
Stacked Generalization - Investigating the impact

on

predictive performance of basic machine learning
models*

Szymon Antonik1,∗,†, Bartosz Bąba1,†

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
In this work we investigate the influence of stacking different artificial intelligence algorithms on their
predictive performance, using real data from the 1994 US Census database [1] to predict whether an
individual’s annual income exceeds $50 000.
Stacking is an ensemble algorithm, used to combine the predictions from a few machine learning models,
already trained on the dataset, to achieve greater predictive accuracy. The basic idea behind stacked
generalization is to leverage the strengths of different algorithms by using their predictions to train a
final learner, which then produces the final prediction. In this work KNeighborsClassifier, GaussianNB and
Support Vector Classifier have been used as base estimators and Logistic Regression has been used as the
final estimator.

Keywords
artificial intelligence, stacked generalisation, stacking, census income, adult dataset, income prediction

1. Introduction

The introduction of machine learning is essential for achieving precise predictions in today’s
data-driven world [2, 3, 4]. However, relying solely on individual models may limit the attain-
ment of optimal results. In this context, the technique of Stacked Generalization (Stacking)
becomes a significant tool for improving predictive performance through the application of
ensemble strategies [5, 6].

Stacking is an ensemble learning method that integrates the results of multiple base models,
allowing a meta-algorithm (such as logistic regression) to make final predictions effectively [7]. In
our study, we plan to apply Stacked Generalization with basic algorithms like Naive Bayes, SVM,
and k-NN to examine its impact on improving prediction accuracy.

The primary goal of our article is to explore the potential of Stacked Generalization in
enhancing the predictive performance of basic machine learning models. We aim not only to
delve into its potential but also to assess the flexibility of this technique across different domains and
applications. Our goal is to determine whether the application of Stacked Generalization can
effectively increase prediction accuracy compared to individual models on the selected
dataset.

*IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
1,∗ Corresponding author
† These author contributed equally.

 sa307842@student.polsl.pl (S. Antonik); bb307846@student.polsl.pl (B. Bąba)

 0009-0008-2418-1869 (S. Antonik); 0009-0009-7044-3783 (B. Bąba)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0008-2418-1869
https://orcid.org/0009-0009-7044-3783
mailto:bb307846@student.polsl.pl
mailto:sa307842@student.polsl.pl

Through experimental research and result analysis, our article aims to provide practical
insights into the potential benefits derived from using Stacked Generalization.

In this way, our work aims to broaden the understanding of Stacked Generalization as an
effective tool in the arsenal of machine learning practitioners, significantly improving prediction
quality and opening up new possibilities in data analysis.

2. Methodology

2.1. Machine Learning Classifier

A machine learning classifier is a type of algorithm that learns patterns from labeled training
data in order to categorize or classify new input data into one of several predefined classes or
categories. The goal of a classifier is to generalize from known examples and make predictions or
decisions about new data based on its learned knowledge.

How a typical machine learning classifier works:

1. Phase of training - The classifier is provided with a set of training examples - each of
them contains input data (features) and output labels (class). The classifier learns to map
input features to the proper output labels by identifying relations and patterns in the
training data. The classifier uses one of the learning algorithms (such as Naive Bayes,
support vector machines, and k-nearest neighbors) to build a model based on the training data.

2. Phase of predicting - Once the classifier is trained, it can be used to predict the output
classes of new, unseen before data. The classifier takes input features of new data sample
and applies the learned model to assign it to one of the predefined classes.

2.2. K-Nearest Neighbors Classifier

The K-Nearest Neighbors (KNN) classifier is a simple yet effective machine learning classifier.
KNN is considered ’lazy’ classifier, because it doesn’t explicitly learn a model during training
process. It memorizes training sets and makes predictions for new instances based on their
similarity to known examples instead.

1. Phase of training - Train and test subsets are picked from the dataset. KNN ’memorizes’
(stores) training data.

2. Phase of predicting Number of nearest neighbors K and distance metric (e.g. Euclidean
distance) need to be chosen before making predictions. For every data instance in test set, KNN
calculates distance to each and every data instance in memorized set, using chosen distance
metric. K nearest neighbors of the instance are chosen (samples with the lowest calculated
distance). Algorithm checks which output class is the most popular among those
neighbors - this class is predicted output for the specimen.

2.3. Naive Bayes Classifier

The Naive Bayes classifier is a probabilistic machine learning algorithm based on Bayes’ theorem. Term
’naive’ refers to the assumption made by the algorithm that all features in the dataset are

independent of each other given the class label. This assumption is considered ’naive’ because it’s
often not true in real-world datasets where features can be correlated or dependent on each other.
Despite its simplicity and the ’naive’ assumption, Naive Bayes classifiers are widely used for
classification tasks, especially in text classification and spam filtering, due to its efficiency and
effectiveness.
Bayes’ theorem - probability of probability of a hypothesis (class label) given the evidence
(features).

Where 𝑃 (𝑦|𝑋) - posterior probability of class 𝑦 given features 𝑋, 𝑃 (𝑋|𝑦) - likelihood of features
 𝑋 given class 𝑦, 𝑃 (𝑦) - probability of class 𝑦, 𝑃 (𝑋) - probability of features 𝑋.

1. Phase of training - Train and test subsets are picked from the dataset. Naive Bayes
Classifier calculates prior probabilities of each class 𝑦, based on the training set.

 For each feature 𝑥𝑖 classifier calculates the

likelihood 𝑃 (𝑥𝑖|𝑦), based on the training data.
2. Phase of predicting - Classifier computes the posterior probability:

, where evidence 𝑃 (x) is the total probability of observing

data x across all possible classes

Classifier selects the class 𝑦 with the highest posterior probability 𝑃 (𝑦|x) as the predicted class
for the new instance x

2.4. Support Vector Classification

Support Vector Machines (SVMs) are powerful learning models used for classification, regression, and
outlier detection tasks. The primary goal of SVMs is to find an optimal hyperplane that
separates data points of different classes with the maximum margin in a high-dimensional space. In
SVM, a hyperplane is a decision boundary separating data points into different classes in a
feature space. In binary classification (with 2 output classes), the hyperplane is (n-1)-dimensional
subspace of n-dimensional feature space.
The margin is the distance between the hyperplane and the nearest data points (support vectors) from
each class. SVM goal’s to maximize this margin to improve robustness and generalization.

• Linear Separability: If data points can’t be linearly separated by a hyperplane, SVM
uses techniques like kernel functions to map data into higher-dimensional space, where
linear separation is possible. Kernel functions are crucial in SVMs - they compute the dot
product between transformed feature vectors, thus avoiding the explicit computation of the
transformation while still benefiting from the increased dimensionality. Commonly used
kernel functions: linear, polynomial, radial basis function.

• Optimization: SVM finds optimal hyperplane by solving an optimization problem that
minimizes the classification error, while maximizing the margin. For 2 output classes:

subject to:

where: 𝑤 - weight vector, 𝑏 - bias term, 𝑥𝑖 - feature vector of the 𝑖-th data point, 𝑦𝑖 - class label
of the 𝑖-th data point. The 𝑤 and 𝑏 that solve this problem determine the final
classifier, 𝑥 →− 𝑠𝑔𝑛(𝑤F 𝑥𝑖 + 𝑏), where 𝑠𝑔𝑛(·) is the sign function.

• Support Vectors: Support vectors are the data points that lie closest to the hyperplane
and directly influence its position. These points determine the margin and are crucial for
defining the decision boundary.

Support Vector Classification:

1. Phase of training - Train and test subsets are picked from the dataset. Kernel function
needs to be chosen before making predictions. SVM designates the optimal hyperplane
by solving the optimization problem. The Algorithm identifies the support vectors that lie
on or near the margin.

2. Phase of predicting - For each new data point, SVM calculates its class based on its position
relative to the learned hyperplane. The decision function outputs the predicted class.

2.5. Stacking Classifier

A stacking classifier, also known as stacked generalization, is an ensemble learning technique
that combines multiple base classifiers to improve predictive performance. It operates by training a
meta-model on the predictions made by these base classifiers.

Figure 1: Scheme of Stacking Classifier

1. Phase of training - Main train (MTr) and main test (MTe) subsets are picked from the
dataset. MTr is splitted to train and test subsets. Each of base classifiers is trained on
the train subset and makes predictions. Meta learner is trained on the base classifiers
predictions.

2. Phase of predicting - Each of base classifiers makes predictions based on input features of MTe.
Meta learner makes final predictions based on base classifiers predictions.

Algorithm 1: Algorithm - Stacking Classifier
Data: estimators, final_estimator

1 Function fit(X_main_train, y_main_train) is
2 Split X_main_train, y_main_train into 4 subsets: X_train, X_test, y_train, y_test
3 LIST base_predictions ← []
4 foreach e ∈ estimators do
5 e.fit(X_train, y_train)
6 pred ← e.predict(X_test)
7 base_predictions.append(pred)

8 base_predictions ← column_stack(base_predictions)
9 final_estimator.fit(base_predictions)

10 Function predict(X_test, y_test) is
11 LIST test_base_predictions ← []
12 foreach e ∈ estimators do
13 base_pred ← e.predict(X_test)
14 test_base_predictions.append(base_pred)

15 X_final ← column_stack(base_predictions)
16 return final_estimator.predict(X_final)

3. Experiments

3.1. Performance metrics

In this work, the Stacking Classifier has been used to combine 3 other classifiers: Naive Bayes
Classifier, KNN Classifier and Support Vector Classifier. There are 4 possible outcomes of the
predictions made by the classifier during binary classification: True Positive (TP) - occurs
when classifier predicts a positive (true) outcome, and the actual outcome is indeed positive. True
Negative (TN) - occurs when classifier predicts a negative (false) outcome, and the actual outcome
is indeed negative. False Positive (FP) - occurs when classifier predicts a positive (true)
outcome, and the actual outcome is negative. False Negative (FN) - occurs when classifier predicts
a negative (false) outcome, and the actual outcome is positive. The following metrics have been
used to measure the performance of classifiers: Accuracy is the proportion of correctly classified
instances (both true positives and true negatives) among all instances.

Precision is the proportion of true positive predictions (correctly predicted positive instances)
among all instances predicted as positive.

Recall is the proportion of true positive predictions (correctly predicted positive instances)
among all actual positive instances.

F1 Score is the harmonic mean of precision and recall, providing a balance between the two
metrics.

Confusion matrix is a table that summarizes the performance of a classification model by listing the
counts of true positives, false positives, true negatives, and false negatives.

Algorithm 2: Algorithm - Label Encoder
1 Function LabelEncoding(df: DataFrame) is
2 foreach column IN df.columns do
3 LIST unique_values ← UNIQUE_VALUES(df[column])
4 DICT col_map ← {}
5 foreach unique_value IN unique_values do
6 col_map[unique_value] ← INDEX(unique_values, unique_value)

7 foreach row IN df do
8 df[colum][row] = col_map[df[column][row]]

9 return df

3.2. Preparing dataset

• Encoding - Encoding categorical data is a crucial step in preparing dataset for machine
learning models. Label Encoding assigns a unique integer to each category.

• Normalization (scaling) is a process, which brings all features to a similar scale or range.
Scaling is performed to ensure that certain features do not dominate solely, because they
have larger magnitudes. Scaling may also improve computing speed and performance.
One of commonly used scaling method is min-max normalization.

• Splitting a dataset into training and testing subsets is a fundamental practice in machine
learning to evaluate the performance of predictive models. This process helps ensure
that the model generalizes well to new, unseen data. One of common splitting strategy is
holdout method - dividing original dataset into two subsets: training subset and testing
subset, typically in ratio 70:30 or 80:20.

3.3. Dataset

Adult Census Income dataset contains data from 1994, extracted by Barry Becker from US Census
database. Records, that did not meet the following dependency have been removed from the
original database: ((AAGE>16)&&(AGI>100)&&(AFNLWGT>1)&&(HRSWK>0)), where AAGE -
represents a person’s age, AGI - Adjusted Gross Income, AFNLWGHT - Final weight - number
of people represented by an entry, HRSWK - number of hours worked per week. As a result,
dataset containing 32651 rows and 15 columns has been created. The source of the data is
http:\\kaggle.com [1].

3.4. Testing setup

In this section, we present the results of four conducted tests. The tests were performed on both
unscaled and scaled data. For each dataset, we applied two splits: 80/20 and 70/30 for training and
testing sets. Each test will evaluate the impact of scaling and different split ratios on model
accuracy.

Performance of classifiers for unscaled data with an 80/20 split (Figure 3-2a) varied across
different metrics: GaussianNB achieved an average accuracy of 78.72%, with a precision of
64.83%, recall of 32.04%, and an F1 score of 42.80%. KNN showed an average accuracy of 73.27%,

http://kaggle.com/

(a)Confusion matrix for data split 80/20 with-
out scaling

(b)Confusion matrix for data split 70/30 with-
out scaling

(c)Confusion matrix for data split 80/20 after
scaling

(d)Confusion matrix for data split 70/30 after
scaling

Figure 2: Comparison of confusion matrices for different data splits and scaling methods

with a precision of 29.47%, recall of 5.13%, and an F1 score of 8.70%. SVC attained an average
accuracy of 75.07%, however, precision, recall, and F1 score were 0% due to no false negatives and
true positives. The Stacking Classifier obtained identical results to GaussianNB.

Performance of classifiers for unscaled data with an 70/30 split (Figure 4-2b) varied across
different metrics: GaussianNB and Stacking Classifier demonstrate comparable performance,
achieving an average accuracy of 78.72%, precision of 64.01%, recall of 33.30%, and F1 score of
43.74%. Their confusion matrices exhibit similar patterns with moderate true positive and false
negative values. However, KNN performs less effectively with an average accuracy of 73.21%,
precision of 28.48%, recall of 5.05%, and F1 score of 8.55%, indicating higher misclassification rates. On the
other hand, SVC, despite achieving an accuracy of 75.11%, fails to provide meaningful
precision, recall, or F1 score due to classifying all instances as true negative or false positive.

In this analysis, we examine the performance of classifiers on normalized data with an 80/20
split (Figure 5-2c).KNN, SVC, and Stacking Classifier achieved better results than GaussianNB,
with higher values of accuracy, precision, and F1 score. KNN showed the highest average
accuracy at 81.32%, while SVC and Stacking Classifier attained accuracies of 81.44% and 81.24%

Figure 3: Results for data split 80/20 without scaling

Figure 4: Results for data splitted 70/30 without scaling

respectively. Despite differences in performance, all three classifiers demonstrated a tendency to
better recognize positive instances compared to GaussianNB, particularly evident in the
reduced number of false negatives.

The evaluation of classifiers on normalized data with an 70/30 split (Figure 6-2d) indicates
that KNN, SVC, and Stacking Classifier outperform GaussianNB in terms of accuracy, precision,

recall, and F1 score. KNN exhibits the highest average accuracy of 81.42%, with SVC and Stacking
Classifier closely following, achieving accuracies of 81.85% and 81.52% respectively.

Figure 5: Results for data splitted 80/20 after scaling

Figure 6: Results for data splitted 70/30 after scaling

4. Conclusion

Usage of the Stacking Classifier results in increase, especially for not scaled data, in the F1
metric score - this indicates that the classification model has a good balance between precision and
recall, meaning it performs well in correctly identifying positive instances while minimizing false
positives and false negatives. Higher F1 score signifies a more reliable and effective model,
especially in situations where there is an imbalance in the classes or when both types of errors
(false positives and false negatives) are critical to consider.
To summarize, using the Stacking Classifier may increase predictive performance and reliability, at
the expense of computation time.

References

[1] B. B. Ronny Kohavi, Adult census income, https://www.kaggle.com/datasets/uciml/adult-
census-income (1994).

[2] M. Woźniak, M. Wieczorek, J. Siłka, Bilstm deep neural network model for imbalanced
medical data of iot systems, Future Generation Computer Systems 141 (2023) 489–499.

[3] G. P. Kanna, S. J. Kumar, Y. Kumar, A. Changela, M. Woźniak, J. Shafi, M. F. Ijaz,
Advanced deep learning techniques for early disease prediction in cauliflower plants, Scientific
Reports 13 (2023) 18475.

[4] D. Połap, G. Srivastava, A. Jaszcz, Energy consumption prediction model for smart homes
via decentralized federated learning with lstm, IEEE Transactions on Consumer Electronics
(2023).

[5] C. Zhang, H. Hu, J. Ji, K. Liu, X. Xia, M. S. Nazir, T. Peng, An evolutionary stacked
generalization model based on deep learning and improved grasshopper optimization
algorithm for predicting the remaining useful life of pemfc, Applied Energy 330 (2023)
120333.

[6] W. Fu, Y. Fu, B. Li, H. Zhang, X. Zhang, J. Liu, A compound framework incorporating
improved outlier detection and correction, vmd, weight-based stacked generalization with
enhanced desma for multi-step short-term wind speed forecasting, Applied Energy 348
(2023) 121587.

[7] Y. Xie, W. Sun, M. Ren, S. Chen, Z. Huang, X. Pan, Stacking ensemble learning models
for daily runoff prediction using 1d and 2d cnns, Expert Systems with Applications 217 (2023)
119469.

http://www.kaggle.com/datasets/uciml/adult-

	1. Introduction
	2. Methodology
	2.1. Machine Learning Classifier
	2.2. K-Nearest Neighbors Classifier
	2.3. Naive Bayes Classifier
	2.4. Support Vector Classification
	2.5. Stacking Classifier

	3. Experiments
	3.1. Performance metrics
	3.2. Preparing dataset
	3.3. Dataset
	3.4. Testing setup

	4. Conclusion
	References

