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Abstract
Along with the rise of available astronomical data, captured from numerous facilities from around the
world, a need for faster and more sophisticated data analysis methods emerges. Data captures from 
numerous observation of large quantities of object in the sky can reach large volumes very quickly, 
making it impossible for scientist to analyse by hand. This rises the need for fast and reliable automated 
methods of data processing, which can be found in computer science research. Leveraging algorithms 
used in different areas of research is crucial for processing information about celestial bodies. In this 
work, we apply machine learning methods from computer science domain into an astronomy problem. We 
lay out three different machine learning algorithms, along with their inner workings, and show how they 
can be applied to astronomy problems. We show how those algorithms can be used to speed up 
processing of large volumes of data, and how they can help scientists in classification of celestial bodies. 
We investigate how each algorithm performs and try to find the best performing one in the problem of  
classification of different objects, based on their characteristics.
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1. Introduction

In modern astronomy, increasing number of data is becoming an ever-growing problem and 
opportunity. Formulation and validation of many theories require scientists to go through 
huge databases, which have become impossible to do by hand. At the same time, increasing 
capabilities of earth-based observatories and space telescopes are providing us with many sky 
surveys  containing  petabytes  of  quality  data  [1,  2].  This  data-intensive  situation  encourages  the 
investigation of new methodologies, big data tools and techniques, therefore providing a great 
environment for astroinformatics development [3].

Machine learning has a significant impact on this new reality [4, 5, 6]. It provides many tools 
that can be used to swiftly classify huge amounts of data, which we will try to explore in this 
paper. We will go through algorithms such as Decision Tree [7], Naive Bayes [8] and K-Nearest 
Neighbors [9] and analyse their accuracy to distinguish between different objects.
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2. Methodology

In the beginning, we will need to transform our data into a convenient form. In the case of the 
non-numerical data, we will simply map it to one by associating separate numbers for each 
value. On the other hand, numerical data will be rescaled using min-max normalization.

We will  compare  performance of  different  algorithms,  given the  task  of  classification of  stellar  
objects. For the comparison, we have chosen:

• KNN (K-Nearest Neighbors) classification.
• Decision tree model.
• Naive Bayes.

Mathematical Model for K-Nearest Neighbors (K-NN)

If we assume we have a training dataset consisting of 𝑁 data points:

where 𝑥𝑖 is the feature vector for the 𝑖-th point, and 𝑦𝑖 is the class label (for classification) or value (for 
regression).

Then we can calculate a distance metric, typically using the Euclidean distance 𝑑 between 
two points 𝑥 and 𝑧 defined as:

where 𝑥 and 𝑧 are feature vectors of dimension 𝑚.
To classify a new point 𝑥, we compute the distances between 𝑥 and all points in the training 

set, then select 𝐾 nearest neighbours and assign a class label based on the majority.
The parameter 𝐾 is a crucial hyperparameter in the KNN algorithm. A small 𝐾 can lead to  

overfitting, while a large 𝐾 can lead to underfitting. The optimal value of 𝐾 is often selected 
using cross-validation methods.

Algorithm 1: KNN Algorithm
Data: Training data 𝑥_𝑡, training classes 𝑦_𝑡, class to be classified 𝑙𝑎𝑏𝑒𝑙_ ℎ𝑠𝑒𝑎𝑟𝑐 𝑒𝑑, test data 𝑥, algorithm constant ’k’ 

ℎ𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠_𝑛𝑢𝑚𝑏𝑒𝑟
Result: Predictions

1 for each 𝑡𝑒𝑠𝑡𝑒𝑑 in 𝑥 do
2 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← distance between 𝑡𝑒𝑠𝑡𝑒𝑑 and each in 𝑥_𝑡;
3 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑖𝑛𝑑𝑒𝑥𝑒𝑠 ← indexes of ℎ𝑛𝑒𝑖𝑔 𝑏𝑜𝑢𝑟𝑠_𝑛𝑢𝑚𝑏𝑒𝑟 closest neighbours;
4 𝑙𝑎𝑏𝑒𝑙𝑠 ← classes of closest neighbours;
5 𝑟𝑒𝑠𝑢𝑙𝑡 ← dominating label in 𝑙𝑎𝑏𝑒𝑙𝑠;
6 Add 𝑟𝑒𝑠𝑢𝑙𝑡 to prediction list;

7 Create data structure with predictions, by choosing indexes of the test data; return Predictions



Mathematical Model for Decision Tree

If we assume we have a training dataset consisting of 𝑁 data points:

where 𝑥𝑖 is the feature vector for the 𝑖-th point, and 𝑦𝑖 is the class label (for classification) or value (for 
regression). Then a decision tree is a tree-like model where internal nodes represents a test on a 
feature, branches represents outcomes of those tests and leaf node represents a class label.

To build a decision tree, we recursively split the data at each node. The choice of split is 
based on a  criterion that  maximizes  the  separation of  the  classes  or  reduces  the  prediction error.  
Common criteria include:

Gini Index:

where 𝑝𝑘 is the proportion of instances of class 𝑘 in the dataset 𝐷.
Information Gain:

where 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) is given by:

and 𝐷𝑣 is the subset of 𝐷 where attribute 𝐴 has value 𝑣.
Mean Squared Error (MSE):

where 𝑦¯ is the mean of the values in the dataset 𝐷.

Mathematical Model for Naive Bayes

Assume we have a training dataset consisting of 𝑁 data points:

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚) is the feature vector for the 𝑖-th point, and 𝑦𝑖 is the class label from a set of 
classes {𝐶1, 𝐶2, . . . , 𝐶𝐾}.

The Naive Bayes algorithm is based on Bayes’ Theorem:



Algorithm 2: Decision Tree Algorithm
Data: Training dataset 𝑥𝑡, set of attributes 𝐴, class attribute 𝑦𝑡
Result: Decision tree

1 begin
2 Create a root node 𝑡;
3 if all instances in 𝑥𝑡 belong to the same class 𝑦 then
4 Label 𝑡 as leaf node with class 𝑦;
5 else
6 if 𝐴 is empty then

7  Label  𝑡 as leaf node with majority class in 𝑥𝑡;
8 Choose attribute 𝑎 from 𝐴 that best classifies instances in 𝐷;
9 Label node 𝑡 as attribute 𝑎;

10 Remove 𝑎 from 𝐴;
11 for each value 𝑣 of 𝑎 do
12 Add a branch to 𝑡 corresponding to 𝑣;
13 Let 𝑥 be the subset of instances in 𝑥𝑡 with value 𝑣 for attribute 𝑎;
14 if 𝑥 is empty then

15  Label the corresponding branch with the majority class in 𝑥𝑡;
16 Label the corresponding branch using Decision Tree Algorithm(𝑥, 𝐴, 𝑦𝑡);

17 ReturnDecision tree ;

where: 𝑃 (𝐶𝑘 | 𝑥) is the posterior probability of class 𝐶𝑘 given feature vector 𝑥, 𝑃 (  |𝑥  𝐶𝑘)
is the likelihood of feature vector 𝑥 given class 𝐶𝑘, 𝑃 (𝐶𝑘) is the prior probability of class 𝐶𝑘,

𝑃 (𝑥) is the evidence or marginal likelihood of feature vector 𝑥.
The "naive" assumption is that the features are conditionally independent given the class 

label:

The goal is to predict the class label 𝑦^ for a new instance  𝑥 by maximizing the posterior 
probability:

Using Bayes’ Theorem and the naive assumption, we can write:

The probabilities 𝑃 (𝐶𝑘) and 𝑃 (𝑥𝑗 | 𝐶𝑘) need to be estimated from the training data and the prior 
probability of class 𝐶𝑘 is estimated as:



where 𝑁𝑘 is the number of instances in class 𝐶𝑘. For continuous features, a common approach is to 
assume a Gaussian distribution:

where 𝜇𝑗𝑘 and  are the mean and variance of the feature 𝑥𝑗 for class 𝐶𝑘.

Algorithm 3: Naive Bayes Algorithm 
Data: Training dataset 𝑥𝑡, class attribute 𝑦𝑡 
Result: Classifier model

1 begin
2 for each class 𝑦 in 𝑦𝑡 do
3 Calculate prior probability 𝑃 (𝑦);
4 for each attribute 𝑎 do

5  Calculate conditional probability 𝑃 ( |𝑎 𝑦);

6 return Classifier model;

Additionally, we will look for the best number of neighbours for KNN classifier. We will 
use a few libraries to handle our operations: Sklearn [10]- will provide us with algorithm 
implementations, saving us a lot of time and ensuring we will be able to go through relatively big 
databases in reasonable time. Pandas [11] - will provide us with data structure (DataFrame). Seaborn 
[12] and Matplotlib [13]- will be used for visualizations, graphs, etc.

In order to find the best constant for KNN, we will launch classification in a simple loop, 
looking for the best solution. Generally speaking, when this number will increase our accuracy 
should decrease, therefore this approach is reasonable and should not take too much time.

Algorithm 4: Loop for finding the best constant for KNN
Data: Training data 𝑥_𝑡, training classes 𝑦_𝑡, class to be classified 𝑙𝑎𝑏𝑒𝑙_ ℎ𝑠𝑒𝑎𝑟𝑐 𝑒𝑑, test data 𝑥
Result: Best constant

1 begin
2 Feed KNN algorithm with 𝑥_𝑡 and 𝑦_𝑡 data.;
3 Set KNN constant as 1.;
4 while KNN constant is lower than significant number do
5 Classify 𝑥 using KNN.;
6 Check accuracy 𝑛 and add it to the list 𝑁 .;
7 Increase KNN constant by 1.;

8 𝑛𝑚𝑎𝑥 = index of biggest 𝑛 in 𝑁 .;
9 return 𝑛𝑚𝑎𝑥

In the end, we present the confusion matrix for each of our solutions, and we will consider 
only two metrics:

• Accuracy (Equation 15) - to measure how many correct classifications we get.



• False categorization - in order to check if any of the classes are more often confused with 
others.

Accuracy = 
Correct classifications

All classifications (15)

 

(a) Correlation matrix for SDSS-IV data. (b) Final correlation matrix for SDSS-IV data.

Figure 1: Comparison of correlation matrices for SDSS-IV data.

3. Experiments

For our dataset, we have chosen data from Sloan Digital Sky Survey DR17 [14] (it was accessed 
from [15]). Which was the fourth phase of the Sloan Digital Sky Survey (we will call it SDSS-IV 
from now on). It contains 100000 observations, each containing (qouting [16]):

• obj_ID = Object Identifier, the unique value that identifies the object in the image catalogue 
used by the CAS

• alpha = Right Ascension angle (at J2000 epoch)
• delta = Declination angle (at J2000 epoch)
• u = Ultraviolet filter in the photometric system
• g = Green filter in the photometric system
• r = Red filter in the photometric system
• i = Near Infrared filter in the photometric system
• z = Infrared filter in the photometric system
• run_ID = Run Number used to identify the specific scan
• rereun_ID = Rerun Number to specify how the image was processed
• cam_col = Camera column to identify the scanline within the run
• field_ID = Field number to identify each field
• spec_obj_ID = Unique ID used for optical spectroscopic objects (this means that 2 different 

observations with the same spec_obj_ID must share the output class)
• class = object class (galaxy, star or quasar object)



• redshift = redshift value based on the increase in wavelength
• plate = plate ID, identifies each plate in SDSS
• MJD = Modified Julian Date, used to indicate when a given piece of SDSS data was taken
• fiber_ID = fiber ID that identifies the fiber that pointed the light at the focal plane in each 

observation

(a)Histograms for all normalized data, exclud-
ing redshift. (b) Histogram for normalised redshift.

(c) Number of different objects (0 - galaxies, 1 - QSOs, 
2 - stars).

Figure 2: Various histograms showing data distributions and object counts.

Some of that information will not be used for our classification, as they are contained in 
SDSS-IV for cataloguing purposes (such as object identifiers). We will focus on: coordinates 
alpha and delta; data from filtered channels u, g, r, i and z; class, which is the aim of our 
classification efforts.

After mapping and normalising our data in ultraviolet, green and infrared presented strange 
pattern, where basically all data is accumulated near value 1.0. Upon further inspection it turns out 
that one of the observed objects have some abnormal values (equals to -9999), we will 
remove it from our dataset and then proceed.

Now we will have a look at the correlation matrix (figure 1a) and address some of the relations:



• Coordinates have neutral relations with all the other data.
• Ultraviolet and green relation- green light is a part of spectrum of many stars similar 

to the Sun (G-type main-sequence stars). Those stars also happens to emit significant 
part of their radiation as ultraviolet. An additional effect, that can also explain moderate 
relation with infrared and near infrared light is absorption and re-emission of different 
by interstellar gas, which then re-emits in those wavelengths (heat radiation) [17].

• Infrared, near-infrared and red data have strong relation - red stars are typically colder, but they 
still emit a lot of infrared radiation. Additional factor - absorption and re-emission  of 
light was mentioned above.

• Moderate relation of red, near infrared and infrared light with redshift can by explained by many 
objects detected as red having their colour shifted due to phenomenons as Doppler effect. This 
relation might be absent from other detectors, as light of stars different from infrared might 
have been cut off by stardust or shifted strong enough to not be detected at all [17].

In general, it is easy to notice strong relations with red and infrared light. This phenomenon 
might be related to extinction of light in the space, which is more explicit for shorter wavelengths. The 

coordinates of our objects are mostly related to each other (but it is still very weak relation). It 
also has a pure neutral relation with most of the data from detectors, therefore we are going to 

drop this one. Our final correlation matrix is shown for the sake of clarity in figure
1b.

Additionally, we will provide histograms for SDSS-IV data, we will plot them on to one 
histogram, excluding redshift, which will be shown separately for clarity (figures 2a and 2b). 
We will also have a look at a number of each of the individual objects in our data (figure 2c) - 
we can notice significant dominance of galaxies. Galaxies and quasars are similar in number, 
with a small margin for stars.

We will split our data with at train and test set with ratio of 0.2. After running the calculation 
mentioned in chapter before, we get:

Figure 3: Accuracy of KNN.



(a) Confusion matrix for KNN (b) Confusion matrix for ID3

(c) Confusion matrix for Naive Bayes

Figure 4: Comparison of confusion matrices for KNN, ID3, and Naive Bayes Algorithms (0 - galaxies, 1 - QSOs, 2 
- stars).

• For KNN we get 96.465% accuracy, which was best for numbers of neighbours equal to 3
as shown in figure 3 with confusion matrix as in figure 4a.

• Decision tree have achieved 96.78% accuracy (confusion matrix in figure 4b).
• Naive Bayes have achieved the lowest accuracy of 92.11% (confusion matrix in figure 4c)

4. Conclusion

Behaviour of KNN accuracy was, as expected, decreasing with relation to its constant. On the 
other hand, all the analysed algorithms achieved good accuracy (above 90%). Bayes algorithms 
turned out  to  have  had some problems distinguishing between galaxies  and quasars  (almost  1000  
wrongly classified galaxies), although two others algorithms also struggled there. KNN seems 
to deal the best with this problem, recognising even so slightly more QSO objects than others



but have more mismatches, recognising some of the galaxies as stars. None of the algorithms 
have any problems recognising stars and rarely ever mismatches them.
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