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Abstract
The article is about the implementation and the performance of Face Recognition using Naive Bayes 
Classifier. Firstly, it is explained how huge impact on today’s world has the face recognition system 
and how it has change over past 60 years. Then the idea of PCA and eigenfaces is brought closer to a 
reader. Moreover, the methodology of the program is explained. Not only, the most important functions 
and variables but also the schema of Naive Bayes Classifier are shown on code fragments. The next 
part is "Experiments" where viewer can find plots and specific information about dataset, examples of 
generated eigenfaces and the performance and accuracy of the program which is estimated to be nearly 
75%. Finally, there is a conclusion. Authors one more time remind the most important information, 
explain the role of PCA used in the project and look to the future in order to improve their program.
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1. Introduction

Face recognition technology has its roots in 1960s. The groundbreaking steps where made by 
Woody Bledsoe, Helen Chan Wolf and Charles Bisson. They were marking the most characteristic 
facial features such as mouth, nose or eyes. Then computing distances between them and the 
program was comparing values. Their pioneering efforts brought people closer to concepts 
and techniques that later evolved with time, leading to creation of advanced face recognition 
systems which everyone uses nowadays. Biometric algorithms are widely used across various 
sectors of life [1, 2, 3]. Law enforcement agencies use it to identify suspects and find missing 
persons. Airports and border control implement it to verify travelers in security process. In 
businesses, it secures access to buildings and confidential information. Even Smartphones use it  for 
user authentication. Moreover, social media platforms employ face recognition for tagging 
individuals in photos [4, 5].

Since 1960s specialists have been constantly improving biometric algorithms. One of those 
improvements is called Principal Component Analysis. The approach simplifies the complexity of 
facial images by focusing on key features, reducing dimensions, and retaining essential infor- 
mation. This method revolutionized face recognition by improving accuracy and computational 
efficiency. PCA paved the way for more advanced algorithms, significantly influencing the 
development of contemporary facial recognition systems.
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2. Methodology

The process begins with acquiring and preprocessing the dataset. The "Labeled Faces in the Wild" 
(LFW) dataset is fetched using the ℎ𝑓𝑒𝑡𝑐 _𝑙𝑓𝑤_𝑝𝑒𝑜𝑝𝑙𝑒 function from .𝑠𝑘𝑙𝑒𝑎𝑟𝑛𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠. This dataset contains labeled images of 
faces, and for this analysis, only inviduals with at least 50 face images are included to ensure 
sufficient data per class. The images are resized to 50% of their original dimensions to reduce 
computational complexity. The dataset is then split into a feature matrix  𝑋 and a target vector 𝑦. 
The feature matrix  𝑋 contains the pixel values of the images, while the target vector 𝑦 contains 
the corresponding class labels for each image. Additionally, the shape parameters of the images, 
including  the  number  of  samples,  height  and  width  are  stored  for  reference  throughout  the 
analysis.

Listing 1: Fetching and Preprocessing LFW dataset
1 lfw_people = fetch_lfw_people(min_faces_per_person=50, resize=0.5)

2 X = lfw_people.data

3 y = lfw_people.target

4 target_names = lfw_people.target_names

5 n_samples, h, w = lfw_people.images.shape

6

7 original_shape = (h, w)

The feature matrix X is standarized using StandardScaler from sklearn.preprocessing. This 
standarization is crucial for ensuring that the principal component analysis (PCA) operates 
effectively. PCA is then applied to the standarized feature matrix 𝑋 to reduce its dimensionality 
while retaining most of the variance. This reduction in dimensionality is achieved by extracting the 
most significant features, known as principal components, from the data. In this analysis, 100 
principal components are retained, as determined by the parameter 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠. The transformed data is 
represented in a lower-dimensional space, resulting in the matrix 𝑋_𝑃𝐶𝐴. PCA is particularly well-
suited for this task because it effectively reduces the high dimen-  sionality of image data 
while preserving essential features that contribute to variance. This  reduction is crucial for 
computational efficiency and helps in avoiding the curse of dimensional- ity, which can adversely 
affect machine learning algorithms. PCA also helps in noise reduction  and improves the 
performance of subsequent classifiers by focusing on the most significant
features.

Listing 2: Standarization and PCA on the feature matrix

1 scaler = StandardScaler()

2 X_scaled = scaler.fit_transform(X)

3

4 # Applying PCA

5 n_components = 100 # Number of principal components to keep

6 pca = PCA(n_components=n_components, svd_solver=’randomized’, whiten=True)

7 X_pca = pca.fit_transform(X_scaled)

8

9 print(f"Original shape: {X_scaled.shape}")

10 print(f"Transformed shape: {X_pca.shape}")



To visualize the principal components, known as eigenfaces, the components are reshaped to 
the original image dimensions. The first 10 eigenfaces are displayed to show the main features 
captured by PCA. Additionally, a function is defined to visualize the original and reconstructed 
faces, allowing for an assessment of how well PCA captures important features. The PCA- 
transformed data 𝑋_𝑝𝑐𝑎 is inversely transformed to reconstruct the original images, and a  
subset of these reconstructed images is displayed alongside their original counterparts.

Listing 3: Eigenfaces visualization and reconstruction of original faces

1 eigenfaces = pca.components_.reshape((n_components, h, w))

2

3 plt.figure(figsize=(15, 8))

4 for i in range(10): # displaying the first 10 eigenfaces

5 plt.subplot(2, 5, i + 1)

6 plt.imshow(eigenfaces[i], cmap=’gray’)

7 plt.title(f"Eigenface {i+1}")

8 plt.xticks(())

9 plt.yticks(())

10 plt.show()

11

12 def plot_reconstructed_faces(X_original, X_reconstructed, n_faces=4):

13 plt.figure(figsize=(15, 8))

14 for i in range(n_faces):

15 ax = plt.subplot(2, n_faces, i + 1)

16 plt.imshow(X_original[i].reshape((h, w)), cmap=’gray’)

17 plt.xticks(())

18 plt.yticks(())

19

20 ax = plt.subplot(2, n_faces, i + 1 + n_faces)

21 plt.imshow(X_reconstructed[i].reshape((h, w)), cmap=’gray’)

22 plt.xticks(())

23 plt.yticks(())

24

25 plt.show()

26

27 X_reconstructed = pca.inverse_transform(X_pca)

28 plot_reconstructed_faces(X, X_reconstructed)

For  classification,  a  Naive  Bayes  classifier  [6]  is  implemented  from scratch. This  involves 
defining methods for fitting the model to training data, calculating likelihoods and posteriors and 
making predictions. The dataset is split into training and testing sets using and 80-20 ratio with the 
𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 function from .𝑠𝑘𝑙𝑒𝑎𝑟𝑛 𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. The Naive Bayes classifier is trained on the training set and used 
to predict labels for the test set. The accuracy of the classifier is then calculated using 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦_𝑠𝑐𝑜𝑟𝑒 
from .𝑠𝑘𝑙𝑒𝑎𝑟𝑛 𝑚𝑒𝑡𝑟𝑖𝑐𝑠, providing a quantitative measure of the model’s performance.

Listing 4: Naive Bayes classifier implementation and prediction

1 class NaiveBayes:

2 def fit(self, X, y):

3 self.classes = np.unique(y)

4 self.mean = {}



5 self.var = {}
6 self.prior = {}

7

8 for c in self.classes:

9 X_c = X[y == c]

10 self.mean[c] = np.mean(X_c, axis=0)

11 self.var[c] = np.var(X_c, axis=0)

12 self.prior[c] = X_c.shape[0] / X.shape[0]

13

14 def _calculate_probability(self, mean, var, x):

15 exponent = np.exp(-(x - mean) ** 2 / (2 * var))

16 return exponent / np.sqrt(2 * np.pi * var)

17

18 def _calculate_posterior(self, x):

19 posteriors = []

20

21 for c in self.classes:

22 prior = np.log(self.prior[c])

23 likelihood = np.sum(np.log(self._calculate_probability(self.mean[c], self. 

var[c], x)))

24 posterior = prior + likelihood

25 posteriors.append(posterior)

26

27 return self.classes[np.argmax(posteriors)]

28

29 def predict(self, X):

30 return [self._calculate_posterior(x) for x in X]

31

32 X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, 

random_state=42)

33

34 nb = NaiveBayes()

35 nb.fit(X_train, y_train)

36

37 predictions = nb.predict(X_test)

38

39 accuracy = accuracy_score(y_test, predictions)

40 print(f"Accuracy: {accuracy:.2f}")

Finally, a single image from the test set is selected to demonstrate the classifier’s prediction 
capability. The selected image is transformed back to its original dimensions, and its true and 
predicted labels are displayed. This visual representation helps in understanding the model’s 
performance on individual instances, complementing overall accuracy metric.

Listing 5: Demonstrating classifier’s prediction capability
1 index = 12

2 single_image = X_test[index]

3 single_image_original = pca.inverse_transform(single_image).reshape(original_shape)

4

5 predicted_label = nb.predict(np.array([single_image]))[0]

6 true_label = y_test[index]

7



8 plt.imshow(single_image_original, cmap=’gray’)

9 plt.title(f"True label: {target_names[true_label]}\nPredicted label: {target_names[ 

predicted_label]}")

10 plt.xticks(())

11 plt.yticks(())

12 plt.show()

3. Experiments

The 𝑙𝑎𝑏𝑒𝑙𝑒𝑑_𝑓𝑎𝑐𝑒𝑠_𝑖𝑛_ ℎ𝑡 𝑒_𝑤𝑖𝑙𝑑_𝑑𝑎𝑡𝑎𝑠𝑒𝑡 is widely used for facial recognition tasks [7]. It contains JPEG images of 
various famous people, and each image is labaled with the name of the person. Scikit-learn 
[8] provides two loaders that will automatically download, parse the metadata files, decode 
the JPEG and convert the slices into memmapped numpy arrays.

Figure 1: The exapmle of converted data

For this analysis, we use a subset of the dataset where each person has at least 50 images.
This subset contains 1560 images of 12 different people.

After decreasing the size of the photos and changing them into gray, PCA algorithm [9] leads to 
generation of eigenfaces which create a basis set derived from all the images used to construct  the 
matrix. This  results  dimensional  reduction  by  allowing  the  original  training  images  to  be 
represented by a smaller set of basis images.



Figure 2: The plot shows the number of occurrences of each name of face in the dataset

Figure 3: Some examples of generated eigenfaces

By performing PCA we can notice a decrease in variance ratio in increasing number of 
components. So that the plot helps to decide how many principal components to select to retain as 
much information as possible while reducing the number of dimensions. We calculated that the 
best option for us is 100 components.

To check the performance of our Face Recognition using PCA and Bayes Classificator pro- 
grame we created the confusion matrix which is fundamental tool in this field. It provides a 
detailed breakdown of how well the model’s predictions the actual class labels.

Finally, in order to check detailed indicators as precision( ratio of true positive predictions to 
the total predicted positives), recall(ratio of true positive predictions to the total actual 
positives), F1-Score(average of precision and recall), support(the number of occurrences of 
each class in dataset) the classification report was made.

This report clearly shows the accuracy of our application which is estimated to be around 
74%.



Figure 4: Proportion of variance

Figure 5: Confusion matrix

Figure 6: Classification report



4. Conclusion

This project demonstrates the application of machine learning techniques for facial recognition 
using the "Labeled Faces in the Wild" (LFW) dataset. Through meticulous preprocessing and 
feature extraction, we prepared the dataset for analysis, ensuring its suitability for subsequent 
machine learning algorithms. Principal Component Analysis (PCA) played a pivotal role in 
reducing the dimensionality of the dataset while retaining essential variance, effectively 
capturing  the  underlying  structure  of  the  facial  images. The  visualization  of  eigenfaces  provided 
valuable insights into the primary features captured by PCA, enhancing our understanding 
of the dataset’s characteristics. The implementation of a Naive Bayes classifier facilitated the 
classification of facial images with satisfactory accuracy. By training the classifier on a subset of 
the dataset and evaluating its performance on unseen data, we gained valuable insights into 
its generalization capabilities. Furthermore, the visual representation of prediction results provided 
a tangible demonstration of the classifier’s ability to accurately identify induviduals from facial 
images,  showcasing  the  practical  utility  of  the  developed  model. Overall,  this  project 
exemplifies the effectiveness of  machine learning techniques in facial recognition tasks and 
underscores  their  potential  for  diverse  real-world  applications,  ranging  from  security  and 
surveillance to personalized user experience as beyond. As technology continues to evolve, 
further  advancements  in  machine  learning  algorithms  and  datasets  hold  promise  for  even  more 
accurate and robust facial recognition systems.
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