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Abstract 
This work focuses on enhancing the toolkit for simulating cyber attacks on energy facilities. The paper 
examines models of typical attacks on energy systems, specifically accounting for an attacker’s ability to 
distort control system signals, manipulate control measurements, and alter measurement signals related to 
the state of the facility. A threats model for a critical infrastructure energy facility is proposed that refers to 
attack techniques. The approach considers integrity-breaking attacks expression as a function dependent on 
unknown parameters. Criteria are introduced to enable parametric identification of integrity compromising 
attack parameters, based on measurement data and constraints on process behavior. Stability conditions for 
a typical automatic gain control system under cyber attack are analyzed. An algorithm for identifying attack 
parameters is proposed. Computer simulations of facility processes under various attack types were 
conducted, appropriate software was developed, and conclusions were drawn regarding the impact of attacks 
on facility resilience. 
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1. Introduction 
The AGC system is highly dependent on open communication infrastructure, such as the SCADA 
system, which increases its operational efficiency and responsiveness, but at the same time makes it 
more vulnerable to cyber attacks. Network technologies have many advantages, but all their defects 
– insufficient security, outdated protocols and software, and weak authentication mechanisms – 
create new opportunities for attackers. Therefore, the vulnerable points of the system are the inputs 
and outputs of the control center, that is, the communication channels through which data is 
transmitted [1]. 

Due to the need for rapid operation, the system does not employ complex algorithms for verifying 
and evaluating measurement data. Attackers can exploit this to manipulate data without sophisticated 
calculations. By knowing certain characteristics, an adversary can identify other unknown 
parameters of the system. In this paper, we demonstrate how this can be done, based on principles 
described in [2, 3]. 

Moreover, high coordination between interconnected control zones enhances productivity but 
also means that a sufficiently powerful cyberattack on one zone can adversely impact the entire 
power system. 

Cyber attacks on energy supply facilities amplify and deepen the effects of physical attacks for 
maximum destructive impact. Understanding the limits of resilience to cyber influences is crucial in 
developing effective protective mechanisms and preventive measures. However, existing research [4-
7] provides insufficient attention to the assessment of attack features or parameters. 

The cyber vulnerabilities of AGC systems stem from data transfer mechanisms and protocol 
weaknesses. A taxonomy of these attacks was proposed in [8-10]. The paper [11] provides a detailed 
description of existing attack types on the advanced measurement infrastructure of smart grids, 
focusing on both IT (Information Technology) and OT (Operational Technology) systems. We 
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consider the entire AGC cyber-physical system, with particular emphasis on its OT features, and 
consider these attacks in terms of the necessary knowledge about cyber-physical system parameters. 

The main classes of cyber threats for AGC system of energy facility are:  

1. DoS (Denial of Service), DDoS (Distributed Denial of Service), and time delay attacks 
(targeting availability) [4, 5].  
2. Replay attacks (targeting integrity) [6].   
3. FDI (false data injection) and covert attacks (targeting integrity) [6,7].  
In wartime, these cyber attacks are often combined with physical attacks on critical infrastructure 

facilities [12]. Developing algorithms for calculating attack parameters remains a crucial task for 
understanding the resilience limits of the facility and for investigating cyber incidents. 

The findings of this work will contribute to more accurately fulfilling the guidelines of document 
[13] regarding the identification of adversary tactics, techniques, and procedures used to circumvent 
controls, along with other cybersecurity objectives. 

2. Cyber attack models in AGC systems 
Paper [1] examines a two-area power system and its dynamic model equations, demonstrating system 
behavior under abnormal conditions and analyzing the types of attacks that can disrupt the power 
system. 

In paper [4], a dynamic model of a single-area load-frequency control (LFC) system is presented, 
focusing on the principles of sustainable operation. The study addresses time-delay attacks and DoS 
(Denial of Service) attacks, providing equations for the main system components under DoS attack 
conditions. 

Paper [5] expands on DoS attacks by exploring data integrity attacks as well. It proposes a multi-
area scheme with a control center, presenting detailed LFC equations and describing the main types 
of attacks. 

Paper [6] discusses power grid control strategies, with particular emphasis on time-delay threats 
and replay attacks. The authors derive stability bounds for systems subjected to these attacks. 

In paper [7], a different class of cyber attacks is explored: robust stealth covert attacks. The study 
includes a simulation example and uses a mathematical approach to calculate attack parameters for 
adversaries. 

Paper [8] addresses cyber-physical reliability using game theory, incorporating probability factors 
into the calculations. 

Paper [9] focuses on technical aspects of cyber attacks, reviewing examples, countermeasures, and 
a taxonomy of attack types. A section is dedicated to the use of machine learning algorithms for attack 
detection. 

In paper [11], a detailed taxonomy of IT (Information Technology), OT (Operational Technology), 
and AMI (Advanced Metering Infrastructure) attacks is provided, along with an overview of papers 
that propose approaches to counter these attacks. 

Paper [12] examines DoS and DDoS models, emphasizing that these attacks may have different 
impacts when combined with physical attacks by adversaries during wartime. 

Simulation models of cascading effects in power grids under cyber attack are discussed in paper 
[14]. 

Paper [15] investigates various attack strategies, mathematical models, and methods for assessing 
system vulnerabilities. 

The authors of paper [16] delve into the interconnected AGC systems and existing frequency 
deviations, advancing the study in this area. 

Existing research reveals a gap in deterministic mathematical approaches, based on control theory 
methods, for not only identifying stability bounds but also uncovering unknown attack parameters. 
The current work aims to address this gap by developing relevant algorithm. 
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Paper [13] provides guidelines and compliance directions for reporting cyber incidents in critical 
infrastructure. This document offers guidance that could be reinforced by mathematical analyses and 
studies, particularly in the field of restoring attack parameters. The findings of the current study could 
provide the necessary numerical data for addressing these challenges. 

3. Cyber threats to the AGC system  
Let us examine the structural features of the AGC (Automatic Gain Control) system that make it 
susceptible to attacks. The AGC system operates within a communications infrastructure, facilitating 
data transmission between control centers and control zones. Sensor measurement data is sent to the 
control center, where an error signal is generated and then transmitted back to the control area. The 
local controller subsequently calculates the power control signal. 

Real-time data collection can be achieved through remote terminal units (RTUs) or intelligent 
electronic devices (IEDs) positioned at critical locations (such as power stations and substations) 
within the control zone. 

The SCADA (Supervisory Control and Data Acquisition) system collects and aggregates this data 
and relays it to the control center via communication channels using various protocols, such as DNP3 
(Distributed Network Protocol), IEC 61850, and IEC 60870-5-104. Similarly, signals from the control 
center are transmitted back to the control zone. A general diagram of a single-area power zone under 
DDoS attack conditions is presented in [15], with specific points highlighted where other types of 
attacks (particularly FDI attacks) could be applied (Fig. 1).  

 

 
Figure 1: AGC System with External Communications. Arrows (1), (2), (3), (4), and (5) indicate points 
where a cyberattack can be applied. Potential targets include the communication network (1) and 
(3), internal communication lines (5), the AGC control center (2), and the programmable logic 
controller (4). An adversary could impact measurements (5), control signals 𝑢(𝑡), and the system state 
𝑥(𝑡). 
 

Let us compile a list of common attacks on the AGC system, linking specific attack types to 
technique classes from the MITRE ATT&CK® Matrix for ICS, as shown in Table 1. In Table 1, CIA 
refers to confidentiality, integrity, and availability, respectively.  

 

Table 1 
Energetic facility cyber attacks 

Attack, 
technique

ID  

Affect
ed 

(CIA) 

Description Attack pre-
conditions 

Information 
gathering  

Target  Sub-
system  

DoS 
(T0814) 

A Data flood of 
the internal 

Partial 
knowledge 

about 

— Channels for 
measurement

s and 

IT, OT, 
AMI 
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Attack, 
technique

ID  

Affect
ed 

(CIA) 

Description Attack pre-
conditions 

Information 
gathering  

Target  Sub-
system  

network and 
services  

software, 
hardware 
versions,  

open 
interfaces 

commands, 
system 
services 

DDoS 
(T0814) 

A DoS from 
multiple 
sources 

Partial 
knowledge 

about 
software, 
hardware 
versions, 

open 
interfaces  

— Channels for 
measurement

s and 
commands, 

system 
services 

IT, 
AMI, 
OT  
 

FDI 
(T0836, 
T0868, 
T0830) 

IA False data 
injection 

Normal 
mode 

features and 
anomaly 
ranges 

knowledge 

System 
reactions and 
measurements  

Measurement 
transmission 

channels 

OT, IT, 
AMI 

Replay 
(T0856, 
T0830) 

CIA Replaying real 
data 

Partial 
knowledge 

about 
protocol 
timelines 

Sensors and 
signals data  

Measurement 
and control 

signals 
transmission 

channels  

OT, 
AMI 

Covert 
(T0836, 
T0868, 
T0830) 

IA Hidden attack System full 
knowledge 

Sensors and 
actuators data 

Channels for 
measure-
ments and 
commands 

 

OT 

Time 
Delays 
(T0814, 
T0830) 

A Introducing 
time delays 

Partial 
knowledge 

about 
protocol 
timelines 

— Channels for 
measurement

s, control 
signals, and 
commands 

 

OT, 
AMI 

Physical 
attacks 
(T0879) 

CIA Destroying 
infrastructure, 
intercepting 

control under 
biometrical 

features, 
controlling the 

locks and 
other physical 

objects 

Partial 
knowledge 

about system  

Gathering all 
the data using 

social 
engineering, 
geolocation 
detection 

Physical parts 
of critical 

infrastructure 
facility 

OT, IT, 
AMI 

Spoofing 
(T0856, 
T0830) 

CI Identity 
spoofing due 

to lack of 
authentication 

 

Network 
protocols 

knowledge, 
access to 

transmitted 
data  

— IoT devices, 
PLCs, control 

center, 
network 
objects  

IT, OT, 
AMI 
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Attack, 
technique

ID  

Affect
ed 

(CIA) 

Description Attack pre-
conditions 

Information 
gathering  

Target  Sub-
system  

Sniffing 
(T0842, 
T0887, 
T0801, 
T0830) 

C Access to data 
transfer nodes 

to sniff 

Access to the 
network 
channels 

Obtaining any 
usable data for 

further 
intrusion 

Network 
channels 

 

IT, AMI 

TSA (time 
synchroni

zation 
attack) 
(T0868) 

IA Synchronizing 
signal delay 
(replaying 

signals) 
 

Knowledge 
about 

protocol 
peculiarities 

Obtaining local 
time on target 

object 

Channels of 
signals 

transmission 

OT 

Malware 
(TA0108, 
TA0104, 
TA0110, 
TA0111, 
TA0103, 
TA0102, 
TA0109, 
TA0100, 
TA0101, 
TA0107, 
TA0106, 
TA0105) 

CIA Taking control 
under 

controllers 
and other 

cyber-physical 
elements, or 
software of 

critical 
infrastructure 
facility. Can 

realize all 
types of 
possible 

techniques  

Full 
knowledge 
of object 

architecture, 
and partial 
knowledge 
of system 

vulnerabili-
ties 

Keylogging 
and gathering 
all accessible 

data  

Software and 
hardware of 

critical 
infrastructure 

facility 

IT, OT, 
AMI 

       
 

4. AGC mathematical models 
In this section, we present generalized mathematical models in state space, building on previous 

works [5,6]. The primary vectors under consideration include malicious intrusion into the system 
state via control parameters and measurement parameters (see Fig. 1). We then focus on the FDI (False 
Data Injection) class of attacks and develop an algorithm to identify attack parameters under certain 
assumptions. Additionally, we discuss the adversary's potential extended knowledge of the system. 

1.1. Initial undisturbed system model 

We consider an initial undisturbed system with control, which is described by equations system 
in state space: 

𝑥ᇱ(𝑡) = 𝐴𝑥(𝑡) + 𝑘𝐵𝑢(𝑡) + 𝐹, (1) 
where  𝑥 is system state; 𝑢 is control; F is source function (energy supply from/to neighboring zones); 
k is a parameter of control influence intensity. 

We have to notice, that in the general description, state vector 𝑥(𝑡)  can contain the components 
of frequency deviation  Δ𝑓௜,  regulator, turbine, and tie-line power deviations as it was proposed in 
[6]. But we consider the scalar values. 

If the control depends on 𝑦 measurements: 
𝑢(𝑡) = −𝐶ଵ𝑦(𝑡),   

where measurements depend on the state: 
𝑦(𝑡) = 𝐶ଶ𝑥(𝑡).  
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Then: 

𝑥ᇱ(𝑡) = (𝐴 − 𝑘𝐵ଵ)𝑥(𝑡) + 𝐹, (2) 
where 𝐵ଵ = 𝐵𝐶ଵ𝐶ଶ. 

𝐵ଵ = 𝐵𝐶ଵ𝐶ଶ.  
For stability, the matrix 𝐴 − 𝑘𝐵ଵ has to be negatively defined or at least, non-positively defined. 

This depends on eigenvalues 𝜆௜ of this matrix that can be defined from equation det(𝐴 − 𝑘𝐵ଵ − 𝜆𝐼) =
0. Suppose that 𝐴 − 𝑘𝐵ଵ is negatively defined for a sufficiently large 𝑘. Then the necessary condition 
that this property becomes invalid at some 𝑘଴, i. e. , the largest eigenvalue changes its sign 𝜆(𝑘଴) =
0 is 

det(𝐴 − 𝑘𝐵ଵ) = 0. (3) 
That can be used to find a critical value 𝑘଴.  

1.2. Attack on system measurements and instability conditions 
determining 

Let 𝜉(𝑡) be the distortion introduced to the measurements by an attacker. The measurements are 
given by 

𝑦(𝑡) = 𝐶ଶ𝑥(𝑡) + 𝜉(𝑡),  
then 

𝑢(𝑡) = −𝐶ଵ𝑦(𝑡) = −𝐶ଵ൫𝐶ଶ𝑥(𝑡) + 𝜉(𝑡)൯ = −𝐶ଵ𝐶ଶ𝑥(𝑡) − 𝐶ଵ𝜉(𝑡).  
Thus, equation (1) takes the form 

𝑥ᇱ(𝑡) = ൫𝐴 − 𝑘𝐵ଵ − 𝑘𝐵ଶ𝜉(𝑡)൯𝑥(𝑡) + 𝐹, (4) 
where 

𝐵ଶ = 𝐵𝐶.  
If 𝑥(𝑡) is known, identifying the attacker’s intervention 𝜉(𝑡)    becomes a standard fitting problem. 

Otherwise, it is necessary to determine 𝑥(𝑡)  simultaneously with 𝜉(𝑡) when 𝑦(𝑡) is known. 
The problem can be simplified if we know etalon values 𝑥∗, 𝑦∗, which allow us to eliminate 𝐹: 

𝑧(𝑡) ≡ 𝑥(𝑡) − 𝑥∗(𝑡);  
𝑧ᇱ(𝑡) = 𝐷𝑧(𝑡) + 𝐷ଵ𝜉(𝑡)𝑥(𝑡);  

𝜉(𝑡) = 𝑦(𝑡) − 𝐶ଶ൫𝑥∗(𝑡) + 𝑧(𝑡)൯. (5) 
From here: 

𝑧ᇱ(𝑡) = 𝐷𝑧(𝑡) + 𝐷ଵ{𝑦(𝑡) − 𝐶ଶ[𝑥∗(𝑡) + 𝑧(𝑡)]}[𝑥∗(𝑡) + 𝑧(𝑡)], (6) 
or 

𝑧ᇱ(𝑡) = 𝐷𝑧(𝑡) + 𝑓(𝑡) + 𝐷ଵ{𝑦(𝑡) − 𝐶ଶ[𝑥∗(𝑡) + 𝑧(𝑡)]}𝑧(𝑡), (7) 
where 

𝑓(𝑡) = 𝐷ଵ{𝑦(𝑡) − 𝐶ଶ[𝑥∗(𝑡)]}𝑥∗(𝑡).  
Assuming the effect of disturbances is small, successive approximations can be considered for 

equation (6). For the zero approximation, we set 

𝜉(𝑡) = 0;  
𝑧(𝑡) = 0.  

In the first approximation, we neglect the quadratic term by  𝑧 : 
𝑧ᇱ(𝑡) = 𝐷𝑧(𝑡) + 𝑓(𝑡) + 𝐷ଵ{𝑦(𝑡) − 𝐶ଶ𝑥∗(𝑡)}𝑧(𝑡),  

 
𝑧ᇱ(𝑡) = 𝐷෩𝑧(𝑡) + 𝑓(𝑡), (8) 

where 
𝐷෩ = 𝐷 + 𝐷ଵ{𝑦(𝑡) − 𝐶ଶ𝑥∗(𝑡)}.  

Assuming  
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𝑧(0) = 0,  
we can find 𝑧ଵ(𝑡) by numerically solving the linear equation.  

Given a set of measurements: 

𝑦∗(𝑡) = 𝐶ଶ𝑥∗(𝑡),  
which characterizes normal process flow (solution of equation (2) or (4) when 𝜉(𝑡) ≡ 0), we assume 
the adversary aims to maximize damage, causing 𝑥∗(𝑡) becomes unstable. The control problem for 
critical infrastructure systems is to prevent such scenarios through control measures and by 
comparing 𝑦(𝑡) and 𝑦∗(𝑡). 

To detect intrusions caused by additional adversarial distortions, an additional criterion can be 
added to the measurement system to identify deviations from the normal process flow (e.g., electricity 
supply):  

𝐽(𝑦) = න (𝑦(𝑡) − 𝑦∗(𝑡))ଶ𝑑𝑡 → 𝑚𝑖𝑛
்

଴

. 
 

Let ℰ௖௥ be threshold such that  
𝐽(𝑦) ≥ ℰ௖௥,  

signals abnormal system behavior. For discrete measurements: 

𝐽 = ෍(𝑦(𝑡௜) − 𝑦∗(𝑡௜))ଶ

௡

௜ୀଵ

⟶ 𝑚𝑖𝑛. 
(9) 

Next, let us determine 𝜉(𝑡) that leads to system instability. Such a problem can arise in cyber 
incident investigation, especially when trying to uncover adversarial actions aimed at destabilizing 
the system. We can use 

det(𝐷 + 𝐷ଵ𝜉(𝑡)) = 0 (10) 
where  

𝐷 ≡ 𝐴 − 𝑘𝐵ଵ,  
𝐷ଵ ≡ −𝑘𝐵𝐶ଵ.  

This allows us to define 𝜉(𝑡).  
In equation (8), the addition of  

𝑦(𝑡) − 𝐶ଶ𝑥∗(𝑡)  
is small because the distortions introduced by the adversary are minor and can be neglected in the 
first approximation. 

Thus, from (8) we can write: 

𝑧(ଵ)(𝑡) ≈ 𝑒஽௧ න 𝑒ି஽௧ᇲ௙൫௧ᇲ൯
௧

଴

𝑑𝑡ᇱ; 
 

𝜉(𝑡) ≈ 𝑦(𝑡) − 𝐶ଶ ቈ𝑥∗(𝑡) + 𝑒஽௧ න 𝑒ି஽௧ᇲ
𝑓(𝑡ᇱ)𝑑𝑡ᇱ

௧

଴

቉. 
 

In the next approximation, we substitute 𝑧(ଵ)(𝑡) in the last term of (7). 
As Table 1 shows, some attacks require knowledge of system functioning and parameters. Using 

the principles of parametric identification outlined above, and having access to measurement data, an 
adversary can infer unknown parameters (e.g., 𝐴, 𝑘, or 𝐵 from (1)). Thus, intercepting measurement 
information may enable more dangerous attacks, such as covert attacks. 

1.3. Attack on system state and parameter identification 

Let us consider a typical attack on the system state that involves false data injection (FDI) by 
manipulating system control parameters.  



42 

In FDI attacks, a scaling parameter 𝜉 is used to alter control [5], allowing the adversary to influence 
system requlation. 

Under attack, system (1) takes the form: 

𝑥ᇱ(𝑡) = 𝐴𝑥(𝑡) + 𝑘𝐵𝑢(𝑡) + 𝜉𝑢(𝑡) + 𝐹,  (11) 
𝑢(𝑡) = −𝐶ଵ𝑦(𝑡),   
𝑦(𝑡) = 𝐶ଶ𝑥(𝑡).   

Rewriting the state equation, we have: 
𝑥ᇱ(𝑡) = ൫𝐴 − 𝑘𝐴ሚ൯𝑥(𝑡) + 𝜉𝑢(𝑡) + 𝐹,   

where 
𝐴ሚ ≡ 𝐵𝐶ଵ𝐶ଶ.   

Let us rewrite the state equation in the form 

𝑥ᇱ(𝑡) = 𝑀𝑥(𝑡) + 𝐹,   
where 

𝑀 ≡ 𝐴 − 𝑘𝐴ሚ − 𝜉𝐶ଵ𝐶ଶ.   
From the condition 

det 𝑀 = 0 ,  (12) 
we can obtain the critical value of 𝜉 that leads to system instability. 

To illustrate the process of restoring attack parameters of the cyber incident, let us consider the 
generalized case of the system (11): 

𝑥ᇱ(𝑡) = A𝑥(𝑡) + B(𝜉)𝑢(𝑡) + 𝐹;  (13) 
𝑥(0) = 𝑥଴,  (14) 

where 𝑥 represents the system state, 𝑢 is the control function, 𝐹  is the source function, and 𝜉 
describes the intensity of adversary’s intrusion. The dependency 𝐵 on 𝜉 is assumed to be known. 

Suppose the adversary’s goal is defined by the criterion under conditions (13), where 
𝑃(𝑡), 𝑄(𝑡) are given functions, 𝑥௠(𝑡) represents the process state boundaries, and 𝑢௠(𝑡) is the 
desired control target of the adversary. We assume that 𝑥௠(𝑡)  and 𝑢௠(𝑡) are known: 

𝐽(𝑢) = න [𝑃(𝑡)൫𝑥(𝑡) − 𝑥௠(𝑡)൯
ଶ

+ 𝑄(𝑡)(𝑢(𝑡) − 𝑢௠(𝑡))ଶ
்

଴

]𝑑𝑡 → 𝑚𝑖𝑛.  
(15) 

Setting  𝑧(𝑡) = 𝑥(𝑡) − 𝑥௠(𝑡);  𝑣(𝑡) = 𝑢(𝑡) − 𝑢௠(𝑡), equation (1) can be reformulated as: 
𝑧ᇱ(𝑡) = 𝐴𝑧(𝑡) + 𝐵(𝜉)𝑣(𝑡),  (16) 

𝑧(0) = 𝑧଴,  (17) 
where 𝑧଴ = 𝑥଴ − 𝑥௠(0) and ideally 

𝐹(𝑡) + 𝐴𝑥௠(𝑡) + 𝐵(𝜉)𝑢௠(𝑡) − 𝑥ᇱ
௠(𝑡) = 0.  (18) 

Then, expression (15) is transformed to  

𝐽 = න [𝑃(𝑡)൫𝑧(𝑡)൯
ଶ

+ 𝑄(𝑡)(𝑣(𝑡))ଶ
்

଴

]𝑑𝑡.  
(19) 

The objective is to determine the feedback between 𝑧(𝑡)  and 𝑣(𝑡) that the attacker introduces 
into the system to achieve the goal (15). This enables: 1) predicting the magnitude of adversary actions 
to train anomaly detection systems, and 2) recovering details of adversary actions from known 
incident characteristics (𝑥௠(𝑡), 𝑢௠(𝑡)).  

Introducing Lagrange multiplier, we have: 

𝛿𝐽 = න {2𝑃(𝑡)𝑧(𝑡)𝛿𝑧(𝑡) + 2𝑄(𝑡)𝑣(𝑡)𝛿𝑣(𝑡)
்

଴

+ 𝜆(𝑡)[𝛿𝑧ᇱ(𝑡) − 𝐴𝛿𝑧(𝑡) −   𝐵(𝜉)𝛿𝑣(𝑡)]}𝑑𝑡 = 

(20) 

= න {[2𝑃(𝑡)𝑧(𝑡) − 𝜆ᇱ(𝑡) − 𝜆(𝑡)𝐴]𝛿𝑧(𝑡) + [2𝑄(𝑡)𝑣(𝑡) − 𝜆(𝑡)𝐵(𝜉)]𝛿𝑣(𝑡)}𝑑𝑡 +
்

଴

 
 

+𝜆(𝑇)𝛿𝑧(𝑡).  
From the condition 𝛿𝐽 = 0, we select 𝜆(𝑡) so that: 
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𝜆ᇱ(𝑡) = 2𝑃(𝑡)𝑧(𝑡) − 𝜆(𝑡)𝐴,   (21) 
𝜆(𝑇) = 0   (22) 

and 
2𝑄𝑣 = 𝜆𝐵, (23) 

𝑣 =
ଵ

ଶ
𝑄ିଵ𝜆𝐵. (24) 

Equation (16) then becomes: 

𝑧ᇱ = 𝐴𝑧 +
ଵ

ଶ
𝐵𝑄ିଵ𝜆𝐵, 𝑧(0) = 𝑧଴.  

This problem is reduced to equations (21) and (25). However, this system is inconvenient because 
the conditions apply for 𝑡 = 𝑇 and 𝑡 = 0, respectively. To simplify it, substitute 𝜆 = 𝐿𝑧, where 
𝐿(𝑇) = 0: 

𝑧ᇱ = 𝐴𝑧 +
ଵ

ଶ
𝐵𝑄ିଵ𝐿𝐵𝑧, 𝑧(0) = 𝑧଴. (25) 

𝐿ᇱ𝑧 = 2𝑃𝑧 − 𝐴𝐿𝑧 − 𝐿 ቂ𝐴𝑧 +
ଵ

ଶ
𝐵𝑄ିଵ𝐿𝐵𝑧ቃ.  

𝐿ᇱ = 2𝑃 − 𝐴𝐿 − 𝐿 ൤𝐴 +
1

2
𝐵𝑄ିଵ𝐿𝐵൨ , 𝐿(𝑇) = 0 

(26) 

Thus, we can solve (26) for 𝐿 numerically with the condition at 𝑡 = 𝑇  and then, with the known 

𝐿, solve equation (25) to find 𝑣 =
ଵ

ଶ
𝑄ିଵ𝐿𝐵𝑧. This solution minimizes the expression (19). 

Given 𝑣 and 𝑧, we can investigate the minimal values of J with respect to the attack parameter ξ   
using equations (15) and (16). 

Applying the gradient method allows for a more efficient parameter identification process 
compared to a “brute force” calculation approach. The convergence ratio for the gradient procedure 
is estimated in [17]. Additionally, the conjugate gradient method [18] can be used as an alternative in 
step 6 of the algorithm.  

The algorithm steps are as follows: 

1. Set an initial arbitrary value 𝜉଴.  
2. Find 𝐿 from equation (26). 
3. Determine z using equation (25). 
4. Calculate 𝑣 from equation (24), with 𝜆 = 𝐿𝑧. 

5. Calculate 𝐽(𝜉௜) using equation (19), with 𝑣 =
ଵ

ଶ
𝑄ିଵ𝐿𝐵(𝜉௜)𝑧. 

6. Update 𝜉௜ାଵ: 𝜉௜ାଵ = 𝜉௜ + 𝜏 ቀ
డ௃

డక
ቁ

௜
. 

7. If 
ห௃೔శభି௃೔ห

௃೔శభ ≤ ℰ , proceed to step 8. Otherwise, return to step 2 for the next iteration. 

8. The parameter value 𝜉௜ will then satisfy (15) with precision ℰ.  
A similar algorithm can also be used by a malicious actor to identify unknown parameters of the 

system. For this, only system state measurements are needed.  

5. Computer simulation results 
Using the presented models, we generated dynamics graphs of FDI attacks. For the simulations, 

we developed a Python software package.  

1.4. Stability violation features  

In Fig. 2, we illustrate the normal situation for the AGC. Here, we consider a one-component state 
x, representing frequency deviation Δf, and constant values of ξ, which could generally time-
dependent. For a two-component state, see the example in Fig. 3.  
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Figure 2: Undisturbed system, 𝜉 = 0 
 

 
Figure 3: Undisturbed system, two-component state, 𝜉 = 0 
 

To identify the parameter ξ that meets a certain criterion J (see Fig.4), the proposed algorithm can 
be applied. In certain cases, some J samples may not contribute to the rapid convergence of the 
algorithm. However, in a significant number of cases, the proposed algorithm proves to be 
numerically efficient. 
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Figure 4: Criterion J sample with a minimum at 𝜉 = 1 
 

Fig. 5 shows that with small values of attack parameter, malicious influence may be subtle, making 
these attacks difficult for anomaly detection systems to detect. Such attacks typically target the 
software components of cyber-physical systems, aiming to insert false data into monitoring systems. 

 
 

 
Figure 5: Malicious influence with 𝜉 = 1 
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Figure 6: Malicious influence with 𝜉 = 5  
 

Attacks with larger values of scaling attack parameter can be detected effectively by monitoring 
systems due to noticeable changes in state pattern. For such attacks, cyber defenders should not only 
detect but also react quickly to mitigate potential damage. High values of the scaling parameter can 
pose risks to hardware components by threatening system stability. As shown in Figs. 7-9, with 
certain values of 𝜉, system state becomes unstable. The threshold value 𝜉 = 9.4 (corresponding to the 
Fig. 8) can be calculated with necessary accuracy from (12). In the case of measurement intrusion, the 
stability boundary is determined by (10).  

 
Figure 7: System state remains stable 
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Figure 8: Attack with threshold value of the parameter 
 
 

 
Figure 9: System state loses stability 
 

1.5. Illustration of malicious activity at a specific time 

Figures 10 and 11 illustrate scenarios where malicious influence "activates" at a specific time rather 
than initially. We observe a minor spike with low scaling parameter values (Fig. 10) and a clear change 
in the pattern with more significant influence intensity (Fig. 11).  

Depending on the attacker's goal, small impacts can also lead to serious consequences as a result 
of tampering, affecting intrusion detection systems. 
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Figure 10: Frequency deviation pattern under attack parameter 𝜉 = 1 
 

 
Figure 11: Frequency deviation pattern under attack parameter 𝜉 = 7 

6. Conclusions 
Computer simulation results indicated that attacks with low values of the scaling parameter are 

not a threat to system stability but are challenging for anomaly detection systems to detect. Such 
attacks could be used by malicious actors to incrementally falsify historical data or poison machine-
learning-based modules. 

We derived the conditions for stable system operation based on the values of the attack parameter. 
Additionally, an algorithm was proposed for estimating the control intensity of FDI attacks, enabling 
the collection of quantitative data on malicious strategies to support system resilience. 

An analysis of typical attack patterns in modern energy facilities showed that certain classes of 
attacks require full knowledge of the system. This information (e.g., system parameters) can be 
indirectly recovered using control theory principles, similar to the algorithm proposed in this paper 
for identifying unknown attack parameters. This highlights the risks posed by "sniffing" as a method 
for gathering measurement data, underscoring the need for preventive measures to prevent sniffing. 
Most data transfer protocols in AGC systems lack confidentiality by default, making them vulnerable. 

The proposed approach and algorithm can be used for numerical incident investigations, providing 
solid foundations for response strategies. Future research could focus on studying combined attack 
types and enhancing detection methods. 
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