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Abstract
In this research paper, we delve into the possibility of integration soft sets into the K-nearest neighbors 
(KNN) algorithm to enhance its performance, particularly in high-dimensional and large-scale datasets. Soft 
sets, known for their ability to handle uncertainty and vagueness in data, provide a robust framework  that 
complements the traditional KNN method. Our study examines the efficiency of this hybrid approach across 
various datasets (which are based on MNIST, Modified National Institute of Standards and Technology 
database) differing in size and number of pixels. The results indicate a noticeable improvement in performance 
when applied to larger databases with higher dimensions, without compromising the accuracy 
observed in smaller datasets. Although the overall enhancement in performance is modest and does 
not surpass the accuracy achieved by well-optimized algorithms from existing libraries, the findings are 
promising. They suggest that soft sets offer a viable means to bolster the KNN algorithm, particularly in 
complex data scenarios. This research contributes to the ongoing efforts to refine machine learning 
techniques and highlights the potential of soft sets in achieving more efficient and accurate data 
classification. Further research is needed to optimize this approach and to explore its application in a 
broader range of machine learning tasks and datasets.
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1. Introduction

The k-nearest neighbor (KNN) algorithm is a non-parametric classification algorithm that 
assigns a test object to the decision class that is most common among its k nearest neighbors [3]. 
The classification of objects is based on the classes of the k nearest objects. KNN is popular 
and widely used so it is not strange that various modification and enhancements have  been 
proposed, for instance [4, 2]. Soft sets, introduced by Molodtsov [6], offer a promising 
avenue for enhancing the KNN algorithm. Soft sets are capable of dealing with uncertainties 
and ambiguities, making them particularly suited for complex data environments. Soft sets 
provide  a  flexible  mathematical  framework  that  can  be  leveraged  to  improve  the  robustness  and 
adaptability of the KNN algorithm, potentially leading to better performance [8,  7]. Despite the 
potential benefits, the integration of soft sets with KNN has not been extensively explored, the 
application of  soft sets  to  enhance  core  machine  learning algorithms like  KNN remains  an under 
researched area. In this context, our paper aim to fill the gap by evaluating the performance 
of KNN algorithm enhanced with soft set. We also examine the results of the algorithm with a 
decision based on probability. 
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𝑗=1

Our findings contribute to the efforts to refine and improve machine learning techniques, 
offering insights that could lead to more efficient and accurate  data classification methods. 
Further research in this  area is  essential  to optimize the approach  and explore its broader 
applications in machine learning.

Algorithm 1 K-Nearest Neighbors (KNN) Algorithm
Require:

X : Training data features 
y : Training data labels 
xnew : New data point
𝑘 : Number of neighbors

Ensure:
Predicted label for xnew

1: function KNN(X, y, xnew, 𝑘)
2: distances ← []
3: for 𝑖 ← 1 to 𝑛 do
4: 𝑑 ← EuclideanDistance(X[𝑖], xnew)
5: distances.append((d, y[𝑖]))
6: end for
7: distances ← Sort(distances)
8: neighbors ← distances[1:𝑘]
9: labels ← [label for (dist, label) in neighbors]

10: prediction ← Mode(labels)
11: return prediction
12: end function
13: function EUc   LI  d  EA  nD  I  st  A  nc  E  (  x  1,     x  2)

14: return 
√︁∑︀𝑚 (x1[𝑗] − x2[𝑗])2

   15:         end     function                                                                                                                                            

2. Methodology

Our methodology encompasses a systematic approach to evaluate the effectiveness of the soft 
set-enhanced K-nearest neighbors (KNN) algorithm across a diverse range of datasets. The 
methodology is designed to provide rigorous experimentation and analysis, ensuring robust 
conclusions  regarding  the  performance  of  the  proposed  approach. To  ensure  the  accuracy  of  the 
research, we carried out several measurements on a differently divided and shuffied datasets. 
We also use in analysis confusion matrix where each row is an actual class while each column 
is in a predicted class. In addition to the overall accuracy, we also examine the precision recall, 
f1score for individual classes, digits. The k-Nearest Neighbors begins with choosing the number of 
neighbors, typically a small odd number like 3 or 5, we chose 3. For a new data point, the 
algorithm calculates the distance between this point and all points in the training dataset,for that we 
used euclidean distance but it  can be changed. The k closest  points  (neighbors)  are identified.  For 
classification, the most common class among these neighbors is assigned to the new data point if 
there is a draw the result is picked randomly from nearest neighbors. Our modified



Algorithm 2 Soft Set Based Prediction Algorithm
Require:

Xtrain : Training data features 
ytrain : Training data labels Xtest 

: Test data features
func : Function to compute soft set elements

Ensure:
Predicted labels for Xtest

Step 1: Create Soft Set
2: function CrEAtESoFSEt(Xtrain, ytrain) 

soft_set ← []
4: mean ← MEAn(Xtrain, axis=0)

for each 𝑦 in UnIQUE(ytrain) do
6: 𝑋𝑦 ← Xtrain[ytrain == 𝑦]

mean_y ← MEAn(𝑋𝑦, axis=0)
8: soft_set.append(mean_y)

end for
10: soft_set ← ArrAy(soft_set)

return soft_set
12: end function

Step 2: Prediction
14: function PrEdIct(Xtest, soft_set) prediction 

← []
16: for each 𝑥 in Xtest do

scores ← DotProdUct(soft_set, 𝑥)
18: result ← ArgMAx(scores) 

prediction.append(result)
20: end for

return prediction
22: end function

24: Main Execution
soft_set ← CrEAtESoFSEt(Xtrain, ytrain)

26: predictions ← PrEdIct(Xtest, soft_set)
function Argsort(𝑎𝑟𝑟𝑎𝑦)

28: return Indices that would sort the array
end function

30:  function DotProdUct(𝑎𝑟𝑟𝑎𝑦1, 𝑎𝑟𝑟𝑎𝑦2)
return Dot product of 𝑎𝑟𝑟𝑎𝑦1 and 𝑎𝑟𝑟𝑎𝑦2

32: end function
function ArgMAx(𝑎𝑟𝑟𝑎𝑦)

34: return Index of the maximum value in 𝑎𝑟𝑟𝑎𝑦
end function

36: function ModE(𝑎𝑟𝑟𝑎𝑦)
return Most frequent element in 𝑎𝑟𝑟𝑎𝑦

38: end function
function LEngth(𝑎𝑟𝑟𝑎𝑦)

40: return Length of 𝑎𝑟𝑟𝑎𝑦
        end     function                                                                                                                                          



Algorithm 3 Enhanced K-Nearest Neighbors (KNN) with Soft Set
Class Definition: KNN_Soft_Set

1: function FIt( ,𝑠𝑒𝑙𝑓  Xtrain, ytrain)
2: .𝑠𝑒𝑙𝑓𝑋train ← Xtrain 3:

.𝑠𝑒𝑙𝑓 𝑦train ← ytrain 4:
.𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← []

5: mean ← MEAn(Xtrain, axis=0)
6: .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡    ←    CrEAtESoFtSEt( .𝑠𝑒𝑙𝑓𝑋train, .𝑠𝑒𝑙𝑓 𝑦train)
7: end function
8: function prEdIct( ,𝑠𝑒𝑙𝑓  Xtest)
9: predictions ← []

10: for each 𝑥 in Xtest do
11: distances ← [EUcLIdEAnDIstAncE( ,𝑥  𝑥1) for 𝑥1 in .𝑠𝑒𝑙𝑓 𝑋train]
12: indices ← Argsort(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)[: .𝑠𝑒𝑙𝑓 𝑘]
13: labels ← [ .𝑠𝑒𝑙𝑓 𝑦train[𝑖] for 𝑖 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
14: if LEngth(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠) == .𝑠𝑒𝑙𝑓 𝑘 then
15: soft_set_subset ← .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡[𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠]
16: scores ← DotProdUct(𝑠𝑜𝑓𝑡_𝑠𝑒𝑡_ ,𝑠𝑢𝑏𝑠𝑒𝑡  𝑥)
17: most_common ← ArgMAx(𝑠𝑐𝑜𝑟𝑒𝑠)
18: predictions.append(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠[𝑚𝑜𝑠𝑡_𝑐𝑜𝑚𝑚𝑜𝑛])
19: else
20: result ← ModE(labels)
21: predictions.append(result)
22: end if
23: end for
24: return predictions
   25:         end     function                                                                                                                                            

KNN works the same but when draw occurs the best promising result from soft set evaluation is 
being picked. The prediction model using soft sets involves creating a representative vector for 
each class based on the mean of feature vectors. These vectors are used to classify new data points 
by projecting them into the space defined by these representative vectors. The class of the new 
data point is determined by the highest projection value. We also tried with vectors in binary 
space using thresholds which are the boundary between 0 and 1 value, but such created prediction 
model  were  a  little  less  accurate  than  simple  one  using  only  means  that  was  forsaken  during 
experiments phase.

TP - true positive, TN - true negative, FP - false positive, FN - false negative



Algorithm 4 Enhanced K-Nearest Neighbors (KNN) with Soft Set and probability
Class Definition: KNN_Soft_Set

1: function FIt( ,𝑠𝑒𝑙𝑓  Xtrain, ytrain)
2: .𝑠𝑒𝑙𝑓𝑋train ← Xtrain 3:

.𝑠𝑒𝑙𝑓 𝑦train ← ytrain 4:
.𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡 ← []

5: mean ← MEAn(Xtrain, axis=0)
6: .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡    ←    CrEAtESoFtSEt( .𝑠𝑒𝑙𝑓𝑋train, .𝑠𝑒𝑙𝑓 𝑦train)
7: end function
8: function prEdIct( ,𝑠𝑒𝑙𝑓  Xtest)
9: predictions ← []

10: for each 𝑥 in Xtest do
11: distances ← [EUcLIdEAnDIstAncE( ,𝑥  𝑥1) for 𝑥1 in .𝑠𝑒𝑙𝑓 𝑋train]
12: indices ← Argsort(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)[: .𝑠𝑒𝑙𝑓 𝑘]
13: labels ← [ .𝑠𝑒𝑙𝑓 𝑦train[𝑖] for 𝑖 in 𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
14: if LEngth(𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠) == .𝑠𝑒𝑙𝑓 𝑘 then
15: soft_values ← .𝑠𝑒𝑙𝑓 𝑠𝑜𝑓𝑡_𝑠𝑒𝑡[𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑎𝑏𝑒𝑙𝑠]
16: soft_scores ← DotProdUct(soft_values, 𝑥)
17: probabilities ← soft_scores / SUm(soft_scores)
18: chosen_label ← RAndomChoIcE(unique_labels, p=probabilities)
19: Append ℎ𝑐 𝑜𝑠𝑒𝑛_𝑙𝑎𝑏𝑒𝑙 to 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
20: else
21: result ← ModE(labels)
22: predictions.append(result)
23: end if
24: end for
25: return predictions
26: end function
27: function RAndomChoIcE(labels, probabilities)
28: 𝑟 ← random number between 0 and 1
29: 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 0
30: for 𝑖 from 0 to LEngth(labels) do
31: 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑖]
32: if 𝑟 ≤ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then
33: return 𝑙𝑎𝑏𝑒𝑙𝑠[𝑖]
34: end if
35: end for
   36:         end     function                                                                                                                                            

Prediction for soft set: for each class 𝐶𝑖, calculate the mean vector 𝜇𝑖 in set 𝐴:



where |𝐶𝑖| is the number of vectors in class 𝐶𝑖. We can also use binary format using a given threshold t

where 𝜇^ 𝑖  represents the binary output of 𝜇𝑖. Create a matrix 𝑀 whose columns are the transposed 
mean vectors 𝜇F :

where 𝑘 is the number of classes.
For a given test vector t, multiply t by the model matrix 𝑀 :

v = t · 𝑀

where v contains the projection values of t onto each class mean vector. 
Identify the index  𝑖 of the maximum value in v.
The predicted class for the test vector t is the class corresponding to this index.

For each class 𝐶𝑖 in set 𝐴, the probability 𝑃 (𝐶𝑖) is calculated based on the projection vector v as follows:

where 𝑣𝑖 is the 𝑖-th index of the vector v, and 𝑘 is the number of classes in set 𝐴. The last equation is 
used in fourth algorithm.

Figure 1 Comparison of example images of different sizes

(a) Example 8x8 im- 
age

(b) Example 28x28 
image

3. Experiments

In order to validate hypothetical improvement of the effectiveness of our proposed enchanced 
KNN with soft set algorithm we conducted a series of calculation using 2 varioius datasets 
based on MNIST database. The purpose of these experiments was to assess the algorithm’s 
performance in different data scenarios, including different datasets varying the number of 
dimensions and databse size. Through thse experiments, we aim to validate our hypothesis. 
The first database we used sklearn copy of [1] that contains 1797 samples where data-point is



an 8x8 image of a digit which gives us 64 dimensions. Pixels are describe as integers between 0 
and 16. The second is [5] database which contains 60,000 records as a train set and 10,000 
records as a test set which gives us total 70,000 28x28 images (784 dimensions) where pixel 
values range from 0 to 255.

First of all, we created a template representation of digits, using mean values of all pixel. We 
have not used threshold for that cause accuracies achieved by soft set prediction models were 
worse in smaller dataset by 0.16, in bigger difference is insignificant.

Figure 2 Comparison of soft set representations for different image sizes

(a) Soft set representation 8x8 images (b) Soft set representation 28x28 images

Figure 3 Comparison of achieved accuracies for different datasets and algorithms

(b) Achieved accuracies for dif-
(a) Achieved accuracies for differ- ferent algorithms, 28x28 images ent 
algorithms, 8x8 images dataset dataset

(c) Achieved accuracies for soft 
sets

Using all three algorithms (KNN, KNN with soft set, KNN with soft set and probability) on 1st



database  we  obtained  accuracy  around 0.986,  we  have  not  seen  an  improvement  and  even  minor  
reduction while using enhanced KNN However on 2nd database we have seen an improvement, 
accuracy for KNN: 0.773, accuracy for enhanced KNN 0.805. Enhanced KNN with probability 
was better than normal KNN, but worse by 0.13 in comparison with enhanced KNN. Therefore we 
can see an improvement in large dataset by around 4

Figure 4 Comparison of KNN confusion matrices for the second dataset

(a) Confusion matrix, the second dataset, KNN
(b) Confusion matrix, the second dataset, KNN 
enhanced with soft set

Table 1 Precision, recall i F1 score 2nd dataset, KNN
Precision Recall F1 Score

0 0.95306122 0.7162576687116564 0.8178633975481612
1 0.99471366 0.6720238095238096 0.8021314387211368
2 0.65600775 0.9825834542815675 0.7867518884369552
3 0.61584158 0.9525267993874426 0.7480457005411906
4 0.61608961 0.9742351046698873 0.7548346849656893
5 0.50896861 0.9721627408993576 0.6681383370125092
6 0.88100209 0.9472502805836139 0.9129259058950784
7 0.82198444 0.9326710816777042 0.8738366080661841
8 0.78850103 0.44991212653778556 0.5729205520328235
9 0.84638256 0.789279112754159 0.8168340506934482



Table 2 Precision, recall i F1 score 2nd dataset, enhanced KNN
Precision Recall F1 Score

0 0.95816327 0.765905383360522 0.8513145965548504
1 0.99471366 0.6909424724602203 0.8154568436258577
2 0.73546512 0.9768339768339769 0.8391376451077943
3 0.71683168 0.9061326658322904 0.8004422332780542
4 0.67718941 0.9540889526542324 0.7921381774865992
5 0.51793722 0.9705882352941176 0.6754385964912281
6 0.90814196 0.925531914893617 0.916754478398314
7 0.84046693 0.9310344827586207 0.8834355828220859
8 0.79158111 0.5530846484935438 0.6511824324324325
9 0.86917740 0.7767936226749336 0.8203928905519177

Table 3 Precision, recall i F1 score 1st dataset, KNN
Precision Recall F1 Score

0 1.00000000 1.0 1.0
1 1.00000000 0.8936170212765957 0.9438202247191011
2 1.00000000 1.0 1.0
3 1.00000000 0.9523809523809523 0.975609756097561
4 1.00000000 0.9811320754716981 0.9904761904761905
5 0.95833333 1.0 0.9787234042553191
6 1.00000000 1.0 1.0
7 1.00000000 1.0 1.0
8 0.91111111 1.0 0.9534883720930233
9 0.90476190 0.95 0.926829268292683

Table 4 Precision, recall i F1 score 1st dataset, enhanced KNN
Precision Recall F1 Score

0 1.00000000 1.0 1.0
1 1.00000000 0.8936170212765957 0.9438202247191011
2 0.97560976 1.0 0.9876543209876543
3 1.00000000 0.9523809523809523 0.975609756097561
4 1.00000000 0.9811320754716981 0.9904761904761905
5 0.95833333 1.0 0.9787234042553191
6 1.00000000 1.0 1.0
7 1.00000000 0.9761904761904762 0.9879518072289156
8 0.91111111 1.0 0.9534883720930233
9 0.90476190 0.95 0.926829268292683

4. Conclusion

Our research demonstrates that hybrid approach and integrating soft sets into the K-nearest 
neighbors algorithm yields 4% increase in accuracy when applied to higher-dimensional and 
large dataset [5]. The enhancement does not compromise the accuracy in smaller databes [1],



maintaining almost the same performance levels with traditional KNN. While this improvement is 
noteworthy, we know the our algorithm which performed the calculation is not even decent and 
does not surpass the accuracies achieved by well-optimized algorithms available in existing libraries.  
Despite  these  modest  gains,  the  findings  are  promising  and  indicate  the  potential  of  soft  sets to 
enhance KNN performance. The research underscores the need for further investigation to 
optimize this approach and determine whether it can eventually outperform the currently in use 
implementation of KNN. Future work should focus on refining the algorithm, particularly by 
exploring new ways of constructing soft sets, to further boost accuracy and efficiency and also 
improving the accuracy of KNN in bigger datasets by using much more sophisticated 
implementation than we used in our research. Additionally, expanding the scope of testing 
to include a more diverse range of datasets and real-world applications could provide deeper 
insights into the strengths and limitations of this approach whether the boost is only achievable in 
digit recognition or in more wider spectrum.
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