
205 
 

Anatoly Gladun1, Katerina Khala1 

1 International Research and Training Center for Information Technologies and Systems under NAS and MES of Ukraine, 40 
Acad. Glushkov av., Kyiv, 03187, Ukraine 

Abstract 
One of the main challenges today is deploying a coordinated group of unmanned aerial vehicles (UAVs), 
especially those based on multi-agent systems (MAS), which offer the advantages of decentralized 
management. Key benefits of using MAS in UAV systems include enhanced joint problem-solving 
capabilities, improved system survivability, and increased availability and scalability when executing 
complex missions. Effective data exchange between drones requires interoperable information, ensuring 
unambiguous communication and a formalized understanding of each drone's role and function. 
Furthermore, such systems need to establish protocols for cooperation, role reassignment in cases of failure 
or loss, and reliable identification of other UAVs. Implementing an ontological model can help address these 
challenges by formalizing knowledge about system policies for various complex scenarios, thereby 
enhancing the MAS's ability to accomplish its objectives efficiently. 
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1. Introduction 
Today, UAVs (drones) are gaining significant attention across various fields, including military, state 
security, natural resource protection, and numerous civilian applications. For instance, the decreasing 
cost of drones has broadened their appeal for civilian uses such as precision agriculture [1,2], 
surveillance, environmental monitoring [3], and search and rescue operations [4]. UAVs have proven 
particularly effective in dynamically changing environments and hard-to-reach areas, though these 
scenarios often require specialized sensors to address specific challenges. 

Recent advances in technologies like blockchain (distributed databases), artificial intelligence, and 
machine learning have enabled the development of UAV systems with enhanced capabilities. These 
improvements offer higher safety, reliability, and efficiency, increasing the UAVs' ability to perform 
complex tasks more successfully. 

In some cases, relying on a single UAV can be limiting, such as in search and rescue or surveillance 
operations. Quickly deploying multiple drones can significantly improve the likelihood of successful 
mission completion. Small UAVs capable of operating cooperatively with minimal human 
intervention are particularly valuable, as they allow tasks that would have been assigned to a single 
drone to be divided and performed in parallel. As noted in [5], using groups of UAVs offers several 
advantages: 

The overall cost of purchasing and maintaining several small commercial UAVs is lower than that 
of a single large UAV. 

Scalability, an essential feature of UAV groups, is often lacking in single-UAV operations. 
Fault tolerance is increased, as the malfunction of one drone has a limited impact on the overall 

group. 
Operations are completed more quickly due to distributed tasking. 
Improving the efficiency of multi-UAV coordination is essential for maximizing results while 
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minimizing costs in cooperative tasks. Unlike single-UAV decision-making, multi-UAV coordination 
involves challenges such as intelligent decision-making [6], distributed cooperation [7], and 
formation control [8]. 

We proposed a multi-agent system (MAS) model to manage the coordination, deployment, and 
data exchange among multiple UAVs. This model is based on an ontological knowledge 
representation, enabling effective decision-making across various scenarios during task execution. 
MAS handles specific functions, such as coordinating joint efforts by dividing mission objectives into 
sub-tasks for each UAV, facilitating message exchange between UAVs during collaborative 
operations, and dynamically reassigning roles if a UAV is lost or fails. 

For optimal UAV network operations, it is essential to model each UAV as an agent and create 
work plans that accommodate the distributed roles within the UAV network. To plan network 
operations effectively using MAS, five components are needed: 

knowledge about the external environment; 
information on the defined operational area; 
knowledge of role distribution (e.g., leader, coordinator, executor); 
a set of tasks to be performed (e.g., patrol, regroup, retreat); 
mechanisms for task distribution and redistribution. 
A key aspect is decomposing complex tasks into sub-tasks and organizing interactions between 

UAV agents and ground control centers. Also, supreme considerations include ensuring information 
security, reliable data transmission, mutual UAV identification, and improving calculation accuracy 
during task execution. 

2. Organizational structure, management, and information exchange 
challenges in UAV groups 

UAV groups generally are organized into two main structural categories: centralized and 
decentralized. In centralized groups, a central scheduler coordinates tasks. Under centralized control, 
a leader manages all individual nodes, while hierarchical coordination distributes tasks through 
multiple hierarchical levels. In contrast, decentralized swarms lack a single leader or central planner. 
With coordination by consensus, nodes collectively decide how to perform and coordinate tasks, often 
using methods like voting or an auction system. In immediate coordination, each node responds to its 
surrounding nodes [9]. 

Centralized groups quickly find satisfactory solutions, and their behavior can be planned in 
advance. However, they are sensitive to leader loss, involve computational complexity, and are slower 
in team allocation. Decentralized groups, on the other hand, are more scalable, have no single point 
of failure, and can operate in low-bandwidth environments. They excel at finding novel solutions to 
challenges and can achieve complex outcomes with simple system designs. However, decisions made 
by each node are based on localized information rather than on data collected at the group's global 
level [10]. 

The ability to make decisions is a crucial attribute in designing autonomous and intelligent 
systems. Real-time decision-making based on data collected by the swarm enhances decision 
efficiency and allows the swarm to remain resilient in the face of uncertainties and dynamic changes. 

Managing a group of UAVs is a complex task with four primary management approaches: 
switching between algorithms that dictate swarm behavior; 
adjusting the parameters of the group management algorithm; 
remotely controlling specific nodes (leaders); and 
modifying the environment to influence group behavior [11]. 
For joint operations, it is critical that drones can gather accurate information and share it 

unambiguously with each other and with the command-and-control operator. In a complex system, 
effective information exchange enhances cooperation and coordinated actions among decentralized 
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participants, thereby improving the achievement of shared goals. 
Information can come from internal sources (like sensors) and external sources (such as weather 

forecasting systems). However, significant challenges arise when exchanging information between 
UAVs, especially due to data heterogeneity. Data from various sources can appear in different 
formats, depending on their type and origin. Even when UAVs use the same terminology, 
interpretations may vary. For instance, one drone might use the term "position" to indicate a geo-
referenced local frame, while another uses it to refer to angular coordinates.  

To address these issues, semantic compatibility within the system is essential for resolving data 
heterogeneity and enabling transparent information exchange. Additionally, machine-computed 
logic supports reasoning, knowledge discovery, and data integration across systems. To ensure 
unambiguous understanding by the drones and the operator, the information exchanged must carry 
rich semantics that effectively model and abstract data heterogeneity [12]. 

The use of ontologies is proposed to facilitate clear communication and mutual understanding 
between UAV agents and the operator. Ontologies perform as controlled dictionaries of logically and 
well-defined terms and are structured hierarchically through type-subtype relationships. These terms 
are used to label and semantically enrich various data types, enabling their integration within a 
computational environment. Ontologies allow the definition of functions, contexts, and situations 
needed for semantic information exchange, facilitating effective communication between agents or 
between an operator and an agent. 

3. Ontological approach to ensuring communication of UAV group 
An ontology provides a well-defined, unambiguous conceptualization. The TBox operator describes 
the system using controlled vocabulary, while the ABox operator contains facts or statements 
compatible with the TBox vocabulary. This structure facilitates information gathering, knowledge 
sharing, and potential reuse. 

Ontologies are widely used to formally represent information across various fields, including the 
semantic web, smart homes, and healthcare. They allow reasoning about objects and their attributes 
within a domain. Notably, group-based systems operate in environments where individual 
information and knowledge can be specified as atomic concepts and correlated by semantic contents 
containing the core concepts needed for a shared semantic understanding among agents exchanging 
information. Four primary classes within the ontological model form the foundation of the UAV 
operational process: 

information objects classes, such as flight and surveillance plans and other directives provided by 
operators or programmed into the UAV; 

agents’ classes, such as UAV operators and autonomous UAVs, that send, receive, and execute 
directives; 

processes classes, such as flight, communication, and surveillance processes, provided by these 
directives and performed by these agents;  

roles classes, such as commander, operator, host, and decoy, are assigned to participants in these 
processes and dictate the prescriptions for which each participant is responsible. 

An important aspect of task allocation for multiple UAVs is the characterization of mission 
scenarios from various perspectives. These scenarios are implemented as constraints or objectives in 
the task allocation process for a few UAVs. Constraints and objectives relate not only to limited 
resources and UAV heterogeneity but also to the diversity of task requirements and the complexity 
of the task environment. Task requirements vary widely, for example, some tasks involve mobile or 
unknown targets, while others have strict time constraints. Environmental constraints may also play 
a role, as real-world settings often contain obstacles and hazards. Additionally, constraints can be 
unknown, dynamic, or even adversarial rather than static or well-defined. Although detailed 
constraints help create more realistic scenarios, they also increase the complexity of finding viable 
solutions. 
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A scenario class contains a set of instructions that coordinate a group of agents to achieve a 
common goal. A key feature of scenario ontology is its general application to group actions and actors, 
defined in terms of the roles played by group members and the rights, responsibilities, and constraints 
associated with these roles. It enables the scenario to be applied repeatedly, in different circumstances, 
or by different agent groups. Scenarios are distinct from general plans or other directive information, 
as they offer advantages in competitive contexts. They are primarily used to coordinate the actions 
of group members, assigning tasks and responsibilities according to the different roles each member 
performs. 

An action class represents a directive information object that assigns an action as required, 
prohibited, or permitted, resulting from an activity that implements a specific authority role. 

A group class consists of agents whose members are intentionally associated with performing 
assigned roles and responsibilities. This structure is necessary for achieving one or more goals 
through direct cooperation and distributed decision-making. When group members collaborate 
towards a common goal, they do so by dividing problems and responsibilities. Each member fulfills 
at least one group role defined by the set of responsibilities and rights they hold within the context 
of the group's functioning. 

A group role class refers to a role assigned to an agent, the member of a swarm, based on a specific 
action assigned to that agent. The agent must apply this action within the appropriate contexts of the 
group. 

Ontologically defined scenarios are self-explanatory and can be utilized by both operators and 
agents. It creates a shared understanding of the information contained in the scenario and the entities 
referred to within that information. It ensures that group scenarios provide a unified vocabulary for 
both intra-group and inter-group communication regarding various aspects of their current 
challenges. 

4. Ontology-based multi-agent system for UAVs interaction 
The application of MAS as an intelligent system offers the flexibility to enhance reliable and 

successful interactions among UAV groups. MAS is capable of solving coordination and optimization 
problems and is adaptable to the uncertainties present in complex systems. Agents within this 
framework can not only accept tasks but also take the initiative to request tasks by sharing and 
exchanging information with other agents for coordination, communication, or cooperation. This 
system is well-suited for complex and distributed tasks, reducing human involvement in the decision-
making process. 

At the core of the multi-agent approach is the concept of remote and intelligent software agents, 
which function as independent specialized computer programs or elements of artificial intelligence. 
These agents can independently determine the best methods to achieve their goals and execute their 
tasks, exhibiting properties such as autonomy, activity, proactivity, and social behavior [14]. 

Ontologies can significantly enhance MAS at various stages of development by providing a clear 
separation of the overall problem, facilitating the process of searching and reusing information, 
supporting analysis and manipulation of information, and enabling effective communication between 
agents. 

The agent must receive, store, and process information about the current state of the subject area. 
An agent's knowledge of the environment, other agents, and itself is represented as an ontology. This 
approach effectively addresses the challenges of generalizing heterogeneous low-level data into 
relatively high-level concepts, and it facilitates data sharing, system interoperability, and software 
reuse. When agents operate with the same concepts, it helps solve numerous problems, including 
communication methods between agents and adaptation to new conditions. 

Ontologies enhance the ability to perform semantic reasoning [15], providing functionalities such 
as consistency checking, concept enforcement, classification, and implementation. They also enable 
a shared understanding of information structures between humans and software agents, allowing for 
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the reuse of core knowledge [16]. Integrating these semantic technologies into MAS improves the 
knowledge representation and reasoning capabilities of applications developed within these 
frameworks [17]. The application of ontologies in MAS opens opportunities for creating logical rules 
that can be applied to semantic reasoning and the derivation of new knowledge. However, the use of 
ontologies can complicate MAS invariance concerning the domain, necessitating changes to the 
ontology—at least for that specific domain. 

The design of agent behavior and interaction in MAS primarily involves data exchange models, 
which govern how agents communicate with one another and with ground control centers. An agent's 
data exchange framework typically includes message content and message exchanges (e.g., the KQML 
protocol). The message content comprises two components [18]: a content language (providing the 
syntax or grammar of the content) and an ontology (constituting the semantics or vocabulary of the 
message). Figure 1 illustrates an ontology-based agent data exchange model. 

Ontology

Agent AAgent B
Ontology-based 
data exchange

Ontology 
query

Ontology 
query

ACL connection

 
Figure 1: Model of data exchange between agents based on ontology [19] 

Agents communicate through the exchange of messages, and the standard Foundation for 
Intelligent Physical Agents (FIPA) is commonly used to develop MAS [19]. The FIPA semantic 
language serves as a standard content language and is widely adopted in this context [20]. In FIPA, 
the ontology comprises a list of concepts, predicates, and actions that are specific to the 
communication domain. FIPA services provide the ontological agent with several ontology-related 
services to address the challenges associated with using multiple ontologies [18]. 

During the design of the MAS architecture, the syntax and semantics are introduced to define a 
common top-level ontology [21]. This type of ontology represents the common concepts used within 
the system, while the syntax and semantics for domain ontologies and agent-specific ontologies 
describe the purposes and functions of those ontologies [22, 23]. 

When developing the MAS architecture, it is necessary to highlight the following essential 
components: 

 access service to provide access to agent attributes; 
 message service that responded to the transmission of messages between agents or additional 

systems; 
 agent library that contains information on the classification of agents within the MAS; 
 agent interaction, which Manages the essential activities of agents, facilitating the loading 

and recording of agent properties while optimizing their resource usage; 
 ontology - a knowledge base that encompasses information about the operating environment, 

performed actions, and self-knowledge of the agent (including updated data).  
Figure 2 illustrates the interaction of the ontology-based multi-agent system with UAVs. 
The relevance of ontology in MAS lies in its ability to address the issue of information overflow 

within the network [24]. The main problems that ontologies successfully solve include: 
presentation of knowledge for logical inference applicable to requests made by users or agents; 
filtering and classification of information; 
indexing of collected information; 
organization of a common terminology that agents and users can use for data exchange. 
In this context, each UAV is modeled as an agent that must move, perceive its state and 
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environment, follow a plan, achieve its goals, interact, and adapt its behavior. To account for the 
complex interactions between agents and to address the necessary heterogeneous properties, we have 
modeled the UAV agent using a Belief-Desire-Intention (BDI) architecture [24]. 
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Figure 2: Interaction of ontology-based multi-agent system and UAV 

A BDI architecture for an agent consists of a set of scenarios that define how the agent achieves 
its ultimate goals. Each scenario is composed of head, body, and tail labels that outline the agent's 
working algorithm. The body of the scenario contains sequences of actions that define the goals the 
agent must achieve and the conditions it must check. The head and tail labels represent intentions, 
which are drawn from a predefined list of intentions. 

At any given moment, when an agent selects an execution scenario, the intentions can be either 
active or inactive. The agent will execute a scenario only when all the intentions in its head are active. 
After executing a scenario, the agent deactivates these intentions and activates all the tail intentions 
of the scenario. It is assumed that the current set of active intentions is not empty, although the body 
of scenarios and the set of tail intentions may be empty. 

In this framework, an agent can be conceptualized as comprising a set of beliefs (B), plans (P), 
situations (S), actions (A), and intentions (I). When the agent perceives changes in the environment, 
it believes that an event (E) has occurred, which corresponds to certain situations from the 
environment (S). The registration of an event by the agent involves a change in its reasoning state, 
reflected in the selection of a belief from B. Based on this belief and its desires (which are determined 
by a plan from P), the agent fulfills certain intentions from I, which consist of a sequence of actions 
from A. These actions together form a plan for achieving the specified goal. Thus, the planned action 
is determined by the chosen plan and executed by altering the current situation in the environment. 
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Figure 3 illustrates a UAV agent that is based on ontology and is designed for movement, 
perception, plan execution, interaction, behavior adaptation, and skill control. Beliefs are linked to 
dispositions when addressing a problem and can be updated based on knowledge about the 
environment and the agent's self-knowledge. The UAV agent must verify each belief against logical 
rules derived from its self-knowledge and the assigned problem. 
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Figure 3: BDI model for UAV network agents 

The UAV agent is motivated to achieve a specific goal, which is unattainable without a plan. The 
ontology of scenarios takes into account intentions and aspirations to determine the actions 
influenced by the environment. Given the complex and volatile nature of environments that can 
incapacitate or destroy agents, the agent's mission capability may change. Therefore, dynamic task 
allocation is crucial for enhancing the coordinated capabilities of MAS. 

The proposed method involves creating roles to define the behavior of the agent model, facilitating 
hierarchical coordination. This model assumes partial connectivity with several nearby agents for a 
limited time. Each UAV agent can only interact with its nearest neighbors within a specified range. 
When UAV agents engage in interactions to decide on mission execution, it necessitates collaboration 
between agents and with the environmental ontology, a process that can be resource-intensive. 

The hierarchical model includes roles that manage group heterogeneity and connectivity based on 
skill metrics, potential flight time, data sharing, and decision-making. For instance, a SwarmLeader 
or GroupLeader should take the lead in decision-making and communication while maintaining 
intermediate flight times. This role is crucial for making fundamental decisions that ensure mission 
success. Consequently, the GroupLeader agent must have efficient pathways for sending and 
receiving messages from other agents. For example, when a group of UAVs encounters an obstacle, 
both their trajectories and formation must be adjusted. The SwarmLeader or GroupLeader can 
implement a predetermined mission trajectory to reorganize the UAV group effectively. 

In MAS, the BDI model is instrumental in managing mission information. Beliefs motivate agents 
to handle missions while considering their capabilities, limitations, and environmental factors. 
Capabilities include the UAV's movement, navigation, and location abilities derived from its 
hardware, as well as computing, processing, and communication capabilities associated with the 
drone agent. Desires represent the expected outcomes, such as the objective of executing a specific 
mission. Intentions outline the strategies for accomplishing the desired mission objectives. If a 
mission fails, the system consults with other agents to identify improvements, including when and 
how to modify formations. 

An individual agent may diverge from the current common knowledge of the world, which can be 
resolved through information sharing and communication. Effective operational communication and 
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interaction significantly impact the success rate of mission execution, which is why the Mission 
Planner was designed to facilitate the seamless distribution of tasks and information. 

The MAS incorporates a deadline mechanism, an allocation confirmation mechanism, and a scale 
control mechanism to limit the scope of allocation. These features ensure real-time operation, prevent 
resource waste, and mitigate excessive pressure on communication and calculations, particularly 
when numerous agents are involved. When assigning missions, the order of execution is often more 
critical than maximizing the advantage of each individual agent. Ignoring this order can significantly 
reduce the feasibility of allocations and result in less efficient and optimal outcomes when missions 
are assigned without considering their interdependencies. 

Before a mission begins, a comprehensive task plan is developed based on information derived 
from the environment ontology. These complex tasks are then decomposed into several subtasks and 
distributed among agents according to their capabilities. If the environment changes and agents 
encounter malfunctions during the execution of the mission, continuing with the previous plan may 
diminish effectiveness or render the mission impossible. Therefore, an online task assignment method 
must be employed to redistribute these subtasks in real-time, taking into account the capabilities of 
each agent. 

Limitations often arise because certain missions require agents to operate in a coordinated logical 
sequence rather than as isolated entities. For example, blocking off a specific area necessitates 
teamwork among agents. The agent group mechanism is introduced to manage complex and 
interrelated missions. The mechanism can be separated into two types. One type requires agents in 
the MAS to engage in parallel data processing, such as joint monitoring. The other type demands 
strict adherence to spatial and temporal order, such as executing strikes following reconnaissance. 

Different groups of agents carry out missions at varying costs, making it crucial to identify the 
most suitable group. However, this task complicates the optimization problem. Utilizing Particle 
Swarm Optimization (PSO) to determine the appropriate command structure offers an effective 
solution to this complex challenge involving substantial computations [25]. When selecting a group, 
its capabilities must align with the mission requirements while maintaining lower residual capacity 
and execution costs [26, 27]. 

In the PSO process, priority is given to parameters that better meet the requirements compared to 
execution costs and other alternatives. These priorities influence the particles, with the calculated 
fitness value of each particle being directly proportional to the efficacy of the command. Once a group 
is identified, the confirmation information is disseminated to all members. Only if all members accept 
the mission will the distribution information be sent to them; if any members reject it, the system will 
seek alternative agents with capabilities similar to those who declined or initiate a new round of 
group selection. 

This intelligent redistribution allows the MAS to adapt to frequent mission changes, enhancing 
resource utilization and improving computational efficiency. The redistribution management 
mechanism is illustrated in Figure 4. 
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Figure 4: Mechanism of mission redistribution management  
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An initial group reacts to changes in the mission, which are then modeled and calculated to 
generate solutions based on the current availability of agents. To ensure that decisions are well-suited 
for the current group, the cost changes will be assessed, and updates will be made using domain 
ontologies. In this context, the domain ontology will integrate data from the agents' properties and 
capabilities, as well as from the scenarios and environment ontologies. This feedback will enable the 
system to adapt to mission changes and prevent excessive reallocation and misallocation of resources. 

5. Conclusions 
The proposed ontology-based multi-agent system (MAS) is designed for effective network interaction 
among a group of heterogeneous UAVs. This approach establishes a role-based hierarchy of UAVs, 
each equipped with designated travel routes, defined flight times, data-sharing capabilities, and the 
ability to make decisions to achieve a common goal. 

An ontology enhances the data within the knowledge base by utilizing an agreed-upon structure 
of relationships and well-defined terms. This framework allows for logical conclusions to be drawn 
from data labeled with terms from the ontology. 

Addressing security concerns within the MAS is essential, particularly regarding protection 
against unauthorized access and malicious code. Mobile agents from external sources pose various 
risks to the host system since they execute within its address space. To ensure security, each agent 
must undergo an authorization process before transferring control. This process involves verifying 
the agent's registration and determining whether it possesses the appropriate privileges to perform 
specific actions and access certain resources. The security system must effectively prevent any 
unauthorized actions by the agent. 

To create the ontologies used in UAV MAS, we plan to develop new approaches to automate the 
formalized presentation of knowledge based on various information resources, whether open or 
closed. This approach relies on structuring the information field of the object through a taxonomic 
representation of selected characteristics of the object under study. This structuring is necessary for 
constructing a semantic model that addresses the recognition problem and adapts to the specifics of 
the problem being solved. The adaptation of the ontological models for the problem and the 
information object is based on their semantic proximity. The method involves applying weights to 
the concepts and relationships used in the recognition of information objects.  
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