑥_𝑟𝑜𝑤 ∈ 𝑥_𝑡𝑒𝑠𝑡 do
3 𝑝𝑟𝑜𝑏 := empty dictionary;
4 foreach 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do
5 𝑝𝑟𝑎𝑤𝑑 := vector sum of 𝑥 * 𝑡𝑜𝑘𝑒𝑛𝑠[𝑐] ;
6 Append 𝑝𝑟𝑎𝑤𝑑 to 𝑝𝑟𝑜𝑏[𝑐];
7 Append to 𝑦_𝑝𝑟𝑒𝑑 class with the biggest value from dictionary 𝑝𝑟𝑜𝑏;

In the third Bayes classifier, we changed the approach to the dataset. We utilized individual
dependencies on the construction of each language - the probability of one letter occurring
after another. The formula in this case takes the form:

where: 𝜃𝑦𝑗 is the probability P(𝑥𝑗 | 𝑦) for 𝑥𝑗 contained in the same class 𝑦𝑗 . 𝑃 (𝑥 ,𝑗𝑖−1𝑥 ,𝑗𝑖 | 𝑦) is the
probability of the occurrence of letter 𝑥𝑖 after 𝑥𝑖−1 in class 𝑦𝑗 . 𝑛 is the number of letters in the
considered text sequence.

This time, the methods are given raw training sets X and Y, and a test set X. The ’fit’ method
is responsible for creating a ’neighborhood table’ of all the letters present in the training set X
divided by language classes. They contain the probabilities of the occurrence of a given pair of
letters one after the other. The ’predict’ method for the test set determines membership in a
class based on the probabilities from the ’neighborhood tables’.

Algorithm 3: Method ’LetterProb.fit’ training the algorithm

Data: Sets 𝑥_𝑡𝑟𝑎𝑖𝑛 and 𝑦_𝑡𝑟𝑎𝑖𝑛
Result: None

1 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠 := empty dictionary;
2 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 := set of values of 𝑦_𝑡𝑟𝑎𝑖𝑛;
3 foreach 𝑐 ∈ 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do
4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23
end

𝑥𝑐 := 𝑥_𝑡𝑟𝑎𝑖𝑛 ∈ 𝑐;
𝑙𝑒𝑡𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡 := 0;
𝑙𝑎𝑠𝑡 = ’ ’;
𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐] := empty dictionary;
foreach 𝑟𝑜𝑤 ∈ 𝑥𝑐 do foreach

𝑙𝑒𝑡𝑡𝑒𝑟 ∈ 𝑟𝑜𝑤 do
𝑙𝑒𝑡𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡+ = 1;

if 𝑙𝑎𝑠𝑡 + 𝑙𝑒𝑡𝑡𝑒𝑟 ∈ 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐] then
𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐][𝑙𝑎𝑠𝑡 + 𝑙𝑒𝑡𝑡𝑒𝑟]+ = 1;

end
else

𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐][𝑙𝑎𝑠𝑡 + 𝑙𝑒𝑡𝑡𝑒𝑟] := 1;
end
𝑙𝑎𝑠𝑡 := 𝑙𝑒𝑡𝑡𝑒𝑟;

end
end
foreach 𝑧 ∈ Keys 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐] do

𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐][𝑧] = 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠[𝑐][𝑧]/𝑙𝑒𝑡𝑡𝑒𝑟𝐶𝑜𝑢𝑛𝑡;
end

In K-Nearest Neighbors from the library, we use scalar vector multiplication to calculate
distances. We multiply this value by -1 to avoid the need to compute the k-farthest neighbors
further.

where a,b are vectors
In our k-NN, we used the same formula for calculating distances as in the library algorithm,

but additionally, we incorporated weighted computation of the 𝑘 nearest neighbors.

3. Experiments

To compare the different performance parameters of the used algorithms, we utilized the metrics
module from the sklearn library. To improve the accuracy of the results, each algorithm was

executed 10 times, and the final value is the average of all trials. The dataset containing texts in 17
languages with a total length of 10,337 records was divided into training and testing sets in a 70:30
ratio. For each algorithm, we compared parameters such as:

• precision - it is a measure that determines the ratio of correctly predicted class elements to
all those marked as the given class

• recall - a measure informing how many elements from a given class were correctly
recognized

• f1-score - it is the harmonic mean between precision and recall

• support- a measure of the occurrences of each class in the dataset
• accuracy - it is the ratio of correctly classified samples to all cases in the test set

Meaning of labels:

• TP - true positive - cases that were correctly classified as positive by the classifier
• TN - true negative - cases that were correctly classified as negative by the classifier
• FP - false positive - an error where the test result incorrectly indicates the presence of a

condition when it is not present
• FN - false negative - an error where the test result incorrectly indicates the absence of a

condition when it is actually present

3.1. The Bayesian algorithm from the sklearn library

Analyzing the results shown in the above table, we can observe that the algorithm matches most
languages with an accuracy ranging from 98-100% (see Tab. 1). The exception is the English
language, which has an accuracy of only 89%, which may be due to the fact that English words are
borrowed from other languages. The method for the entire dataset has an accuracy of 98%, making
it the most accurate of all the solutions we have used (Fig. 1a).

(a) The effectiveness results for the Bayesian
algorithm from the sklearn library

(c) The effectiveness results for a custom-
written Bayesian algorithm for letter prox-
imity

(b) The effectiveness results for the self-
implemented Bayesian algorithm

(d) The effectiveness results for our k-nearest
neighbors (kNN)

(e) The effectiveness results for k-nearest neigh- bors
(kNN) from the library

Figure 1: Comparison of effectiveness results for different algorithms

Table 1
The effectiveness results for the Bayesian algorithm from the sklearn library

precision recall f1-score support
Arabic 1.0 0.97 0.98 774.0
Danish 0.99 0.94 0.97 621.0
Dutch 1.0 0.97 0.99 832.0
English 0.89 1.0 0.94 2131.0
French 0.98 0.99 0.98 1503.0
German 1.0 0.98 0.99 692.0
Greek 1.0 0.99 0.99 556.0
Hindi 1.0 0.97 0.99 113.0
Italian 1.0 0.98 0.99 1052.0
Kannada 1.0 0.96 0.98 551.0
Malayalam 0.99 0.98 0.99 881.0
Portuguese 0.99 0.99 0.99 1078.0
Russian 1.0 0.97 0.98 1054.0
Spanish 0.99 0.98 0.98 1248.0
Sweedish 0.99 0.98 0.98 1016.0
Tamil 1.0 0.98 0.99 670.0
Turkish 1.0 0.92 0.96 738.0
accuracy 0.98 15510.0
macro avg 0.99 0.97 0.98 15510.0
weighted avg 0.98 0.98 0.98 15510.0

3.2. Self-implemented Bayesian algorithm

During the construction of this algorithm, our goal was to achieve results similar to the algorithm from
the sklearn library. As observed, our algorithm performs worse with languages that use specific
alphabets (e.g., Arabic, Hindi) and struggles more with recognizing languages belonging to the same
family due to similarities in words stemming from the shared ancestry of these languages.
This is particularly evident in Germanic languages: Dutch - German, Danish - Swedish, and
Romance languages: Spanish, French, and Portuguese. However, the issues with languages using
specific alphabets and the overall decrease in accuracy of other languages result from the lack of a
smoothing parameter in the computational algorithm. Ultimately, though, in general terms,
we achieved an algorithm accuracy of approximately 93%. It’s the slowest among all
algorithms but has average accuracy (see Tab. 2 and Fig. 1b).

3.3. Custom Bayesian algorithm for letter proximity

The algorithm, thanks to a completely different approach to the dataset, achieved results
different from the rest. As the measurements show, unlike the previous one, it performs best
with languages using specific alphabets. However, it struggles more with languages belonging to
the same families. For example, with Germanic languages (Danish, Swedish, and Dutch) and some
Romance languages (Italian, Spanish, and Portuguese). This is due to the similar structure of these
languages associated with their common ancestry. If more than one language had

Table 2
The effectiveness results for the self-implemented Bayesian algorithm

precision recall f1-score support
Arabic 0.79 1.0 0.88 774.0
Danish 0.8 0.91 0.85 621.0
Dutch 0.91 0.84 0.87 832.0
English 0.97 0.98 0.98 2131.0
French 0.96 0.9 0.93 1503.0
German 0.99 0.88 0.93 692.0
Greek 1.0 0.99 0.99 556.0
Hindi 0.73 0.98 0.84 113.0
Italian 0.99 0.95 0.97 1052.0
Kannada 1.0 0.96 0.98 551.0
Malayalam 1.0 0.98 0.99 881.0
Portugeese 0.97 0.91 0.94 1078.0
Russian 1.0 0.93 0.96 1054.0
Spanish 0.73 0.95 0.83 1248.0
Sweedish 0.98 0.88 0.93 1016.0
Tamil 1.0 0.98 0.99 670.0
Turkish 0.99 0.8 0.89 738.0
accuracy 0.93 15510.0
macro avg 0.93 0.93 0.93 15510.0
weighted avg 0.94 0.93 0.93 15510.0

the same probability (taking into account the rounding error of floating-point numbers), the
algorithm chose the first one in alphabetical order, hence the lower accuracy of Danish compared to
Dutch, and Dutch compared to Swedish. Similarly for Romance languages. Ultimately, this
algorithm has the lowest overall accuracy of the tested trio, at around 89% (Tab. 3 and Fig. 1c).
However, this result exceeded our initial expectations for the algorithm.

3.4. KNN algoritms

The first test we conducted for the KNN algorithm was to assess its effectiveness for different
values of k ranging from 1 to 9. As shown in Tab. 4, the algorithm exhibited different effectiveness
across the different values of k. Therefore, we choose k=9, for the algorithm from the library
and k=10 for our algorithm. As we can also observe, for small values of k, our algorithm has
higher effectiveness, which may be related to the use of a weighting table. As k increases, the
difference in effectiveness decreases, until eventually, the algorithm from the library starts to
exhibit greater effectiveness.

3.5. KNN without library

To shorten the execution time of the algorithm and increase its effectiveness from around
60% using the Euclidean metric, we decided to calculate the distance as the dot product of
vectors. This allowed us to save some time and increase the effectiveness to 90%. The results

Table 3
The effectiveness results for a custom-written Bayesian algorithm for letter proximity

precision recall f1-score support
Arabic 1.0 1.0 1.0 774.0
Danish 0.49 0.9 0.63 621.0
Dutch 0.71 0.95 0.81 832.0
English 0.98 0.86 0.92 2131.0
French 0.91 0.93 0.92 1503.0
German 0.86 0.92 0.89 692.0
Greek 1.0 1.0 1.0 556.0
Hindi 0.99 1.0 1.0 113.0
Italian 0.77 0.96 0.85 1052.0
Kannada 1.0 1.0 1.0 551.0
Malayalam 1.0 1.0 1.0 881.0
Portuguese 0.96 0.79 0.87 1078.0
Russian 1.0 0.99 1.0 1054.0
Spanish 0.87 0.84 0.86 1248.0
Sweedish 0.95 0.49 0.65 1016.0
Tamil 1.0 1.0 1.0 670.0
Turkish 0.98 0.77 0.87 738.0
accuracy 0.89 15510.0
macro avg 0.91 0.91 0.9 15510.0
weighted avg 0.91 0.89 0.89 15510.0

Table 4
Comparison for k-nn

k Classification accuracy with library Classification accuracy without library
1.0 0.8282 0.8301
2.0 0.8101 0.8301
3.0 0.8765 0.8756
4.0 0.8704 0.8765
5.0 0.8872 0.8852
6.0 0.8975 0.8926
7.0 0.9107 0.901
8.0 0.9175 0.9078
9.0 0.9246 0.9107
10.0 0.9239 0.912

indicate a strong performance of the algorithm across multiple languages. High precision
and recall in languages like Arabic, Greek, Kannada, and Tamil show that the algorithm is
particularly effective for these languages, achieving near-perfect scores. However, there are
areas for improvement, notably in Spanish, which has a lower precision (0.61) and F1 score
(0.72), indicating potential difficulties in accurately classifying this language (Tab. 5 and Fig. 1d.

Table 5
The effectiveness results for our k-nearest neighbors (kNN)

precision recall f1-score support
Arabic 1.0 0.96 0.98 836.0
Danish 0.89 0.86 0.88 670.0
Dutch 0.94 0.77 0.85 805.0
English 0.94 0.99 0.96 2018.0
French 0.8 0.79 0.8 1494.0
German 0.99 0.81 0.89 701.0
Greek 1.0 0.98 0.99 533.0
Hindi 0.88 0.97 0.93 108.0
Italian 0.97 0.92 0.95 1070.0
Kannada 1.0 0.95 0.97 563.0
Malayalam 0.95 0.98 0.97 846.0
Portuguese 0.9 0.79 0.84 1107.0
Russian 0.95 0.94 0.94 1047.0
Spanish 0.61 0.88 0.72 1260.0
Sweedish 0.9 0.89 0.9 997.0
Tamil 1.0 0.99 0.99 742.0
Turkish 0.93 0.81 0.87 713.0
accuracy 0.90 15510.0
macro avg 0.92 0.90 0.91 15510.0
weighted avg 0.91 0.90 0.90 15510.0

3.6. KNN with library

The algorithm from the library shows similar results for individual languages. Some of them
achieved higher scores, while others had lower ones. However, the overall accuracy remained
unchanged at 90%. The Spanish language, which our algorithm struggled with, still has a much
weaker performance compared to the rest, but this result has slightly improved (Tab. 6 and Fig. 1e).

4. Conclusion

Based on our results, the Bayes algorithm from the sklearn library performs the best, achieving 98%
accuracy. Our version of this algorithm ranks second with 93% accuracy. However, both KNN-
based algorithms and our Bayes classifier based on letter pair probabilities performed the worst
among all, still achieving relatively high scores of 90% and 89% accuracy, respectively. Although
KNN algorithms handle language classification tasks well, their use in this form is not
optimal in terms of both time or memory efficiency. Achieving results similar to our Bayes
algorithms, they require almost two orders of magnitude more time. Similarly, in the case of
the computational resources of the test platform, difference between both types of algorithms is
significant. The KNN classifier from the library performs calculations faster than the one we
created, thanks to the use of multi-threaded processing, while our KNN classifier performs
calculations using only a single CPU core. However, this impacts memory usage. During tests,

Table 6
The effectiveness results for k-nearest neighbors (KNN) from the library

precision recall f1-score support
Arabic 0.99 0.95 0.97 836.0
Danish 0.86 0.87 0.87 670.0
Dutch 0.93 0.81 0.87 805.0
English 0.87 0.99 0.93 2018.0
French 0.83 0.85 0.84 1494.0
German 1.0 0.8 0.89 701.0
Greek 1.0 0.97 0.98 533.0
Hindi 0.94 0.97 0.95 108.0
Italian 0.97 0.91 0.94 1070.0
Kannada 1.0 0.94 0.97 563.0
Malayalam 1.0 0.98 0.99 846.0
Portuguese 0.91 0.84 0.87 1107.0
Russian 0.96 0.93 0.94 1047.0
Spanish 0.68 0.87 0.76 1260.0
Sweedish 0.88 0.9 0.89 997.0
Tamil 1.0 0.98 0.99 742.0
Turkish 1.0 0.76 0.86 713.0
accuracy 0.90 15510.0
macro avg 0.93 0.90 0.91 15510.0
weighted avg 0.91 0.90 0.90 15510.0

Table 7
Comparison of algorithm runtimes

Test
Bayes
library

Bayes
without
library

Letter
Probability

k-nn
library

k-nn
without
library

1 0.1017s 7.0200s 4.8464s 493.7335s 749.5594s
2 0.0717s 6.8577s 5.4612s 500.2711s 743.5833s
3 0.0552s 6.5957s 5.1900s 492.0898s 743.2426s
4 0.0529s 6.3185s 4.9687s 487.9027s 747.1023s
5 0.0500s 6.3520s 4.8404s 484.2074s 743.5345s
Mean 0.0663s 6.6287s 5.0613s 491.6409s 745.4044s
Accuracy 98% 93% 89% 90% 90%

the KNN from the library used over 9.5GB of available RAM on the test platform, while our
KNN algorithm required approximately 5GB of memory. In contrast, the Bayes algorithms
did not require more than 1GB of RAM and, despite running on a single CPU thread, did not
fully load it. None of our developed algorithms came up close to 100%. One of the possible
future improvements would be to combine together both our Bayes classifiers, to eliminate their
separate weak points. An algorithm created this way would be much closer to 100% accuracy
with only slightly lower time efficiency.

References

[1] Y. Obi, K. S. Claudio, V. M. Budiman, S. Achmad, A. Kurniawan, Sign language
recognition system for communicating to people with disabilities, Procedia Computer
Science 216 (2023) 13–20.

[2] D. Mengliev, V. Barakhnin, N. Abdurakhmonova, M. Eshkulov, Developing named entity
recognition algorithms for uzbek: Dataset insights and implementation, Data in Brief (2024)
110413.

[3] A. Vaitkevičius, M. Taroza, T. Blažauskas, R. Damaševičius, R. Maskeliu¯nas, M. Woźniak,
Recognition of american sign language gestures in a virtual reality using leap motion,
Applied Sciences 9 (2019) 445.

[4] M. Nallakaruppan, G. Srivastava, T. R. Gadekallu, P. K. Reddy, S. Krishnan, D. Polap,
Child tracking and prediction of violence on children in social media using natural
language processing and machine learning, in: International Conference on Artificial
Intelligence and Soft Computing, Springer, 2023, pp. 560–569.

[5] G. Dash, C. Sharma, S. Sharma, Sustainable marketing and the role of social media: an
experimental study using natural language processing (nlp), Sustainability 15 (2023) 5443.

[6] P. Langley, W. Iba, K. Thompson, et al., An analysis of bayesian classifiers, in: Aaai,
volume 90, Citeseer, 1992, pp. 223–228.

[7] K. Prokop, Grey wolf optimizer combined with k-nn algorithm for clustering problem, in:
IVUS 2022: 27th International Conference on Information Technology, 2022.

[8] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, Knn model-based approach in classification, in:
On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily,
Italy, November 3-7, 2003. Proceedings, Springer, 2003, pp. 986–996.

	1. Introduction
	2. Methodology
	3. Experiments
	3.1. The Bayesian algorithm from the sklearn library
	3.2. Self-implemented Bayesian algorithm
	3.3. Custom Bayesian algorithm for letter proximity
	3.4. KNN algoritms
	3.5. KNN without library
	3.6. KNN with library

	4. Conclusion
	References

