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Abstract 
This study explores the application of deep learning architectures for image classification 
and segmentation in poultry farms with overlapping objects. Early detection of fallen birds 
is crucial for preventing disease outbreaks and maintaining animal welfare. We investigate 
the  efficacy  of  various  architectures,  including  U-Net,  mU-Net,  SegNet,  and  O-Net,  for 
segmenting live and dead birds within poultry farm real time images. Our experiments, 
conducted on a dataset of 1805 images with varying lighting, distances, and object numbers, 
reveal that U-Net achieves the highest Dice coefficient (0.95128) for segmentation accuracy. 
We further demonstrate the potential of these models for classifying individual birds as 
alive  or  dead,  with  U-Net  reaching  a  classification  accuracy  of  88.938%.  The  findings 
suggest that AI-powered image segmentation holds promise for enhancing poultry farm 
management by enabling early detection of deceased birds and fostering improved animal 
health and welfare.
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1. Introduction

Having sufficient production capacity to manufacture high-quality and safe products stands as a 
crucial element in ensuring the effective functioning of the poultry industry. Upholding the sector's 
efficiency entails  not only maintaining favorable conditions for poultry farming that align with 
animal  welfare  standards  but  also  overseeing  the  technological  aspects  of  production  and 
proactively  addressing  health  concerns  among  poultry  to  prevent  losses  during  the  initial 
production stages. The concept of sustainable production has garnered significant attention of late, 
prompting  analyses  of  the  environmental  repercussions  of  poultry  meat  production  and  the 
advancement of production techniques in accordance with the European Green Deal strategy and 
strategic  directives  from  the  Food  and  Agriculture  Organization  and  the  European  Feed 
Manufacturers’ Federation. These directives prioritize efforts aimed at mitigating odor dispersal and 
greenhouse gas emissions, particularly targeting harmful gases like ammonia (NH3) and hydrogen 
sulfide (H2S),  along with greenhouse gases such as  CO2,  CH4,  and N2O. Furthermore,  poultry 
farming  contributes  to  environmental  contamination  through  the  emission  of  volatile  organic 
compounds  (VOCs),  which  constitute  another  category  of  pollutants.  The  organic  compounds 
released during poultry meat  production further  compound environmental  pollution by leaving 
residues of both macro and trace elements. The health of the flock can be indicated by the death rate 
of  individuals  and  early  detection  of  dead  birds  can  prevent  further  spread  of  diseases.  The 
advancements in the AI-driven technologies can help detect and remove fallen birds in the first 
moments after death. 
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The adoption and integration of AI technology within the agricultural domain are experiencing 
rapid growth, driven by the escalating global population and the consequent rise in food demand. 
Various  factors  including climate  change,  population growth,  increased  food consumption,  and 
employment  challenges  have  fueled  this  trend  [1,  2,  3].  Acknowledging  the  pressing  need  for 
modern and advanced technologies, the agricultural sector is increasingly embracing AI solutions 
[3, 4]. Consequently, the significance of AI in poultry farming has become more pronounced  [5]. 
Within the poultry industry, the utilization of image processing technologies has yielded notable 
outcomes [6, 7, 8, 9]. Nonetheless, data collection and acquisition often hinge on Internet of Things 
(IoT) technologies.
 

2. Related Works

Overlapping  object  segmentation  is  a  crucial  task  for  detecting  anomalies  in  bird  health  in 
poultry farms. It  helps to detect fallen birds in the early moments after their death in order to 
prevent  further  spread of  disease  to  other  hens.  Several  studies  are  performed trying to  solve 
overlapping object problem, however, there is lack of study in the field of poultry farming. Different 
studies use deep learning, algorithm based or combined approaches. 

The  authors  of  [10] study  addresses  the  challenge  of  segmenting  overlapping  nuclei  by 
combining marker-controlled watershed (MCW)  [11] with convolutional neural networks (CNN). 
[10] authors  introduced  a  multi-task  network  architecture  to  simultaneously  learn  foreground, 
interval, and marker information from original images. After first step [10] integrated marker and 
interval results with the MCW method for post-processing to separate overlapping nuclei in the 
foreground and finally extracts the mask of nuclei interval and marker from foreground annotations 
for  network  training.  Applying  those  steps  [10] authors  compared  different  architectures  and 
presented the results. Proposed architecture reached 0.781 Object-level dice index (ODI), which is on 
average 6.17% higher than other architectures, such as U-Net [10]. 

Similarly,  [12] authors  uses  CNN base  approach  for  overlapping  object  segmentation.  They 
proposed modified mask R-CNN structure [13] and tested it for an apple picking robots  [12]. The 
proposed architecture uses ResNet [14] combined with DenseNet [15] instead of the typical mask R-
CNN  backbone  [12].  According  to  the  authors  this  helps  get  better  results  while  using  less 
parameters [12]. This approach helped to reach 94.59% precision rate for overlapping fruits [12]. 

For  chicken image segmentation  [16] authors  proposed a  multi-scale  attention based neural 
network  (MSAnet),  which  reaches  94.6%  accuracy,  that  is  2.6%  better  than  U-Net  using  their 
collected dataset. MSAnet consist of four main parts: encoder-decoder, multi-scale module for image 
pyramid construction, double attention module and combined loss [16]. This model is trained using 
330 annotated images, from which 60% - for training and others – testing [16].  

3. Materials and Methods

3.1. Image Semantic Segmentation

Image  segmentation  stands  as  a  crucial  technique  employed  to  distinguish  and  categorize 
individual objects within an image by allocating each pixel to a specific class. Initially, prevalent 
segmentation methods included thresholding, histogram-based clustering, and k-means clustering. 
However,  over  time,  numerous  advanced  deep  learning  algorithms  have  emerged,  significantly 
enhancing the efficacy of this process. 

An exemplary illustration is the U-Net, initially crafted for medical image segmentation, marking 
one of the pioneering deep learning models tailored explicitly for segmentation endeavors [17, 18, 
19].  Furthermore,  the  U-Net  framework  finds  extensive  utility  across  various  iterations  of 
Generative Adversarial Networks (GANs), such as the Pix2Pix generator  [17, 18, 19]. The model's 
architecture is  relatively uncomplicated,  featuring an encoder tasked with downsampling and a 
decoder  assigned  with  upsampling  duties  [17,  18,  19].  Moreover,  the  incorporation  of  skip 
connections serves to bolster the structural integrity of the model [17, 18, 19]. Similar to the original 



U-Net  model,  the  modified  U-Net  framework  (mU-Net)  comprises  two  consecutive  paths  for 
encoding and decoding  [20]. The encoder path, similar to the original U-Net, captures contextual 
features,  while the symmetric and expanding decoder path facilitates segment localization  [20]. 
However, mU-Net incorporates a Pix2Pix block  [21]. Initially employed in generative adversarial 
networks for  its  ability  to generate high-quality images across  various image translation tasks, 
Pix2Pix has since become widely utilized as an upsampling block in a diverse array of applications 
[21]. In the final stage of the mU-Net model, a simple 2D convolution layer is utilized to map the 
extracted 64 features to the desired segmentation classes [20, 22, 23]. 

SegNet architecture is specifically engineered to excel in pixel-wise semantic segmentation tasks 
with a focus on efficiency [24, 25, 26]. It is primarily tailored for applications involving road scene 
understanding, where it is essential to model appearance (e.g., road, buildings), shape (e.g., cars, 
pedestrians), and grasp spatial relationships (context) among various classes like road and sidewalk 
[24, 25, 26]. In typical road scenes, the bulk of pixels pertain to major classes such as road and 
buildings, necessitating the generation of smooth segmentations [24, 25, 26]. The encoder network 
in SegNet closely resembles the convolutional layers found in VGG16 [24, 25, 26]. By eliminating 
the fully connected layers of VGG16, the SegNet encoder network becomes notably more compact 
and easier to train compared to many recent architectures [24, 25, 26]. A pivotal element of SegNet 
lies in its decoder network, comprising a hierarchy of decoders, each corresponding to an encoder 
[24, 25, 26]. These decoders utilize max-pooling indices received from their respective encoders to 
conduct non-linear upsampling of input feature maps, facilitating the segmentation process [24, 25, 
26]. 

Drawing upon the strengths of Convolutional Neural Networks (CNNs) and transformers, the O-
Net architecture was proposed, aiming to integrate both architectures for the acquisition of global 
and local contextual features [27, 28, 29, 30]. In this architecture a CNN and a Swin Transformer as 
the encoder are merged, followed by routing them into separate decoders: one CNN-based and one 
Swin  Transformer-based  [27,  28,  29,  30].  Subsequently,  the  outcomes  from  both  decoders  are 
merged to yield the ultimate result  [27, 28, 29, 30]. By leveraging the benefits of both CNNs and 
transformers,  this  network  holds  the  potential  to  enhance  the  efficacy  of  medical  image 
segmentation tasks [27, 28, 29, 30].

3.2. Accuracy Evaluation Metrics

To evaluate the proposed method and compare different  approaches following metrics  were 
chosen: Accuracy (ACC) and The Dice coefficient (Dice). 

Accuracy (1) is the measure of how well a model correctly predicts outcomes. It is often defined 
as the ratio of the number of correct predictions to the total number of predictions made. In image 
segmentation the accuracy is used pixelwise.

ACC=Number of correct predictions
Number of total predictions

×100% , (1)

The Dice coefficient (2) bears a close resemblance to the Intersection over Union (IoU) metric. 
Nonetheless, it is computed by doubling the intersection of two sets and then dividing it by the sum 
of their sizes. The Dice coefficient spans from 0 to 1, with a score of 1 signifying a flawless overlap 
or segmentation alignment, whereas a score of 0 indicates no overlap whatsoever. 

Dice=
2×|A∩B|
|A|+|B|

, (2)

Intersection over Union (IoU) (3), a metric commonly used in machine learning for evaluating 
the performance of segmentation algorithms. It measures the overlap between two bounding boxes 
or segmentation masks by computing the ratio of the area of intersection to the area of the union of 
the two regions. Higher IoU values indicate better agreement between the predicted and ground 
truth regions.



IoU=
|A∩B|
|A∪ B|

, (3)

Mean  Intersection  over  Union  (mIoU)  (4)  is  a  commonly  used  metric  in  machine  learning, 
particularly in tasks like semantic segmentation, where it's used to evaluate the performance of 
models  that  segment  images  into  different  classes  or  categories.To  calculate  mIoU,  you  first 
compute  the  Intersection  over  Union  (IoU)  for  each  class  in  your  dataset.  Then,  you  take  the 
average of these IoU values across all classes to get the mean IoU.

mIoU= 1
N∑

i=1

N

IoU i , (4)

4. Data

The experiments were conducted using the collected images from two different poultry farms. 
The dataset consists of 361 images and was labeled using different color masks for alive and dead 
birds, the split between images containing dead birds and without them can be seen in the Table 1. 

The dataset contains real images from poultry farm using different perspectives, distance and 
conditions. The images of the size 1920×1088 pixels. Each image contains from 2 to 120 different 
objects. The mask was created by manually annotating contours of objects. The overlapping objects 
can occur when hens are standing very close from each other, or one bird on the construct of the 
farm hiding another bird behind.

Table 1
Structure of the dataset.

Image description Initial Number of Images Number of Images after 
Augmentation

Images containing only alive birds 196 980
Images containing only dead or dead 

and alive birds
165 825

Total 361 1805

For the images in the dataset five different augmentations were applied in order to expand it. Those 
augmentations  consists  of  brightness,  gamma  and  hue  adjustments  and  flipping  the  image  in 
horizontal and vertical directions.

(a) (b)
Figure  1.  Example images: (a) image containing dead and alive birds; (b) image containing only 
alive birds.



5. Experimental Results

5.1. Segmentation Results

To investigate segmentation methods, we implemented four algorithms: U-Net, O-Net, SegNet 
and mU-Net architectures. To find the best hyperparameters for each architecture, the experiments 
were  conducted.  In  the  Table  2  presented  the  Dice  coefficient  for  each  test.  First  of  all,  four 
optimizers where used, while Batch size was defaulted to 1. During this experiment, the best results 
for each algorithms except mU-Net got RMSprop optimizer, in the case of mU-Net – Adam. When 
the best optimizer for each algorithm was discovered, it is used for batch size experiments. During 
batch size experiments the best results were achieved using 8 images for a batch, except U-Net with 
16 batch size. After those tests, each architecture was changed by switching activation function in 
the  last  layer.  In  this  experiment,  we  employed  softmax and  sigmoid  activation  functions  and 
compared the results with those obtained when no activation functions were applied in the final 
layer. The best results were achieved in each architecture using softmax activation function, except 
in case of SegNet were sigmoid reached marginally better results.

Table 2
Dice coefficient for hyperparameter tuning.

Algorithm Optimizer Batch size Activation function
Adam RMSprop Adamax SGD 4 8 16 Softmax Sigmoid None

SegNet 0.6657 0.6748 0.6648 0.6691 0.6725 0.6921 0.6787 0.6645 0.7031 0.6864
O-Net 0.8268 0.8547 0.8357 0.8367 0.8694 0.8751 0.8546 0.8963 0.8647 0.8934

mU-Net 0.9127 0.8854 0.8769 0.9016 0.9062 0.9267 0.9135 0.9364 0.9359 0.9246
U-Net 0.9145 0.9386 0.8932 0.9284 0.9168 0.9349 0.9468 0.9513 0.9438 0.9495

Segmentation accuracy and The Dice coefficient are presented below in Table 3. The best Dice 
coefficient  was  achieved  with  U-Net  architecture  (dice  0.95128);  however,  mU-Net  has  similar 
results (0.93637). Similar pattern can be seen by comparing MIoU values. U-Net reached best results 
(0.90675), while SegNet achieved worst results (0.66294). The segmentation task in our study is quite 
challenging  under  realistic  conditions,  although  it  is  also  relevant  for  poultry  farms  in  other 
countries. But since there is no publicly available chicken dataset for the segmentation task, the 
dataset is constructed individually for each study, and the results are highly dependent on various 
conditions in poultry farm, technical details of the equipment (i.e. cameras), the AI model selected, 
etc. In one of the research in China, all the chicken images (white color hens) are captured from the 
top  viewing  by  a  monocular  camera  with  24  frames  per  second  (fps)  capturing  images  with 
resolution 790 × 930. They utilized two distinct datasets of cage-free chickens, one consisting of 
source images and the other of thermal images. In USA study to assess segmentation performance 
of  segment anything model (SAM) on representative chicken segmentation tasks infrared thermal 
images have been employed.  However, when flock density exceeds 9 birds/m2, SAM struggles to 
segment individual chickens due to their overlapping bodies. The comparison table (see Table3) of 
segmentation  results  with  our  selected  models  and  dataset  and  state-of-the-art  approaches  is 
provided below.

Table 3
The comparison table of chicken segmentation results  with other approaches and datasets.

Architecture Dice MIoU

Our data set

SegNet 0.703 0.663
O-Net 0.896 0.843

mU-Net 0.936 0.883

U-Net 0.951 0.907



MSAnet [16] - 0.877
SAM: source image [9] - 0.948
SAM: thermogram [9] - 0.917

In the image below (Figure 2) are presented the training loss and accuracy for each architecture. 
For the loss, the Binary cross entropy is used. From the graphs the trend emerges that shows that U-
Net is the best architecture in this field. It is worth to notice, that some interesting jumps occurred 
in the loss of SegNet training, however, they quickly stabilized only after one epoch.

(a) b)
Figure 2. Training loss a) and accuracy b) for analyzed architectures.

The most difficult scenario to segmentate is when a hen is nearer to the camera while perching 
on the poultry farm structural elements obscuring other birds below it. The situation is visible in 
Figure 1. (b). Another difficulty is arising when chicken stands under feeding line, separating itself 
into two different objects in the camera view. The segmentation results of U-Net architecture are 
presented in Figure 3. From the figure below it is possible to identify, that the U-Net model reaches 
close results to the created mask. However, there are some differences, mainly that trained model 
can identify more individual chickens from image, than the label maker could, due to the mass 
amount of birds and slight changes in between birds. 

Original image True mask Predicted mask

Figure 3. The segmentation results using U-Net architecture.



5.2. Classification Results

Trained models used in 5.1.  section differentiates between dead and alive birds by assigning 
different class label for each pixel. Classification accuracy is presented below in Table 4. The best 
accuracy was achieved with U-Net  architecture (88.938%);  however,  mU-Net has similar  results 
(87.394%).  Similar  pattern  can  be  seen  by  comparing  mIoU values.  U-Net  reached  best  results 
(0.86751), while SegNet achieved worst results (0.63467). However, the difference between mU-Net 
and U-net got even smaller while comparing mIoU results.

Table 4
Selected metric values for dead bird classification results.

Model Accuracy, % mIoU
SegNet 64.928 0.635
O-Net 85.745 0.818

mU-Net 87.394 0.860

U-Net 88.938 0.867

Figure 4 displays the classification results. The object of dead chicken is assigned correctly (red 
colour); however, some boarder pixels are confused and with low certainty assigned to a wrong 
class.  Comparing  the  masks,  there  are  some  differences  in  the  precision  in  which  details  age 
detected from the background. Trained U-Net model presents more rounded contours and loses 
some edge pixels. Due to this reason the accuracy drops.

Figure 4. The classification results using U-Net architecture.

6. Conclusion

This study explored the use of different deep learning architectures for image classification and 
segmentation tasks on poultry farms, focusing on the use of artificial intelligence to facilitate early 
detection of dead birds, thereby ensuring animal welfare standards and reducing the risk of disease 
transmission. The main findings revealed the effectiveness of deep learning, in particular the U-Net 
architecture,  in  accurately  segmenting  live  and  dead  birds  in  farm  images,  achieving  a  Dice 



coefficient of 0.95128. Furthermore, the trained models successfully classified individual birds as 
alive or dead, with U-Net again leading the way with a classification accuracy of 88.938%. These 
results  underline the transformative potential  of  AI-driven image segmentation in poultry farm 
management, enabling the rapid detection of dead birds and the timely initiation of interventions to 
control diseases and improve animal health and welfare. This study highlights the important role of 
AI  contactless  technologies  in  promoting  sustainable  and  ethical  poultry  farming  practices. 
However,  it  cloud be noted,  that  a  large number of  hens can create significant  object  overlap, 
making it challenging for the system to differentiate individual birds. This is especially true in low 
illumination and in the current camera placement. Lowering the cameras may seem to give a better 
view, but it creates another problem - feather accumulation. Chicken feathers, which are abundant, 
are likely to cover the lenses in a lower position and would require frequent cleaning and additional 
maintenance.

In future work we a planning to train the AI system to differentiate between healthy hens, hens 
exhibiting  abnormal  behavior,  and  dead  hens.  .  Achieving  this  goal  entails  compiling  a 
comprehensive  dataset  comprising  labeled  videos  or  images  depicting  hens  in  various  states. 
Consequently, we have planned ongoing monitoring activities for a minimum of six months. Our 
strategy involves integrating algorithms designed to scrutinize hen behavior patterns. This process 
may  encompass  tracking  movement  patterns,  recognizing  postures,  and  observing  interactions 
among hens to detect potential health concerns. Additionally, we intend to explore the feasibility of 
amalgamating  visual  data  from  cameras  with  data  from  environmental  sensors.  Monitoring 
parameters such as temperature, humidity, and ammonia levels could provide valuable insights into 
the well-being of the hens.
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