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Abstract
Time series analysis is a critical component in various fields such as finance, economics, climate science, 
and healthcare, where accurate forecasting and pattern recognition are paramount.  This research explores the 
application of recurrent neural networks (RNNs),  particularly Long Short-Term Memory (LSTM) 
networks, for time series prediction, using Google stock prices as a case study. The study begins with a 
comprehensive literature review, highlighting the evolution and advancements in RNN architectures, 
their theoretical foundations, and diverse applications in time series forecasting. Methodologically, this 
study outlines the data preprocessing techniques employed, including scaling and partitioning the dataset  into 
training and testing sets. The RNN model architecture is meticulously designed, featuring multiple LSTM 
layers and dropout regularization to prevent overfitting and enhance model robustness. The model is trained 
and evaluated using different metrics (MAE, MSE, RMSE). Empirical results demonstrate the efficacy of the 
RNN model in capturing the temporal dependencies and producing accurate forecasts of stock prices.
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1. Introduction

In  the  data-driven  decision-making  landscape,  time  series  analysis  is  essential  for  understanding 
sequential data across diverse domains. Traditionally, statistical methods like autoregressive 
models, moving averages, and exponential smoothing have been used to analyze time series 
data. However, these methods often fall short due to assumptions of linearity and stationarity, 
which are rarely met in real-world datasets characterized by nonlinearity and volatility.

The advent of deep learning, especially recurrent neural networks (RNNs), has transformed 
time series analysis. RNNs, with their recurrent connections and ability to process variable- 
length sequences, excel at capturing temporal dependencies in data. This study explores the 
application of RNNs for predicting Google’s stock prices. The goals of this study are:
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1. To develop a bespoke recurrent neural network model tailored specifically for time series 
analysis, with a focus on predicting Google stock prices; and
2. To empirically evaluate the performance of the proposed model using real-world financial 

data.
The  research  addresses  the  demand  for  reliable  predictive  models  in  financial  decision-making, 

considering challenges such as nonlinearity and irregularities in financial data. The study also 
examines methodological aspects like data preprocessing, model selection, hyperparameter 
tuning, and evaluation metrics, aiming to elucidate RNNs’ strengths and limitations in financial 
forecasting.

2. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed for process-  ing 
sequences of data. Unlike traditional feedforward neural networks, RNNs have connections that 
form directed cycles, allowing them to maintain a memory of previous inputs. This makes RNNs 
particularly well-suited for tasks where the order of data points is important, such as time 
series [1] forecasting, language modeling, and speech recognition.

2.1. Architecture of RNNs

The basic architecture of an RNN consists of a set of hidden states that are updated at each 
time step based on the current input and the previous hidden state. This can be mathematically 
described as follows:

Let 𝑥𝑡 be the input at time step 𝑡, ℎ𝑡 be the hidden state and ℎ𝑡−1 be the previous hidden state at 
time step 𝑡, and 𝑦𝑡 be the output at time step 𝑡. The equations governing the RNN are:

Here 𝑊ℎ and 𝑊𝑦 are the weight matrices for the input and output respectively.  𝑈ℎ is the  
weight matrix for the hidden state, 𝑏ℎ is the bias vector for the hidden state, 𝑏𝑦 is the bias vector for the 
output, 𝑓 is the activation function, often used for its nonlinear properties.

The below diagram 2.1 illustrates the architecture of a Recurrent Neural Network (RNN). On the 
left, the compact representation shows a single recurrent unit with input  𝑥, hidden state  ℎ,  and 
output  𝑦. The connections demonstrate how the hidden state  ℎ is influenced by the current  input 𝑥, 
previous hidden state (loop), and contributes to the output 𝑦.

On the right, the unfolded representation depicts how the RNN processes a sequence of 
inputs over time steps 𝑡 − 1, 𝑡, and 𝑡 + 1. Each time step 𝑡 has its own input 𝑥𝑡, hidden state ℎ𝑡, and output 
𝑦𝑡. The hidden state ℎ𝑡 is updated by the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡. The weight 
matrices 𝑈 , 𝑉 , and 𝑊 are shared across all time steps, illustrating the RNN’s ability to handle 
sequential data by maintaining and updating a memory of previous inputs.



Figure 2.1: RNN Architecture. [2]

2.2. Training Recurrent Neural Networks

Training an RNN involves adjusting the weights and biases to minimize the error between 
the predicted output and the actual target. This is typically done using the backpropagation 
through time (BPTT) algorithm, which is an extension of the backpropagation algorithm used 
in feedforward neural networks.

Forward Pass: During the forward pass, the network processes the input sequence from
the first time step to the last, updating the hidden states and producing the outputs. The loss is 
calculated by comparing the predicted outputs to the actual targets.

Let ℒ be the loss function. The total loss over a sequence of length 𝑇 is given by:

where ℓ is the loss function (i.e. Mean Squared Error) at each time step, 𝑦𝑡 is the actual target, and 𝑦ˆ 𝑡  

is the predicted output. The loss function is given by:

Backward Pass (Backpropagation Through Time): During the backward pass, the gradi- 
ents of the loss with respect to the weights are calculated by propagating the error backwards 
through the network. The gradients are then used to update the weights.

The gradients for the weights and biases can be computed as follows:

 



For the hidden weights and biases, assuming 𝑓′ is the derivative of 𝑓 :

Algorithm 1 Training RNN using BPTT
1: Initialize weights and biases: 𝑊ℎ, 𝑈ℎ, 𝑏ℎ, 𝑊𝑦, 𝑏𝑦 2: 
for each training sequence in dataset do
3: Initialize loss to 0
4: for 𝑡 = 1 to 𝑇 do
5: ℎ𝑡 ← 𝑓 (𝑊ℎ · 𝑥𝑡 + 𝑈ℎ · ℎ𝑡−1 + 𝑏ℎ)
6: 𝑦𝑡 ← 𝑊𝑦 · ℎ𝑡 + 𝑏𝑦
7: 𝑙𝑜𝑠𝑠 ← 𝑙𝑜𝑠𝑠 + 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑦𝑡, 𝑦^𝑡)
8: end for
9: gradients ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠(𝑙𝑜𝑠𝑠)

10: update_weights_and_biases(gradients)
11: end for

Training Recurrent Neural Networks (RNNs) using Backpropagation Through Time (BPTT) 
involves several  steps. Initially,  the weights  𝑊ℎ,  𝑈ℎ,  𝑏ℎ,  𝑊𝑦,  and  𝑏𝑦 are randomly initialized. For each 
training sequence, a forward pass computes hidden states  ℎ𝑡 using an activation function (e.g., 
tanh, ReLU) applied to the current inputs and previous hidden states, weighted by 𝑊ℎ and
𝑈ℎ and shifted by bias 𝑏ℎ. Outputs 𝑦𝑡 are derived from ℎ𝑡 using 𝑊𝑦 and 𝑏𝑦. The loss is computed  by 
comparing predicted outputs with target values. A backward pass calculates the gradients of 
the loss with respect to the weights and biases, propagating the error backward through 
time. Weights and biases are updated using these gradients via an optimization algorithm like 
gradient descent. This iterative process refines the network parameters, minimizing loss and 
enhancing performance.

2.3. Long Short-Term Memory (LSTM)

LSTMs are a type of RNN designed to overcome the vanishing gradient problem [3]. They 
include special units called memory cells to store information over long periods.



An LSTM cell consists of three gates: input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑜𝑡).
The equations governing the LSTM cell are:

where 𝑥𝑡 is the input at time 𝑡, ℎ𝑡−1 is the previous hidden state, 𝑐𝑡 is the cell state,  𝜎 is the sigmoid 
function, and 𝑊 and 𝑏 are the weight matrices and bias vectors respectively.

3. Time Series Analysis

3.1. Introduction to Time Series

A time series is a sequence of data points typically measured at successive points in time, spaced  at 
uniform intervals. Time series analysis involves methods for analyzing time series data to 
extract meaningful statistics and other characteristics. Time series forecasting is the use of a 
model to predict future values based on previously observed values. Mathematically, a time 
series can be represented as:

where 𝑌 (𝑡) is the observed value at time 𝑡, 𝑇 (𝑡) is the trend component, 𝑆(𝑡) is the seasonal component, 𝐶(𝑡) 
is the cyclic component, and 𝐼(𝑡) is the irregular component [4].

Components  of  Time  Series:  Time  series  data  can  be  decomposed  into  several  components,  each 
representing an underlying pattern or structure in the data:

Trend (T): The long-term progression of the series. It represents the general direction in which the data  
is moving over a long period.

Seasonality (S): The repeating short-term cycle in the data. This is often observed in data with periodic 
fluctuations, such as monthly sales data.

Cyclic (C): Long-term oscillations in the data, typically spanning several years.

Irregular (I): The random noise component which cannot be attributed to the other components.



RNNs have found widespread applications in time series analysis, where the objective is to 
analyze historical data and make predictions about future trends. Some common applications of 
RNNs in time series analysis include: stock price prediction, weather forecasting, economic 
modeling, signal processing [5], health monitoring and diagnosis.

3.2. Time Series Analysis Methods

Several methods are employed to analyze time series data:
Moving Average: The moving average method smooths the data to identify the trend 

component by averaging adjacent data points. The moving average at time 𝑡 for a window size
𝑤 is given by: 

Exponential Smoothing: Exponential smoothing assigns exponentially decreasing weights to 
past observations. The simple exponential smoothing forecast for time  𝑡 + 1 is:

where 𝛼 is the smoothing parameter (0 < 𝛼 < 1) [6].
Autoregressive Integrated Moving Average (ARIMA): The ARIMA model combines 

autoregression (AR), differencing (I), and moving average (MA) to model time series data:

where 𝑌𝑡 is the differenced series, 𝑐 is a constant, 𝜑 represents the autoregressive parameters, 𝜃
represents the moving average parameters, and 𝜖𝑡 is the white noise error term [7].

4. Related Work

The theoretical underpinnings of recurrent neural networks trace back to the foundational 
concepts  of  artificial  neural  networks  and  computational  neuroscience.  Early  research  in  neural  
network theory laid the groundwork for understanding the principles of learning, representation, and 
computation in interconnected networks of artificial neurons [8]. The introduction of 
recurrent  connections  endowed  neural  networks  with  the  ability  to  process  sequential  data  and 
capture temporal dependencies, paving the way for the development of RNNs [9].

Over the years, several architectural variants of recurrent neural networks have been proposed  to 
address the challenges of training deep networks and mitigating the issues of vanishing and 
exploding gradients. Among these variants, Long Short-Term Memory (LSTM) networks  and 
Gated Recurrent Unit (GRU) networks have emerged as prominent choices due to their 
ability to capture long-range dependencies and facilitate more stable training dynamics [10]. The 
architectural  design  principles  and  computational  mechanisms  underlying  LSTM  and  GRU 
networks  have  been  extensively  studied,  highlighting  their  strengths  and  limitations  in  modeling 
sequential data.



Recurrent neural networks have found widespread applications in time series analysis, span- 
ning various domains such as finance, economics, climate science, healthcare, and engineering 
[11]. In the context of financial time series analysis, RNNs have been extensively employed for 
stock price prediction, market trend forecasting, risk assessment, and algorithmic trading [12]. 
Similarly,  in  climate  science,  RNN-based  models  have  been  used  for  weather  forecasting,  climate 
modeling,  and environmental monitoring,  leveraging the temporal dependencies inherent in 
meteorological data [13]. Other applications include speech recognition, natural language 
processing, physiological signal analysis, and anomaly detection [5], where RNNs excel in 
capturing sequential patterns and extracting meaningful insights from temporal data.

Despite their versatility and effectiveness, recurrent neural networks are not without limita- 
tions. Challenges such as the vanishing gradient problem, the curse of dimensionality, overfitting, and 
computational  inefficiency pose significant hurdles in training deep RNN architectures on 
large-scale datasets [14]. Moreover, the interpretability of RNN-based models remains a 
concern, as the black-box nature of deep learning algorithms may hinder their adoption in 
domains where transparency and explainability are paramount.

Looking ahead, several avenues for future research and innovation in the field of RNNs for 
time series analysis can be identified. These include the development of hybrid architectures 
integrating RNNs with other deep learning techniques, advancements in optimization algorithms and 
regularization techniques, and efforts to enhance the interpretability and transparency of RNN-
based models [15]. Additionally, exploring applications in emerging domains such as 
healthcare, cybersecurity, and smart manufacturing holds promise for extending the scope and 
impact of RNN-based models in real-world scenarios.

5. Introduction of the Dataset

The dataset for this study comprises daily Google stock prices from March 21, 2019, to March 20, 2024, 
sourced from finance.yahoo.com. It includes 1259 observations of five key attributes: Open, High, Low, 
Close,  and Volume, representing different aspects of stock prices and trading volumes.  Significant 
variability and large standard deviations indicate considerable daily fluctuations and market 
volatility.  Quartile values highlight the distribution of stock prices and volumes,  showing 
moderate values with some extreme fluctuations. This dataset is essential for time  series 
analysis and forecasting, aiding in understanding stock behavior and improving prediction  accuracy 
using RNN models.

5.1. Correlation Matrix

The correlation matrix provides a numerical summary of the linear relationships between pairs of 
variables in the dataset: Open, High, Low, Close, and Volume. Each value in the matrix ranges 
from -1 to 1, where 1 indicates a perfect positive correlation, -1 indicates a perfect negative 
correlation, and 0 indicates no correlation.

Interpretation: The prices show extremely high positive correlations, close to 1, indicating
they move together. Trading volume has a weak negative correlation with prices, suggesting 
that higher volumes may slightly correspond to lower prices. This correlation matrix is crucial



Figure 5.1: Correlation  Matrix  shows  strong  positive  correlations  between  the  price  variables  and 
moderately negative correlations between the volume and price variables.

for  understanding  relationships  between  stock  prices  and  trading  volume,  informing  predictive 
modeling and analysis  in  financial  studies,  as  it  highlights  typical  price  movements  and potential  
influences of large trades. [Figure 5.1]

5.2. Histogram Plot

The histogram displays the distribution of five variables: Open, High, Low, Close, and Volume. 
Each histogram provides insight into the frequency and distribution of these values over the 
observed period. The histogram for the ‘Open’ prices shows a distribution that ranges from 
The histogram for ‘Open’ prices ranges from about 50 to 150, with distinct clusters peaking 
around 60, 80, 100, and 140, indicating common opening price ranges. ‘High’ prices follow a 
similar pattern, suggesting the highest prices during trading often align with opening prices. 
The ‘Low’ prices histogram also shows clustering at similar levels, indicating that the lowest 
prices frequently fell within these groups. ‘Close’ prices follow the same distribution pattern, 
with peaks at 60, 80, 100, and 140, suggesting consistency and stability across opening, high, 
low, and closing prices during trading periods.

The ‘Volume’ histogram, however, shows a different pattern, ranging from 0 to approximately 1.2e8, 
with a significant peak around 0.2e8, indicating many trading periods had this volume  level. 
There is a noticeable decrease in frequency as the volume increases, suggesting fewer periods 
with extremely high trading volumes.[Figure 5.2]



Figure 5.2: Histogram Plot of all columns

6. Methodology

This chapter outlines the methodology employed to develop and evaluate a Recurrent Neural 
Network (RNN) for time series analysis, specifically for predicting Google stock prices. The 
approach involves several key steps: preprocessing, model architecture design, training, and 
evaluation. Each step is described in detail to provide a comprehensive understanding of the 
processes involved in this study.

6.1. Data Preprocessing

Data preprocessing is crucial for training the RNN model, involving several steps. The dataset is 
first loaded into a pandas DataFrame for structured manipulation and analysis, followed by 
inspecting its structure, checking for missing values, and reviewing basic statistics. The data is 
then split into training (80%) and testing (20%) sets to evaluate the model’s performance on 
unseen data. The ’Open’ price is chosen for predicting future stock prices, and Min-Max 
normalization  scales  the  values  between  0  and  1,  aiding  the  RNN model’s  convergence. Training 
sequences of 60 time steps are created, with each sequence comprising ’Open’ prices for 60 
consecutive days and the target being the ’Open’ price of the next day, capturing temporal 
dependencies. Finally, testing sequences are prepared from the combined training and testing 
’Open’ prices, ensuring continuity and smooth transition in the time series.

6.2. Model Architecture and Process

The RNN model is designed using a stacked Long Short-Term Memory (LSTM) network. LSTMs 
are chosen for their ability to learn long-term dependencies, making them suitable for time 
series prediction. The model consists of several LSTM layers, each followed by a Dropout layer to 
prevent overfitting. The final layer is a Dense layer that outputs the predicted stock price.



LSTM Layers and Dropout: The Dropout layers, which randomly set a fraction of the input 
units to 0 during training, prevent overfitting while each LSTM layer records the temporal 
dependencies in the stock price data.

Compiling the Model: The Adam optimizer is used to compile the model, and the MSE
(Mean Squared Error)  is  used as the loss function. The Adam optimizer is  chosen for its  adaptive 
learning rate capabilities, which help in faster and more efficient convergence.

Model Training: The model is trained with a batch size of 32 across 100 epochs. This choice
balances training time with the model’s ability to learn from the data effectively.

Model Evaluation: The model’s performance is assessed using the testing set. Predicted 
stock prices are compared with actual prices,  and the Mean Absolute Error (MAE),  Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE) are used to evaluate the accuracy of the 
model.

Making Predictions: Utilizing the testing data, the trained model is employed to make
predictions. The predicted prices are then transformed back to their original scale using the 
inverse of the Min-Max scaler.

7. Empirical Analysis

In this study, the performance of recurrent neural networks (RNNs) was analyzed with varying 
numbers of layers and activation functions to predict time series data for a specific number of 
input values. The performance metrics used were Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE). The activation functions evaluated included no 
activation key, tanh, ReLU, sigmoid, and combinations thereof. This comprehensive analysis aims 
to identify the optimal configuration for time series prediction and understand the impact  of 
different network architectures on model performance.

7.1. General Observations:

1. The best performing models balance simplicity and sufficient depth to capture temporal 
patterns without overfitting.
2. Deep networks with complex activations tend to perform poorly, indicating the need for 
careful tuning and possibly alternative architectures or regularization techniques to manage 
deeper models. The issues like exploding gradients can affect deeper networks, particularly 
those using ReLU and sigmoid activation, which can result in poor model performance.

7.2. Impact of Network Depth

Shallow Networks (4-6 layers): These generally performed well, especially with no activation 
key or a combination of no activation key and tanh. This suggests that for this specific time 
series data, a less complex model is sufficient to capture the necessary patterns.

Medium Networks (8-15 layers): Performance begins to degrade as the number of layers
increases. For instance, at 10 layers, the errors increase notably, particularly with the ReLU and 
sigmoid activations.



Deep Networks (20-100 layers):  The performance significantly worsens with deeper 
networks. Activation functions like ReLU and sigmoid show particularly high errors, likely due to 
gradient issues and overfitting.

7.3. Impact of Activation Functions

No Activation Key: Consistently shows good performance across different network depths, 
indicating stability and robustness.

tanh: Performs well in shallow and medium networks but shows increased errors in very 
deep networks.

ReLU and sigmoid: These activation functions result in poor performance, particularly as the 
network depth increases. This is likely due to their susceptibility to gradient issues.

Combinations of Activation Functions: The combination of no activation key and tanh 
shows promise in shallow networks but degrades in performance as the network depth increases.

7.4. Model Performance Visualization

Figure 7.1: Impact of Layer Variation

The figure 7.1 shows the Root Mean Squared Error (RMSE) of a Recurrent Neural Network 
(RNN) model with different numbers of layers and various activation functions. Each subplot



represents the RMSE for a specific number of layers, ranging from 4 to 100 layers, as indicated by 
the titles of the subplots. The x-axis of each subplot lists different activation functions used in 
the RNN layers, and the y-axis indicates the RMSE value corresponding to each activation 
function.

Similarly, we can see the activation key wise visualization of the results in figure 7.2. The 
figure shows the Root Mean Squared Error (RMSE) of a Recurrent Neural Network (RNN) model with 
different number of layers and various activation functions. Each subplot represents the

Figure 7.2: Impact of Activation Key Variation

RMSE for specific activation function keys, ranging from no activation key to ReLU and tanh 
activation keys, as indicated by the titles of the subplots. The x-axis of each subplot lists different 
layers used in the RNN model, and the y-axis indicates the RMSE value corresponding to each 
activation function.

Best Performance: The best performance in terms of the lowest MAE, MSE, and RMSE
was observed with a 4-layer RNN using a combination of no activation key and tanh activation 
key.  This  configuration  provides  MAE:  2.532684078,  MSE:  10.31147237,  RMSE:  3.21114814.  This 
indicates that a relatively shallow network with mixed activation functions can effectively 
capture the temporal dependencies in the data without overfitting. [Figure 7.3]



Figure 7.3: Model Prediction with 4 LSTM Layers with Mixed Activation “No and tanh". Here mixed 
activation means that half of the hidden layers are using activation function “tanh" and the rest are not 
using any activation key.

8. Conclusion

This study explored the application of recurrent neural networks (RNNs), particularly Long 
Short-Term Memory (LSTM) networks, for time series prediction using Google stock prices as a 
case study. The study comprehensively evaluated different RNN configurations, varying the 
number  of  network  layers  and  activation  functions,  to  determine  the  optimal  setup  for  accurate 
forecasting.

The empirical analysis revealed that the best performance was achieved with a 4-layer RNN 
using a combination of no activation key and tanh activation function. This configuration 
produced the lowest Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean 
Squared Error (RMSE), indicating its effectiveness in capturing temporal dependencies in the 
data. Conversely, the worst performance was observed with a 100-layer RNN without using 
any activation function, which highlighted issues such as gradient explosion and overfitting in 
deeper networks.

The findings underscore the importance of network depth and activation function selection in 
RNN-based time series analysis. Shallow networks with appropriate activation functions can 
effectively model temporal data, while deeper networks require careful tuning to avoid 
performance degradation.
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