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Abstract
This article focuses on the presentation and comparison of selected learning classifier algorithms for the 
problem of detecting individuals prone to suffering from mental disorders within a group of university 
students. The data used for detection purposes was easy to obtain, meaning that it does not contain any 
sensitive information and the amount of information is small. Algorithms used in the comparison are as 
follows: K Nearest Neighbors (kNN), Naive Bayes, Decision trees and Gradient Boosting. Three different 
metrics were used for the comparison: accuracy, recall and precision, the comparison was performed on 
both not normalized and normalized data. For the not normalized data, in terms of accuracy Gradient 
Boosting performed the best (having an accuracy of 80%), followed by kNN and Naive Bayes (accuracy of 
70%), the worst ones was the Decision Trees (65%), in terms of recall, kNN and Naive Bayes performed  the best 
(recall of 100%), followed by Gradient Boosting (85.7%) and Decision Trees (71.4%), considering  precision, the 
best performance can be observed for Gradient Boosting (85.7%), followed by Decision Trees (76.9%) 
and Naive Bayes with kNN (70%). For the normalized data, a significant increase in kNN and a decrease 
for Decision Trees, in terms of performance, were observed.
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1. Introduction

In recent years, the public’s awareness of mental health problems has been steadily rising. As a 
result, more and more people notice that the condition of society’s mental health is seriously 
concerning. In the year 2021, in the United States of America alone - according to the National 
Institute Of Mental Health, it is estimated that around 21 million (6.3% of the entire population) of 
people suffered at least one major depressive episode and according to World’s Health 
Organization, 1 in every 8 people live with a mental disorder. Taking into account previously 
mentioned data from the National Institute of Mental Health, the age group that is the most 
liable for mental disorders, are young people, with ages ranging from 18 to 25 - that is, mostly 
university students.

It is common knowledge that prevention is better than cure and that quick diagnosis of an 
illness greatly reduces the time and effort needed for recovery, while also increasing the 
chance of successful treatment. The same principles apply to mental illnesses as well. While 
diagnosing can be done only by a trained specialist, it is essential that a person suffering can 
be recognized - so they can get a specialist’s help later on. Such recognition can be made by 
observing symptoms of an illness, but, what’s also important - some health conditions can be 
predicted by recognizing certain characteristics common for affected patients [1, 2, 3, 4, 5], so 
the people showing such characteristics can be recognized and given a specialist’s supervision as 
a preventing measure - that is the approach we want to touch upon.
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In this paper, we aim to recognize potential patients with mental health problems among 
university students using learning classifier algorithms and compare the performance of these 
algorithms in terms of accuracy, recall and precision. The data about students used for making 
such recognition is meant to be easily collectible. The classifiers used in the comparison are 
the following: K Nearest Neighbors, Naive Bayes Classifier, Decision tree Classifier and gradient 
booster classifier.

2. Methodology

The concept behind Learning Classifier Algorithms is to "teach" the algorithm with the use of 
data about individuals, whose classification is known, for this paper it is whether the student has 
any mental disorders or not. Descriptions of each algorithm in greater detail are provided in 
the subsections below.

2.1. K Nearest Neighbors

K Nearest Neighbors [6, 7, 8], commonly referred to as kNN, is one of the most well-known 
and simple classification methods, it is worth noticing that it does not require knowledge about 
data distribution.

The classification performed by kNN starts  with calculating the distance between the classified 
element and each element used for training the algorithm. The distance can be calculated using 
various equations, such as Euclidean, Chebyshev or Manhattan distances. In this paper, we’ve 
decided to use the Euclidean distance that can be described with the following equation:

where 𝑎 is a classified element, 𝑥 is an element used for the algorithm’s training and 𝑛 is a number 
of characteristics each element has.

When the distances are calculated, the next step - voting, begins. K elements, which distances 
with the classified element are the smallest. Because it is known, to which class each of these 
elements belongs, it’s possible to count occurrences of said classes within the k nearest elements. The 
classified element is assigned to the class which occurs the most.

KNN might require some tuning to work optimally, namely - the number of k for which the 
algorithm performs the best, may vary because of the element’s characteristics or the size of 
the datasets.
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Algorithm 1: Pseudo code of kNN algorithm
Data: classified element 𝑥, elements used for algorithm’s training 𝑥1, 𝑥2, ..., 𝑥𝑡, number of elements 

used for algorithms teaching 𝑡
Result: prediction of 𝑥’s class

1 for 𝑖 = 1, 𝑖 <= ,𝑡  𝑖 + + do
2  Calculate the distance between 𝑥 and 𝑥𝑖 using Equation(1).
3 Sort elements 𝑥1, 𝑥2, ..., 𝑥𝑡 ascending by their distance from 𝑥 calculated in previous step.
4 Check the classes of k’s first elements, save the most commonly occurring class as

𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑡𝑜𝑛.
5 Return 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛.

2.2. Naive Bayes

Naive Bayes [9, 10, 11] is a probability-based classifier. As its name implies, Naive Bayes utilizes Bayes’ 
rule that is described by the following equation:

Where 𝑃 (𝐴 𝐵)  is a posterior probability - probability after evidence’s consideration, 𝑃 (𝐴)  is a 
prior probability - probability before evidence’s consideration, 𝑃 (𝐵 𝐴) is a likelihood  - 
probability of the evidence, given the belief is true and 𝑃 (𝐵)  is a marginal probability - 
probability of the evidence, regardless the circumstances.

For the classifier’s case,  posterior is a probability that the classified element is of a certain class,  
while the prior is a probability that a random element out of elements used for the classifier’s 
training is of said class. Prior probability can be calculated in the following way:

where 𝐴 is one of the classes, to which an element can belong to 𝐴 is a number of elements 
belonging to class A within the training set and 𝑡 is a number of elements in the training set.// The 

quotient of likelihood and marginal probability can be calculated using various formulas.
One of the most often used, which we have also decided to use in this paper is a probability 
density function of normal distribution that is described by the following equation:

Where 𝑥 is an element to be classified,  𝜇 is the mean of the class and 𝜎 is the standard deviation of a 
class.

The quotient  of  likelihood and  marginal  is  calculated by multiplying the results  of  the Gaussian 
function for every characteristic that the class consists of.



The classifier will classify the element to a class in which posterior probability is the highest. 
Naive Bayes is called naive because it assumes that the attributes are conditionally independent 
within the class, which is often not the case.

It is also worth noticing, that the product of Gaussian probabilities might be a number that is 
really close to zero,  which may be problematic because of rounding errors computers make while  
working with floating-point numbers. To prevent that, both prior probability and Gaussian 
probabilities of each characteristic can be logarithmized, then  posterior probability is a sum of 
these probabilities.

Algorithm 2: Pseudo code of naive Bayes algorithm
Data: classified element 𝑥, classes of abstraction ,𝐴  ,𝐵  ,𝐶  ..., size of algorithm’s training set 𝑡
Result: prediction of 𝑥’s class

1 for each class do
2 calculate prior probabilities using equation(3).
3 calculate Gaussian probability using equation(4), using 𝑥 as function’s argument.
4 Combine the two to calculate posterior probability according to equation(2).

5 Return the class, which posterior probability is the highest.

2.3. Decision trees

Decision trees [12] are classifying algorithms that work by creating a tree-like structure. The 
starting point of such a tree is called the root - it is the first if condition that is checked for 
the classified element, next, depending on the condition’s fulfillment element "travels" further 
down the branches - that is, next if conditions are checked until it reaches one of the leaves - 
classes, to which element can be classified into. For each node, different that root, has only one 
incoming path, while root has none. There are usually two, sometimes more depending on 
implementation, paths coming from the root and branches, and none coming from the leaves 
which is the reason for the leaves to be called terminal nodes.

For optimal choice of the if conditions, the Gini coefficient might be used. The Gini coefficient, 
also known as the Gini index, is a measure of statistical dispersion, it can be calculated with the 
following equation:

Where 𝑥 = 𝑥1, 𝑥2, ..., 𝑥𝑛 is a set of observations, sorted, ascending and 𝑛 is a number of said observations.
The node is considered a leaf when its Gini coefficient is equal 0 or below a certain threshold. 

The building of a tree using said coefficient begins by calculating the Gini index for each 
characteristic and choosing the lowest one as the root. The process is repeated until all of the 
paths are ended with a terminal node.



2.4. Gradient boosting

The last of the classifiers used in the comparison is a gradient boosting machine (GBM for 
short)  [13,  14,  15,  16]. The main idea behind GBMs is  to  create  the new base-learners  maximally 
correlated with the negative gradient of loss function. The choice of loss function is up to the 
researcher and should be chosen with regard to the solved problem. Said loss function will 
indicate how good is the model for making predictions.

GBMs use an ensemble of weaker learning models by iteratively learning from each of them in 
order to create a strong learning model, hence they are called boosting.

The creation of the model can be described with the following equation:

where 𝑓ˆ is the estimate function (model), 𝑦 is a predicted value, 𝑓 (𝑥) is the observed value and
𝜓 is the loss function.
It can be summarized as looking for an estimate for which the loss function is the smallest. The 
GBM used for comparison in this paper uses regression trees as the "weak" models on which it 
iteratively learns.

3. Experiments

In this chapter steps of building the model will be discussed, as well as analyzing different 
algorithms, by showing charts comparing algorithms on different metrics.

3.1. Database description

The database used in this paper was taken from kaggle.com - a popular, open-source website, 
that provides a lot of public databases. Data for this base came from research, carried out in 
July 2020. In total, there are 101 records, which were self-reported by students. There are 11 
characteristics initially: Timestamp(date of research), Gender, Age, Course, Year of study, 
CGPA(average grade), Marital status (married or not married), Do you have depression?, Do you 
have Anxiety?, Do you have Panic attack?, Did you seek any specialist for a treatment?.

3.2. Data cleaning

One of the most important tasks in building a machine learning model is to provide a model 
with valuable data. To accomplish this, there is a need for an appropriate database, which was 
achieved in the previous step. The database is to be transformed into a format that fits the 
machine learning model the best. To achieve this, some columns need to be dropped (for example: 
Timestamp, it will not be necessary in this case). To avoid redundancy table can be transformed by 
merging  the  four  last  questions  into  one  column  -  "Problems". Considered  algorithms, 
discussed in the section above, prefer numeric data, so all the data are to be transformed into 
numeric values. In the end, the data that the model will be provided with, cannot contain any 
null values, so all records with null values are deleted.



3.3. Division description

When the data are in the final format, model training begins. But before that, some data 
manipulation needs to be done. First of all, the model will need a "target" variable, in our case, 
that’d be a column named "Problems", which contains the sum of problems(If two or more 
columns  merged  into  "problems"  contained  a  "yes",  a  person  is  considered  to  have  mental  health  
problems). The model also needs "features", which are columns, using which, the model will 
be able to calculate the output that is - "target". "Features" are all columns except "Problems" 
columns, so in this case, it is six columns. For the machine learning process, it is essential to do one 
more step in the division of data. Apart from the training model, the possibility of assessing the 
quality is also important. To do this, part of the data must be allocated for tests, while the rest 
is used for training. The most common division is 80 percent for training and 20 percent  for 
tests, which is also used in this paper. After this transformation, the data in this format is 
provided into the model, in order to train models using algorithms mentioned described in 
section 2.

3.4. Analysis of models

Models will be compared by using three different metrics: accuracy, recall and precision. 
Accuracy is the most popular metric and it shows how often a classification of an ML model is 
correct overall. Precision calculates how often the model is correct when predicting the target 
class. Recall shows whether a model can find all objects of the target class.

Where 𝑇𝑃 (True Positives) are cases correctly predicted as positive, 𝑇𝑁 (True Negatives) are cases 
correctly predicted as negative, 𝐹𝑁 (False Negatives) are positive cases incorrectly predicted as 
negative, and 𝐹𝑃 (False Positives) are negative cases incorrectly predicted as positive.

Data normalization is an option to improve model performance. Looking at the KNN algo- 
rithm and above all its equations, it is worth noticing, that a huge number could have a huge 
impact on model performance, which can lead to errors. To avoid operating on huge numbers, 
normalization is used. In our case, data will be transformed to fit within the range of [0, 1], 
which is a very typical range for this type of problem. To obtain this, the following formula is 
used.

Where  𝑑𝑓 [𝑐𝑜𝑙𝑢𝑚𝑛] is the values in a specific column of the data frame  𝑑𝑓 . 𝑚𝑖𝑛_  𝑣 is the minimum value in the column. 
𝑚𝑎𝑥_𝑣 is  the maximum value in the column. Below, it  is  shown how KNN  performs before data 
normalization and after it, for the range of neighbors from 3 to 20.



Figure 1: KNN performance

Figure 2: KNN normalize performance

3.5. Comparing models

While comparing different models with each other it is important to observe how they perform on 
different metrics. Four algorithms mentioned in Sec. 2 are compared on charts,  differing by 
metrics: accuracy, recall and precision. Three charts below depict, how the model performs on 
normalized data (see first row in Fig. 3). The second row in Fig. 3 charts show how models 
perform (asses by accuracy, recall and precision) on non-normalized data that is, data



transformed using (10) formula.

(a) Accuracy (b) Recall (c) Precision

(d) Accuracy (e) Recall (f) Precision

Figure 3: Comparisons by selected metrics: the first row show results for normalized data, the second one for 
non normalized

4. Conclusion

It is worth noticing how much the model, which used the KNN algorithm improved when 
provided with normalized data. Accuracy increased by approximately 20 percent and recall by 
approximately 10 percent. For other algorithms, rather table should not be normalized, 
because after the normalization, these models perform with the same results or even worse. 
Overall Gradient algorithm’s performance is the best, but it is to be expected, because of its 
complexity, when compared with the other algorithms. Considering only "simple" algorithms
- these, which were implemented on our own, KNN would be the best choice, because of its 
satisfactory performance (better than other algorithms, considering all metrics). KNN performs in the 
best way using four neighbors, which can be seen on the first and second charts. The 
experiments could be potentially extended in the future, by using neural networks, which can 
improve results, or by providing the models with huge amounts of data, which would require 
performing large-scale surveys among university students.
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