
Long-Short Term Memory Neural Network for
incomplete data inputs*

Irfan Mahmood1,2,∗,†

1Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
2University of L’Aquila, Via Vetoio, 40, 67100 Coppito AQ, Italy

Abstract
In this article, I investigated the performance of various Long Short-Term Memory Neural Network
architectures by varying the number of data inputs. LSTMs, a family of recurrent neural networks, are
well-suited for tasks such as natural language processing, and time series prediction due to their ability to
capture long-term dependencies in sequential data. I conducted extensive experiments using TensorFlow and
PyTorch frameworks, analyzing both functional and sequential LSTM models. My analysis includes a
variety of datasets with different time periods and data points based on assessing different key metrics. The
results indicate significant variability in model performance based on input data volume and LSTM
architecture. Key findings show that larger datasets generally improve accuracy and reduce error rates.
However, an optimal window size is crucial to balance model complexity and prediction performance.
While increasing data inputs enhances accuracy, it also introduces challenges related to overfitting and
computational efficiency. This research provides valuable insights into deploying LSTM networks for
time series analysis, emphasizing the importance of data quantity and preprocessing techniques. My
findings contribute to optimizing LSTM architectures for robust and reliable predictive modelling in
various real-world applications.

Keywords
Long Short-Term Memory, Recurrent Neural Network, Time Series Analysis, Sequential Data Modeling

1. Introduction

Long Short-Term Memory Neural Networks have garnered significant interest, particularly in
time-series forecasting, due to their ability to capture temporal dependencies and effectively
process sequential data. This article delves into different LSTM model configurations, empha-
sizing the impact of varying input data lengths on their performance. I begin by exploring
the architecture and functionality of LSTM models, highlighting their recurrent nature and
mechanisms to retain long-term dependencies while circumventing the vanishing gradient
problem. The significance of input data length in LSTM modelling is also discussed, focusing
on its implications for predictive accuracy. This research addresses key inquiries:
1.How do different LSTM configurations perform with varying input data lengths?

*IVUS2024: Information Society and University Studies 2024, May 17, Kaunas, Lithuania
1,∗ Corresponding author
† These author contributed equally.

 im313818@student.polsl.pl; irfan.mahmood.pol@gmail.com (I. Mahmood)

 0009-0000-5149-6403 (I. Mahmood)

©️ 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0009-0000-5149-6403

2.What metrics are used to evaluate LSTM performance, and how do they vary across input
data lengths?
3.What insights can LSTM model performance provide for time-series forecasting, and how

can this inform real-world decision-making?
I analyze four case studies involving different LSTM configurations using TensorFlow and

PyTorch, assessing performance across metrics like MAE, MSE, RMSE, MAPE, and Accuracy.
This comprehensive analysis aims to enhance our understanding of optimal LSTM configurations for
time-series forecasting, contributing valuable insights for practitioners and researchers.

2. Time series analysis & LSTM

2.1. Time Series Analysis

Time series analysis is a specialized branch of statistics and data science that deals with data
points collected or recorded at successive points in time. It involves methods for analyzing time
series data to extract meaningful statistics and identify patterns, trends, and seasonal variations. In
this analysis, it is crucial for understanding temporal dependencies and patterns, making it
widely used in various fields such as finance, economics, environmental science, medicine, and
engineering[1][2]. Mathematically, a time series can be represented as:

where 𝑦𝑡 is the observed value at time t, 𝑇𝑡 is the trend component, representing the long-term
progression, 𝑆𝑡 is the seasonal component, capturing the repeating short-term cycle, 𝑅𝑡 is the
residual component, accounting for the random noise or irregularities[3].

A key concept in time series analysis is stationarity. A time series is considered stationary
if its statistical properties, such as mean, variance, and autocorrelation, remain constant over
time. Many time series models, including ARIMA, assume that the data is stationary. If the
data is not stationary, techniques like differencing, transformation, or detrending are applied to
achieve stationarity.[4]

A key objective of time series analysis is to model the underlying structure of the data so that
future values can be predicted. This often involves decomposing the series into its constituent
components: trend, seasonal, and residual (noise). The components of time series are:

Trend: The long-term movement in the data, which can be upward, downward, or constant.
Trends show the overall direction in which the data is moving over a long period. Seasonality:
Regular, repeating patterns or cycles in the data occurring at specific intervals, such as daily,
monthly, or yearly. These patterns are often influenced by seasonal factors. Cyclic Patterns:
Long-term oscillations or cycles that are not of a fixed period but are influenced by economic,
environmental, or other factors. These are different from seasonality in that they do not occur at
regular intervals. Irregular or Residual Component: The random noise or variability in
the data cannot be explained by the trend, seasonal, or cyclic components. This is often modelled
as a stochastic process.

2.2. Introduction to LSTM

Long-short-term Memory Neural Networks are a kind of recurrent neural network architecture
designed to model sequences and time series data effectively. Traditional RNNs struggle to
capture long-range dependencies in sequences and solve gradient problems. To solve this
problem, Hochreiter and Schmidhuber introduced LSTM neural networks in 1997. The LSTM
architecture incorporates specialized memory cells and gating mechanisms that allow it to
remember or forget information over time selectively. This enables LSTM networks to retain
important information for long periods and effectively learn from sequences with long-term
dependencies. The critical components of an LSTM Neural Network:
1. Input Gate: This gate determines which new information to store in the cell state. It

updates the cell state using the previous concealed state as well as the current input and output
values between 0 and 1.[Eq. 2]
2. Cell State: The cell state runs horizontally through the network and serves as a conveyor

belt, allowing information to flow relatively unchanged. It is regulated by various gates to
control the flow of information. The candidate values that could be added to the cell state are
calculated using the tanh function. The cell state is updated by combining the previous cell
state and the candidate cell state.[Eq. 3][Eq. 4]
3. Forget Gate: This gate decides what information to discard from the cell state. It takes

the previous hidden state (ℎ −𝑡 1) and the current input (𝑥𝑡) as input and a value between 0 and 1 as
output for each element in the cell state, where 0 means forget and 1 means keep.[Eq.5]
4. Output Gate: This gate controls the information flow from the cell state to the output. It

decides what information from the cell state to output based on the current input and previous
hidden state. The output gate determines what the next hidden state should be.[Eq. 6]
5. Hidden State: The hidden state contains information about the current input as well as

past inputs. It is computed using the cell state, the previous concealed state, and the current
input.[Eq. 7]

where 𝑖𝑡, 𝑓𝑡, 𝑜𝑡are the activation vector for the gate, 𝑊 is the weight matrix for the gate,
𝑏𝑖, 𝑏𝐶, 𝑏𝑜, 𝑏𝑓 are the bias vector for the input, candidate, forget and output gate respectively,
𝐶˜ 𝑡, 𝐶𝑡, 𝐶−𝑡 1 are the candidate, updated and previous cell state respectively, 𝜎 is the sigmoid function,
ℎ −𝑡 1, ℎ𝑡 are the hidden state from the previous and current time step respectively, 𝑥𝑡 is the input at
the current time step.[5]

During the training process, the LSTM network learns to adjust the parameters of its gates
through backpropagation, optimizing its ability to learn and retain information from sequential data.
Because of this, LSTM networks can efficiently model and forecast long-range dependent

sequences, which makes them useful for applications like [6] [7] speech recognition, natural
language processing, and time series analysis[8].

3. LSTM architectures

Various Long Short-Term Memory Neural Network architectures are used for sequential data
analysis and time-series forecasting tasks. While they share a common underlying concept
of LSTM networks, they are implemented using different frameworks and may have distinct
architectural designs and features. Each framework offers its advantages and nuances regarding
usability, flexibility, and performance optimization.

3.1. SEQUENTIAL TENSORFLOW

In TensorFlow, LSTM networks can be implemented in a sequential model using the Keras API.
Sequential models are a layer-by-layer stack, making them easy to define and suitable for many
deep learning tasks, including sequence modelling with LSTM networks.[Figure 1]

Figure 1: Sequential LSTM model overview

The process begins by creating a Sequential model, which organizes layers linearly, each with a
single input and output tensor. To handle sequential data and capture temporal dependencies,

Algorithm 1: LSTM Model Structure
1 Defining the model :
2 model = Sequential([layers.Input((3, 1)),
3 layers.LSTM(64),
4 layers.Dense(32, activation=’relu’),
5 layers.Dense(32, activation=’relu’),
6 layers.Dense(1)])

7 model.compile(loss=’mse’,optimizer=Adam(learning rate=0.001),metrics=[’mean absolute error’])
8 model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=100)

the model add one or more LSTM layers to the Sequential model, which enables it to learn
patterns and relationships over time. The model’s LSTM layers are configured by setting
parameters such as the number of units (neurons), activation functions, dropout rates, and
whether to return sequences or only the last output, which influences the behaviour and
performance of the LSTM network. Then, the model is compiled by specifying the loss function,

optimizer, and evaluation metrics. This step sets up the training process, defining how the
model learns from the training data. The model is trained using training data and labels with
specific epoch numbers and batch sizes. The model’s performance is assessed on a validation or test
dataset using metrics like accuracy to determine how well the model generalizes to unseen data.
Finally, the trained model is used to make predictions on new data, which can be used for
inference or decision-making purposes.[Algorithm 1]

3.2. FUNCTIONAL TENSORFLOW

In TensorFlow, LSTM networks can be implemented using the functional API, which offers
more flexibility and customization options than the Sequential API. The functional API allows
for the creation of complex neural network architectures, including models with multiple inputs or
outputs, shared layers, and branching architectures.[Figure 2]

Figure 2: Functional LSTM model overview

The model building starts by defining an input layer to specify the shape of the input data. The

Algorithm 2: LSTM Model Structure
1 def 𝑑𝑒𝑓𝑖𝑛𝑒 𝑚𝑜𝑑𝑒𝑙():
2 input1 = Input(shape=(window size,1))
3 x = LSTM(units=64,return sequences=True)(input1)
4 x = Dropout(0.2)(x)
5 x = LSTM(units=64,return sequences=True)(x)
6 x = Dropout(0.2)(x)
7 x = LSTM(units = 64)(x)
8 x = Dropout(0.2)(x)
9 x = Dense(32, activation=’softmax’)(x)

10 dnn output = Dense(1)(x)
11 model = Model(inputs=input1,outputs=[dnn output])
12 model.compile(loss=’mean squared error’,optimizer=’Nadam’)
13 model.summary()
14 return model

15 model = define model()
16 history = model.fit(X train, y train, epochs=100, batch size=32, validation split=0.1, verbose=1)

model adds one or more LSTM layers by connecting the input layer to the LSTM layer(s). These
layers handle sequential data and capture long-term dependencies. Then, the model instantiates an
object, specifying its inputs and outputs. This step connects the layers defined earlier to

construct the overall neural network architecture. The model is compiled by specifying the loss
function, optimizer, and evaluation metrics which configures the training process for the model. For
overview, this step shows the number of parameters in each layer, which provides insights into the
structure of the neural network. The model is trained using training data and labels, specifying
the number of epochs and batch size for training. Now, the model’s performance is evaluated on
a separate validation or test dataset to assess its effectiveness in making predictions and the trained
model is used to forecast new data by passing it through the model to obtain predictions or
classifications.

3.3. PYTORCH

The PyTorch LSTM Model leverages its dynamic computational graph and flexible design
capabilities to construct LSTM-based architectures for sequential data analysis. PyTorch LSTM
models can be built layer-by-layer, allowing for various configurations tailored to specific
tasks.[Figure 3]

Figure 3: PyTorch LSTM model overview used in this research

Initializing by defining an LSTM model by subclassing the "torch.nn.Module" class. Within

Algorithm 3: Creating LSTM Model
1 class 𝐿𝑆𝑇 𝑀 (.𝑛𝑛𝑀𝑜𝑑𝑢𝑙𝑒):
2 def 𝑖𝑛𝑖𝑡 (,𝑠𝑒𝑙𝑓 𝑖𝑛𝑝𝑢𝑡 ,𝑠𝑖𝑧𝑒 ℎ ,𝑖𝑑𝑑𝑒𝑛𝑠𝑖𝑧𝑒 𝑛𝑢𝑚 𝑠𝑡𝑎𝑐𝑘𝑒𝑑 𝑙𝑎𝑦𝑒𝑟𝑠):
3 super(). init()
4 self.hidden size = hidden size
5 self.num stacked layers = num stacked layers
6 self.lstm = nn.LSTM(input size, hidden size, num stacked layers, batch first=True)
7 self.fc = nn.Linear(hidden size, 1)

8 def 𝑓𝑜𝑟𝑤𝑎𝑟𝑑(,𝑠𝑒𝑙𝑓 𝑥):
9 batch size = x.size(0)

10 h0 = torch.zeros(self.num stacked layers, batch size, self.hidden size).to(device)
11 c0 = torch.zeros(self.num stacked layers, batch size, self.hidden size).to(device)
12 out, _ = self.lstm(x, (h0, c0))
13 out = self.fc(out[:, -1, :])
14 return out

15 model = LSTM(1, 4, 1)
16 model.to(device)
17 model

this model class, define the layers and operations that comprise the LSTM network. The model
creates an instance of the LSTM layer using the "torch.nn.LSTM" class. This step specifies the
input dimension, hidden dimension, number of layers, and whether the LSTM layer should
batch first.[9] The forward method of the model class is overridden to define the forward
pass computation. This involves passing input data through the LSTM layer(s) and optionally
through additional layers for further processing.[10] So, the model initializes a hidden and a
cell state either manually or by defining an initialization method within the model class.
Unlike TensorFlow, PyTorch directly defines the loss function, optimizer, and other training
configurations during model training.[11] The LSTM model is trained using training data and
labels, the training loop is implemented to iterate over batches of data, the loss is computed,
and the model parameters are updated using backpropagation and the chosen optimizer.[12]
Then, the trained model’s performance is evaluated on a separate validation or test dataset and
computes evaluation metrics to assess the model’s performance.[13] Finally, the trained LSTM
model is used to make predictions on new data by passing the data through the model to obtain
predictions or classifications.[14]

4. Description and Statistical analysis of the dataset

The dataset comprises over 20 years of data (more than 6000 data points), featuring columns for date,
open, high, low, close, adjusted close, and volume. The dataset contains the Stock prices of
Microsoft, QCOM and Amazon where the data has been collected from finance.yahoo.com. To
analyze the LSTM Neural Network performance, the dataset was transformed to align with the
requirements of LSTM modelling. Different subsets of data were extracted for analysis. These
subsets enable a comprehensive evaluation of LSTM model performance across varying
timeframes, facilitating insights into the effectiveness of the models in capturing and predicting
patterns within the given data.

Basic Statistical Analysis: The dataset includes six key financial metrics for a series of
stock data over a significant period. The statistical analysis of the dataset reveals significant
variability in stock prices and trading volumes. The mean, median, and percentile values show a
broad range of stock prices, suggesting periods of both low and high market activity. The
wide range between minimum and maximum values, especially in volume, indicates periods of
both low and extremely high trading activity. Percentiles provide insight into the distribution of
prices and volumes, with medians (50th percentiles) offering a central value for comparison. This
comprehensive statistical overview is crucial for understanding the stock’s historical
performance and volatility.

Correlation Matrix: The correlation matrix provided gives a detailed look at the relation-
ships between various stock price variables and Volume. Each value in the matrix ranges
between -1 and 1, indicating the strength and direction of the linear relationship between two
variables. The correlation matrix highlights that all price-related metrics are highly positively
correlated with each other, with correlation coefficients near 1. This indicates that when one
price metric increases or decreases, the others are likely to move in the same direction. In
contrast, the trading volume (Volume) shows a moderate negative correlation with all the price
metrics, suggesting that higher prices are somewhat associated with lower trading volumes and

http://finance.yahoo.com/

vice versa.

Figure 4: Correlation matrix shows strong positive correlation among the price variables and moderate negative
correlation between the volume and the price variables.

This information is critical for understanding the interdependencies between different finan- cial
metrics and can be used for predictive modelling and strategic decision-making in financial
analysis.[Figure 4]

5. Performance analysis

5.1. Sequential LSTM(single training run)

This analysis evaluates the performance of Sequential LSTM models using TensorFlow across
varying data input lengths and window sizes for different time spans of datasets. The data
covers datasets ranging from 1 year to over 20 years, with varying window sizes (3, 5, 7, 10, 15, 30).
For shorter time series (1-5 years), models show higher MAE and MSE with small window sizes.
For example, the 1-year dataset with a window size of 5 had an MAE of 42.901 and MSE of
1895.011, suggesting less effective pattern capture. Performance varies with window size; a 1-year
dataset with a window size of 7 had a lower MAE (30.332) and MSE (962.747). Medium time series
(7-10 years) show significant improvement. The 10-year dataset with a window size of 7 achieved an
MAE of 9.793 and MSE of 189.373, indicating high predictive accuracy, with an R2 score of 0.885.
For longer time series (15-20+ years), model performance deteriorates. The 20+ years dataset with a
window size of 10 had the highest MAE (204.036) and MSE (44558.06), and a negative R2 score
(-20.568), suggesting noise or complexities that the model struggles to handle.[Figure 5]

Insights and Recommendations: Model’s excellent ability to capture long-term depen-
dencies and make accurate predictions was observed with the 10-year dataset and a window
size of 7, yielding the lowest MAE (9.793), MSE (189.373), and a high R2 score (0.885).[Figure 6]
Medium-range datasets (7-10 years) with appropriately chosen window sizes (around 7) provide the
best balance between data volume and model performance. This range captures sufficient
historical data to identify patterns without overwhelming the model with too much noise. For
very long datasets, consider techniques such as data normalization, regularization, and reducing

Figure 5: RMSE Difference results variation for different Window size (Model Cat = Window size)

Figure 6: Best performance of Case study 01

complexity to prevent overfitting and improve generalization. Focus on minimizing MAE and
MSE while aiming for a higher R2 score to ensure the model accurately tracks the actual values
and has good predictive power.

5.2. Sequential LSTM(multi training run)

This analysis focuses on evaluating the performance of Sequential LSTM models using Tensor-
Flow across multiple training iterations. This analysis provides insights into the consistency
and reliability of the LSTM model’s predictive capability. The dataset includes results from 16
different training iterations of the LSTM model. Each iteration exhibits variations in perfor-
mance metrics, reflecting the model’s sensitivity to different training conditions and potential

overfitting or underfitting issues.

Figure 7: Results of Case study 02

The MAE values range from 13.92 to 22.22, with the lowest (13.92) in the sixth iteration,
indicating the highest accuracy, and the highest (22.22) in the seventh iteration, indicating
the least accuracy. MSE values range from 304.72 to 860.59, with the best performance in the
sixth iteration (304.72) and the worst in the seventh (860.59). R2 scores range from 0.09 to 0.68,
with the highest in the sixth iteration (0.68) and the lowest in the seventh (0.09). Training RMSE
values range from 4.39 to 5.69, and testing RMSE values range from 17.46 to 29.34, with the
smallest difference (12.96) in the sixth iteration, indicating less overfitting, and the largest
difference (23.74) in the seventh iteration.[Figure 7]

Insights and Recommendations: The well-trained model and generalized effectively to
the test data was observed in the sixth iteration, which had the lowest MAE (13.92), lowest
MSE (304.72), highest R2 score (0.68), low Train RMSE (4.5), lowest Test RMSE (17.46), and the smallest
RMSE Difference (12.96). [Figure 8] The LSTM model’s performance varies significantly

Figure 8: Best performance of Case study 02

across different training iterations, indicating sensitivity to initialization, hyperparameters,

and the training process. Choosing the best-performing iteration (the sixth) is beneficial for
applications requiring high accuracy and generalization, as this model shows robust performance
across all key metrics. Mitigate performance variability with strategies like ensemble learning,
hyperparameter tuning, regularization techniques, and consistent data preprocessing. Enhance
generalization from training to test data with cross-validation, dropout, and early stopping to
avoid overfitting and ensure reliable performance on unseen data.

5.3. Functional LSTM

This analysis explores the performance of a Functional LSTM model in TensorFlow for varying
numbers of data inputs. The performance metric analyzed here is accuracy, which indicates the
percentage of correct predictions made by the model. The dataset comprises results from 14
different training instances of the LSTM model, with the number of data points increasing with
each instance. The window size is consistently set at 60 data points. The accuracy of the model
shows significant variation across different training instances.

Figure 9: Prediction accuracy of LSTM Model

The accuracy of the model improves as the number of data points increases initially but starts to
decline after reaching a peak.[Figure 9] With 754 data points, the model accuracy is notably low at
4.55% indicating poor performance due to insufficient data. As the number of data points increases from
754 to 2265 (years 3 to 9), there is a significant improvement in accuracy, peaking at 95.4%. After
reaching 95.4% accuracy with 2265 data points, the performance starts to decline, reaching 54.57%
with 4027 data points.

Insights and Recommendations: Accuracy starts low at 4.55% with 754 data points,
indicating insufficient information for accurate predictions. It dramatically increases to 85.13% with
1007 data points (year 4) and 92.32% with 1257 data points (year 5), suggesting effective learning
with more data. Accuracy continues to improve, reaching 93.51% with 1508 data points (year 6) and
peaking at 95.4% with 2265 data points (year 9). This indicates sufficient data for generalization
without overfitting. After peaking, accuracy declines to 94.26% with 2517 data points (year 10)
and further to 79.32% with 3018 data points (year 12). It drops to 54.57% with 4027 data points (year
16), indicating overfitting and poor generalization.

The highest accuracy (95.4%) was achieved with 2265 data points (year 9). This suggests that the
model performed optimally with this amount of data, striking a balance between having
enough data for training and avoiding overfitting or saturation.[Figure 10]

Figure 10: Best performance of Case study 03

Optimal data utilization shows that the best LSTM model performance was around 2265
data points. Beyond this, adding more data led to diminishing returns and a decline in per-
formance. The decline suggests potential overfitting, which can be mitigated by techniques
such as regularization, dropout, or reducing model complexity. Cross-validation can ensure
the model generalizes well across different data subsets. Further analysis of the performance
drop after year 9 could provide valuable insights, including examining data quality and model
capacity. Experimenting with different window sizes and hyperparameters may reveal better
configurations. For practical applications, balancing data points is crucial—too few lead to poor
accuracy, while too many can cause overfitting. Regular monitoring and adjusting training
practices based on performance metrics are essential for maintaining optimal model accuracy.

5.4. PyTorch LSTM

In this case, the dataset includes results for 11 different training instances of the LSTM model,
with the number of data points increasing for each instance. MAE generally decreases as the
number of data points increases, indicating that the model’s predictions become more accurate with
more data. The lowest MAE (1.65) occurs with 250 data points (1 year). Both MSE and RMSE show a
trend of decreasing with an increasing number of data points, with some fluctuations. The
lowest MSE (4.8) and RMSE (2.19) are also observed with 250 data points (1 year). MAPE shows
a generally decreasing trend with more data, suggesting improved model accuracy in
percentage terms. The lowest MAPE (1.29) is again observed with 250 data points (1 year). The
accuracy remains relatively high across all datasets, consistently above 97%.[Figure 11] The
highest accuracy (98.71%) is observed with 250 data points (1 year).[Figure 11]

Insights and Recommendations: With 123 data points, the model shows poor performance,
with the highest MAE, MSE, and RMSE values, and the lowest accuracy (97.14%). A significant
improvement is observed with 250 data points, where metrics are optimal, showing substantial
benefit from the increased data. As the dataset grows from 250 to 1508 data points (1 to 6
years), the model maintains high accuracy (above 98%) and lower error metrics, indicating
effective learning and generalization. Beyond 1508 data points (7 to 10 years), metrics stabilize with
minor fluctuations, and accuracy remains high (around 98.1% to 98.4%), showing marginal benefits
from further data.

The best overall performance in terms of all metrics (lowest MAE, MSE, RMSE, MAPE, and

Figure 11: Prediction accuracy of PyTorch LSTM

Figure 12: Best result of Case study 04

highest accuracy) is observed with 250 data points (1 year). This indicates that the model
performs optimally with this amount of data, achieving an accuracy of 98.71%. [Figure 12]

Model generalization was high and stable (above 97%) across varying data inputs, indicating the
LSTM model generalizes well. However, a slight decrease in performance with very large
datasets suggests potential overfitting or data quality issues. The decline in performance
metrics beyond a certain point implies that additional data might not always improve model
performance. Investigating the quality and relevance of added data points could provide insights.
Techniques like regularization, dropout, or model tuning might help mitigate overfitting and
ensure consistent performance with larger datasets. Practically, identifying the optimal data
range is crucial to ensure high performance without unnecessary computational complexity. In
this case, 250 data points provide a sweet spot for training the model effectively. Continuous
monitoring and validation against a holdout dataset can ensure the model remains robust in
real-world scenarios. The model achieves optimal performance with 250 data points, with
diminishing returns beyond this initial boost.

6. Conclusion

I analyzed the performance of various LSTM neural network architectures by varying the number of
data inputs. My research included sequential, functional, and PyTorch LSTM models, which
were evaluated based on different metrics. Sequential LSTM models showed optimal performance

with data in the 1-10 year range, with a 10-year dataset and window size of 10 achieving the
highest accuracy and lowest error metrics. Functional LSTM models in TensorFlow peaked in
accuracy with about 9 years of data (2265 data points), with performance declining beyond this
threshold. PyTorch LSTM models performed best with 1-4 years of data. Our research goals
included investigating LSTM configurations under varying input data lengths to determine the
most effective setups. We found that the number of layers and units significantly impacts model
performance, with more layers and units beneficial for longer sequences but risking overfitting for
shorter ones. Dropout layers were crucial in preventing overfitting. Key performance
metrics like MAE, MSE, RMSE, R², MAPE, and accuracy varied with input data lengths, revealing
different aspects of model performance. This analysis provides valuable insights for real-world
applications, such as stock prediction and demand planning, by identifying model limitations
and highlighting the importance of hyperparameter optimization tailored to specific sequence
lengths. Overall, increasing data generally improved performance up to the point of diminishing
returns, typically around 10 years for TensorFlow models and slightly less for PyTorch. Window size
significantly influenced results, highlighting the importance of tailoring model architecture and
training parameters to specific datasets. These insights are crucial for optimizing LSTM
models in time-series prediction and other sequence modelling tasks.

7. Acknowledgments

I am deeply grateful to my esteemed supervisor, Prof. dr hab. inż. Marcin Woźniak, for his
invaluable guidance, support, and encouragement throughout this research. I would also like to extend
my sincere thanks to my colleagues for their insightful discussions and collaborative spirit.

References

[1] J. Siłka, M. Wieczorek, M. Woźniak, Recurrent neural network model for high-speed
train vibration prediction from time series, Neural Computing and Applications 34 (2022)
13305–13318.

[2] J. D. Hamilton, Time Series Analysis, Princeton University Press, 1994.
[3] C. Chatfield, The Analysis of Time Series: An Introduction, CRC Press, 2004.
[4] P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecasting, Springer, 2016.
[5] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (1997)

1735–1780.
[6] M. Woźniak, J. Siłka, M. Wieczorek, M. Alrashoud, Recurrent neural network model for

iot and networking malware threat detection, IEEE Transactions on Industrial Informatics 17
(2020) 5583–5594.

[7] Q. Ke, X. Jing, M. Woźniak, S. Xu, Y. Liang, J. Zheng, Apgvae: Adaptive disentangled
representation learning with the graph-based structure information, Information Sciences 657
(2024) 119903.

[8] M. Woźniak, M. Wieczorek, J. Siłka, Bilstm deep neural network model for imbalanced
medical data of iot systems, Future Generation Computer Systems 141 (2023) 489–499.

[9] J. Brownlee, Long Short-Term Memory Networks With Python, Machine Learning Mastery,
2017.

[10] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[11] F. A. Gers, J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction with

lstm, Neural Computation 12 (2000) 2451–2471.
[12] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural networks,

in: NIPS ’14: Proceedings of the 27th International Conference on Neural Information
Processing Systems, 2014, pp. 3104–3112.

[13] C. Olah, Understanding lstm networks, 2015. URL: https://colah.github.io/posts/ 2015-
08-Understanding-LSTMs/.

[14] F. Chollet, Deep Learning with Python, Manning Publications, 2018.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

	1. Introduction
	2. Time series analysis & LSTM
	2.1. Time Series Analysis
	2.2. Introduction to LSTM

	3. LSTM architectures
	3.1. SEQUENTIAL TENSORFLOW
	3.2. FUNCTIONAL TENSORFLOW
	3.3. PYTORCH

	4. Description and Statistical analysis of the dataset
	5. Performance analysis
	5.1. Sequential LSTM(single training run)
	5.2. Sequential LSTM(multi training run)
	5.3. Functional LSTM
	5.4. PyTorch LSTM

	6. Conclusion
	7. Acknowledgments
	References

