
Using soP sets as an improvement for K-nearest
Neighbors algorithm*

Norbert Luchowski1,∗,†, Piotr Chimiak1,†

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
In this research paper, we delve into the possibility of integration soft sets into the K-nearest neighbors
(KNN) algorithm to enhance its performance, particularly in high-dimensional and large-scale datasets. Soft
sets, known for their ability to handle uncertainty and vagueness in data, provide a robust framework that
complements the traditional KNN method. Our study examines the efficiency of this hybrid approach across
various datasets (which are based on MNIST, Modified National Institute of Standards and Technology
database) differing in size and number of pixels. The results indicate a noticeable improvement in performance
when applied to larger databases with higher dimensions, without compromising the accuracy
observed in smaller datasets. Although the overall enhancement in performance is modest and does
not surpass the accuracy achieved by well-optimized algorithms from existing libraries, the findings are
promising. They suggest that soft sets offer a viable means to bolster the KNN algorithm, particularly in
complex data scenarios. This research contributes to the ongoing efforts to refine machine learning
techniques and highlights the potential of soft sets in achieving more efficient and accurate data
classification. Further research is needed to optimize this approach and to explore its application in a
broader range of machine learning tasks and datasets.

Keywords
MNIST dataset, KNN, Soft set,

1. Introduction

The k-nearest neighbor (KNN) algorithm is a non-parametric classification algorithm that
assigns a test object to the decision class that is most common among its k nearest neighbors [3].
The classification of objects is based on the classes of the k nearest objects. KNN is popular
and widely used so it is not strange that various modification and enhancements have been
proposed, for instance [4, 2]. Soft sets, introduced by Molodtsov [6], offer a promising
avenue for enhancing the KNN algorithm. Soft sets are capable of dealing with uncertainties
and ambiguities, making them particularly suited for complex data environments. Soft sets
provide a flexible mathematical framework that can be leveraged to improve the robustness and
adaptability of the KNN algorithm, potentially leading to better performance [8, 7]. Despite the
potential benefits, the integration of soft sets with KNN has not been extensively explored, the
application of soft sets to enhance core machine learning algorithms like KNN remains an under
researched area. In this context, our paper aim to fill the gap by evaluating the performance
of KNN algorithm enhanced with soft set. We also examine the results of the algorithm with a
decision based on probability.

*IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
1,∗ Corresponding author
† These author contributed equally.

 nl307893@student.polsl.pl (N. Luchowski); pc307850@student.polsl.pl (P. Chimiak)

 0009-0004-4475-6720 (N. Luchowski); 0009-0002-0532-2474 (P. Chimiak)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:nl307893@student.polsl.pl
mailto:nl307893@student.polsl.pl

𝑗=1

Our findings contribute to the efforts to refine and improve machine learning techniques,
offering insights that could lead to more efficient and accurate data classification methods.
Further research in this area is essential to optimize the approach and explore its broader
applications in machine learning.

Algorithm 1 K-Nearest Neighbors (KNN) Algorithm
Require:

X : Training data features
y : Training data labels
xnew : New data point
𝑘 : Number of neighbors

Ensure:
Predicted label for xnew

1: function KNN(X, y, xnew, 𝑘)
2: distances ← []
3: for 𝑖 ← 1 to 𝑛 do
4: 𝑑 ← EuclideanDistance(X[𝑖], xnew)
5: distances.append((d, y[𝑖]))
6: end for
7: distances ← Sort(distances)
8: neighbors ← distances[1:𝑘]
9: labels ← [label for (dist, label) in neighbors]

10: prediction ← Mode(labels)
11: return prediction
12: end function
13: function EUc LI d EA nD I st A nc E (x 1, x 2)

14: return
√︁∑︀𝑚 (x1[𝑗] − x2[𝑗])2

 15: end function

2. Methodology

Our methodology encompasses a systematic approach to evaluate the effectiveness of the soft
set-enhanced K-nearest neighbors (KNN) algorithm across a diverse range of datasets. The
methodology is designed to provide rigorous experimentation and analysis, ensuring robust
conclusions regarding the performance of the proposed approach. To ensure the accuracy of the
research, we carried out several measurements on a differently divided and shuffied datasets.
We also use in analysis confusion matrix where each row is an actual class while each column
is in a predicted class. In addition to the overall accuracy, we also examine the precision recall,
f1score for individual classes, digits. The k-Nearest Neighbors begins with choosing the number of
neighbors, typically a small odd number like 3 or 5, we chose 3. For a new data point, the
algorithm calculates the distance between this point and all points in the training dataset,for that we
used euclidean distance but it can be changed. The k closest points (neighbors) are identified. For
classification, the most common class among these neighbors is assigned to the new data point if
there is a draw the result is picked randomly from nearest neighbors. Our modified

Algorithm 2 Soft Set Based Prediction Algorithm
Require:

Xtrain : Training data features
ytrain : Training data labels Xtest

: Test data features
func : Function to compute soft set elements

Ensure:
Predicted labels for Xtest

Step 1: Create Soft Set
2: function CrEAtESoFSEt(Xtrain, ytrain)

soft_set ← []
4: mean ← MEAn(Xtrain, axis=0)

for each 𝑦 in UnIQUE(ytrain) do
6: 𝑋𝑦 ← Xtrain[ytrain == 𝑦]

mean_y ← MEAn(𝑋𝑦, axis=0)
8: soft_set.append(mean_y)

end for
10: soft_set ← ArrAy(soft_set)

return soft_set
12: end function

Step 2: Prediction
14: function PrEdIct(Xtest, soft_set) prediction

← []
16: for each 𝑥 in Xtest do

scores ← DotProdUct(soft_set, 𝑥)
18: result ← ArgMAx(scores)

prediction.append(result)
20: end for

return prediction
22: end function

24: Main Execution
soft_set ← CrEAtESoFSEt(Xtrain, ytrain)

26: predictions ← PrEdIct(Xtest, soft_set)
function Argsort(𝑎𝑟𝑟𝑎𝑦)

28: return Indices that would sort the array
end function

30: function DotProdUct(𝑎𝑟𝑟𝑎𝑦1, 𝑎𝑟𝑟𝑎𝑦2)
return Dot product of 𝑎𝑟𝑟𝑎𝑦1 and 𝑎𝑟𝑟𝑎𝑦2

32: end function
function ArgMAx(𝑎𝑟𝑟𝑎𝑦)

34: return Index of the maximum value in 𝑎𝑟𝑟𝑎𝑦
end function

36: function ModE(𝑎𝑟𝑟𝑎𝑦)
return Most frequent element in 𝑎𝑟𝑟𝑎𝑦

38: end function
function LEngth(𝑎𝑟𝑟𝑎𝑦)

40: return Length of 𝑎𝑟𝑟𝑎𝑦
 end function

Algorithm 3 Enhanced K-Nearest Neighbors (KNN) with Soft Set
Class Definition: KNN_Soft_Set

1: function FIt(,𝑠𝑒𝑙𝑓 Xtrain, ytrain)
2: .𝑠𝑒𝑙𝑓𝑋train ← Xtrain 3:

.𝑠𝑒𝑙𝑓 𝑦train ← ytrain 4:
.𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← []

5: mean ← MEAn(Xtrain, axis=0)
6: .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← CrEAtESoFtSEt(.𝑠𝑒𝑙𝑓𝑋train, .𝑠𝑒𝑙𝑓 𝑦train)
7: end function
8: function prEdIct(,𝑠𝑒𝑙𝑓 Xtest)
9: predictions ← []

10: for each 𝑥 in Xtest do
11: distances ← [EUcLIdEAnDIstAncE(,𝑥 𝑥1) for 𝑥1 in .𝑠𝑒𝑙𝑓 𝑋train]
12: indices ← Argsort(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)[: .𝑠𝑒𝑙𝑓 𝑘]
13: labels ← [.𝑠𝑒𝑙𝑓 𝑦train[𝑖] for 𝑖 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
14: if LEngth(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠) == .𝑠𝑒𝑙𝑓 𝑘 then
15: soft_set_subset ← .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡[𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠]
16: scores ← DotProdUct(𝑠𝑜𝑓𝑡_𝑠𝑒𝑡_ ,𝑠𝑢𝑏𝑠𝑒𝑡 𝑥)
17: most_common ← ArgMAx(𝑠𝑐𝑜𝑟𝑒𝑠)
18: predictions.append(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠[𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛])
19: else
20: result ← ModE(labels)
21: predictions.append(result)
22: end if
23: end for
24: return predictions
 25: end function

KNN works the same but when draw occurs the best promising result from soft set evaluation is
being picked. The prediction model using soft sets involves creating a representative vector for
each class based on the mean of feature vectors. These vectors are used to classify new data points
by projecting them into the space defined by these representative vectors. The class of the new
data point is determined by the highest projection value. We also tried with vectors in binary
space using thresholds which are the boundary between 0 and 1 value, but such created prediction
model were a little less accurate than simple one using only means that was forsaken during
experiments phase.

TP - true positive, TN - true negative, FP - false positive, FN - false negative

Algorithm 4 Enhanced K-Nearest Neighbors (KNN) with Soft Set and probability
Class Definition: KNN_Soft_Set

1: function FIt(,𝑠𝑒𝑙𝑓 Xtrain, ytrain)
2: .𝑠𝑒𝑙𝑓𝑋train ← Xtrain 3:

.𝑠𝑒𝑙𝑓 𝑦train ← ytrain 4:
.𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← []

5: mean ← MEAn(Xtrain, axis=0)
6: .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← CrEAtESoFtSEt(.𝑠𝑒𝑙𝑓𝑋train, .𝑠𝑒𝑙𝑓 𝑦train)
7: end function
8: function prEdIct(,𝑠𝑒𝑙𝑓 Xtest)
9: predictions ← []

10: for each 𝑥 in Xtest do
11: distances ← [EUcLIdEAnDIstAncE(,𝑥 𝑥1) for 𝑥1 in .𝑠𝑒𝑙𝑓 𝑋train]
12: indices ← Argsort(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)[: .𝑠𝑒𝑙𝑓 𝑘]
13: labels ← [.𝑠𝑒𝑙𝑓 𝑦train[𝑖] for 𝑖 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
14: if LEngth(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠) == .𝑠𝑒𝑙𝑓 𝑘 then
15: soft_values ← .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡[𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠]
16: soft_scores ← DotProdUct(soft_values, 𝑥)
17: probabilities ← soft_scores / SUm(soft_scores)
18: chosen_label ← RAndomChoIcE(unique_labels, p=probabilities)
19: Append ℎ𝑐 𝑜𝑠𝑒𝑛_𝑙𝑎𝑏𝑒𝑙 to 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
20: else
21: result ← ModE(labels)
22: predictions.append(result)
23: end if
24: end for
25: return predictions
26: end function
27: function RAndomChoIcE(labels, probabilities)
28: 𝑟 ← random number between 0 and 1
29: 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 0
30: for 𝑖 from 0 to LEngth(labels) do
31: 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]
32: if 𝑟 ≤ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
33: return 𝑙𝑎𝑏𝑒𝑙𝑠[𝑖]
34: end if
35: end for
 36: end function

Prediction for soft set: for each class 𝐶𝑖, calculate the mean vector 𝜇𝑖 in set 𝐴:

where |𝐶𝑖| is the number of vectors in class 𝐶𝑖. We can also use binary format using a given threshold t

where 𝜇^ 𝑖 represents the binary output of 𝜇𝑖. Create a matrix 𝑀 whose columns are the transposed
mean vectors 𝜇F :

where 𝑘 is the number of classes.
For a given test vector t, multiply t by the model matrix 𝑀 :

v = t · 𝑀

where v contains the projection values of t onto each class mean vector.
Identify the index 𝑖 of the maximum value in v.
The predicted class for the test vector t is the class corresponding to this index.

For each class 𝐶𝑖 in set 𝐴, the probability 𝑃 (𝐶𝑖) is calculated based on the projection vector v as follows:

where 𝑣𝑖 is the 𝑖-th index of the vector v, and 𝑘 is the number of classes in set 𝐴. The last equation is
used in fourth algorithm.

Figure 1 Comparison of example images of different sizes

(a) Example 8x8 im-
age

(b) Example 28x28
image

3. Experiments

In order to validate hypothetical improvement of the effectiveness of our proposed enchanced
KNN with soft set algorithm we conducted a series of calculation using 2 varioius datasets
based on MNIST database. The purpose of these experiments was to assess the algorithm’s
performance in different data scenarios, including different datasets varying the number of
dimensions and databse size. Through thse experiments, we aim to validate our hypothesis.
The first database we used sklearn copy of [1] that contains 1797 samples where data-point is

an 8x8 image of a digit which gives us 64 dimensions. Pixels are describe as integers between 0
and 16. The second is [5] database which contains 60,000 records as a train set and 10,000
records as a test set which gives us total 70,000 28x28 images (784 dimensions) where pixel
values range from 0 to 255.

First of all, we created a template representation of digits, using mean values of all pixel. We
have not used threshold for that cause accuracies achieved by soft set prediction models were
worse in smaller dataset by 0.16, in bigger difference is insignificant.

Figure 2 Comparison of soft set representations for different image sizes

(a) Soft set representation 8x8 images (b) Soft set representation 28x28 images

Figure 3 Comparison of achieved accuracies for different datasets and algorithms

(b) Achieved accuracies for dif-
(a) Achieved accuracies for differ- ferent algorithms, 28x28 images ent
algorithms, 8x8 images dataset dataset

(c) Achieved accuracies for soft
sets

Using all three algorithms (KNN, KNN with soft set, KNN with soft set and probability) on 1st

database we obtained accuracy around 0.986, we have not seen an improvement and even minor
reduction while using enhanced KNN However on 2nd database we have seen an improvement,
accuracy for KNN: 0.773, accuracy for enhanced KNN 0.805. Enhanced KNN with probability
was better than normal KNN, but worse by 0.13 in comparison with enhanced KNN. Therefore we
can see an improvement in large dataset by around 4

Figure 4 Comparison of KNN confusion matrices for the second dataset

(a) Confusion matrix, the second dataset, KNN
(b) Confusion matrix, the second dataset, KNN
enhanced with soft set

Table 1 Precision, recall i F1 score 2nd dataset, KNN
Precision Recall F1 Score

0 0.95306122 0.7162576687116564 0.8178633975481612
1 0.99471366 0.6720238095238096 0.8021314387211368
2 0.65600775 0.9825834542815675 0.7867518884369552
3 0.61584158 0.9525267993874426 0.7480457005411906
4 0.61608961 0.9742351046698873 0.7548346849656893
5 0.50896861 0.9721627408993576 0.6681383370125092
6 0.88100209 0.9472502805836139 0.9129259058950784
7 0.82198444 0.9326710816777042 0.8738366080661841
8 0.78850103 0.44991212653778556 0.5729205520328235
9 0.84638256 0.789279112754159 0.8168340506934482

Table 2 Precision, recall i F1 score 2nd dataset, enhanced KNN
Precision Recall F1 Score

0 0.95816327 0.765905383360522 0.8513145965548504
1 0.99471366 0.6909424724602203 0.8154568436258577
2 0.73546512 0.9768339768339769 0.8391376451077943
3 0.71683168 0.9061326658322904 0.8004422332780542
4 0.67718941 0.9540889526542324 0.7921381774865992
5 0.51793722 0.9705882352941176 0.6754385964912281
6 0.90814196 0.925531914893617 0.916754478398314
7 0.84046693 0.9310344827586207 0.8834355828220859
8 0.79158111 0.5530846484935438 0.6511824324324325
9 0.86917740 0.7767936226749336 0.8203928905519177

Table 3 Precision, recall i F1 score 1st dataset, KNN
Precision Recall F1 Score

0 1.00000000 1.0 1.0
1 1.00000000 0.8936170212765957 0.9438202247191011
2 1.00000000 1.0 1.0
3 1.00000000 0.9523809523809523 0.975609756097561
4 1.00000000 0.9811320754716981 0.9904761904761905
5 0.95833333 1.0 0.9787234042553191
6 1.00000000 1.0 1.0
7 1.00000000 1.0 1.0
8 0.91111111 1.0 0.9534883720930233
9 0.90476190 0.95 0.926829268292683

Table 4 Precision, recall i F1 score 1st dataset, enhanced KNN
Precision Recall F1 Score

0 1.00000000 1.0 1.0
1 1.00000000 0.8936170212765957 0.9438202247191011
2 0.97560976 1.0 0.9876543209876543
3 1.00000000 0.9523809523809523 0.975609756097561
4 1.00000000 0.9811320754716981 0.9904761904761905
5 0.95833333 1.0 0.9787234042553191
6 1.00000000 1.0 1.0
7 1.00000000 0.9761904761904762 0.9879518072289156
8 0.91111111 1.0 0.9534883720930233
9 0.90476190 0.95 0.926829268292683

4. Conclusion

Our research demonstrates that hybrid approach and integrating soft sets into the K-nearest
neighbors algorithm yields 4% increase in accuracy when applied to higher-dimensional and
large dataset [5]. The enhancement does not compromise the accuracy in smaller databes [1],

maintaining almost the same performance levels with traditional KNN. While this improvement is
noteworthy, we know the our algorithm which performed the calculation is not even decent and
does not surpass the accuracies achieved by well-optimized algorithms available in existing libraries.
Despite these modest gains, the findings are promising and indicate the potential of soft sets to
enhance KNN performance. The research underscores the need for further investigation to
optimize this approach and determine whether it can eventually outperform the currently in use
implementation of KNN. Future work should focus on refining the algorithm, particularly by
exploring new ways of constructing soft sets, to further boost accuracy and efficiency and also
improving the accuracy of KNN in bigger datasets by using much more sophisticated
implementation than we used in our research. Additionally, expanding the scope of testing
to include a more diverse range of datasets and real-world applications could provide deeper
insights into the strengths and limitations of this approach whether the boost is only achievable in
digit recognition or in more wider spectrum.

References

[1] E. Alpaydin and C. Kaynak. Optical Recognition of Handwritten Digits. This dataset is
licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 2019. do I:
10.24432/C50P49. UrL: https://archive.ics.uci.edu/dataset/80/optical+recognition+of+
handwritten+digits.

[2] Guo-Feng Fan et al. Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load
Forecasting. 2019. doI: 10.3390/en12050916. UrL: https://doi.org/10.3390/en12050916.

[3] Richard Jensen and Chris Cornelis. “A New Approach to Fuzzy-Rough Nearest Neighbour
Classification”. In: Lecture Notes in Computer Science. Vol. 5306. Springer, 2008.

[4] James M. Keller, Michael R. Gray, and James A. Givens. “A fuzzy K-nearest neighbor
algorithm”. In: IEEE Transactions on Systems, Man, and Cybernetics (1985). doI: 10.1109/
TSMC.1985.6313426.

[5] Yann LeCun and Corinna Cortes. The MNIST Database of Handwritten Digits. MNIST
dataset is a derivative work from original NIST datasets. It is made available under the
terms of the Creative Commons Attribution-Share Alike 3.0 license. 2010. UrL: http :
//yann.lecun.com/exdb/mnist.

[6] D. Molodtsov. “Soft set theory—First results”. In: Computers & Mathematics with Applica-
tions 37.4-5 (1999), pp. 19–31. doI: 10.1016/S0898-1221(99)00056-5.

[7] Marcin Woźniak and Dawid Połap. “Object detection and recognition via clustered features”. In:
Neurocomputing 320 (2018), pp. 76–84.

[8] Marcin Woźniak and Dawid Połap. “Soft trees with neural components as image-processing
technique for archeological excavations”. In: Personal and Ubiquitous Computing 24.3 (2020), pp.
363–375.

http://yann.lecun.com/exdb/mnist
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.3390/en12050916
https://doi.org/10.3390/en12050916
https://archive.ics.uci.edu/dataset/80/optical%2Brecognition%2Bof%2Bhandwritten%2Bdigits
https://doi.org/10.1109/TSMC.1985.6313426
https://doi.org/10.24432/C50P49
https://doi.org/10.1016/S0898-1221(99)00056-5
https://archive.ics.uci.edu/dataset/80/optical%2Brecognition%2Bof%2Bhandwritten%2Bdigits
http://yann.lecun.com/exdb/mnist

	1. Introduction
	2. Methodology
	3. Experiments
	4. Conclusion
	References

