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Abstract 
The representation of the architecture of an information security management system has been investigated. 
The peculiarities of how the organization, as an environment, influences its key concepts and properties 
have been demonstrated. This influence is reflected in the elements of connections, principles, and the 
evolution of the information security management system. Describing its architecture within a specific 
organization—considering the type, size, and nature of the organization—has been reduced to constructing 
a model from the perspective of stakeholders. To achieve this, it is proposed to use systems engineering 
based on a model, preceded by an analysis of its features and advantages. Secure system development 
patterns and extensions of the Unified Modeling Language, including UMLsec and SysML, have been 
discussed. Among these, SysML has been highlighted, and its practical application has been analyzed. 
Additionally, relational probabilistic models have been researched as alternatives. Further stereotypes of the 
SysML language have been identified. 
Moreover, a method for presenting and justifying the design of information security management systems, 
referred to as REISMSAD, has been proposed. Its use is oriented toward developing and documenting 
architectural decisions, as well as justifying the project's development within the organization. This 
approach has enabled the formulation of tasks for verifying the architectural decisions of information 
security management systems. As a result, it has become possible to apply formal methods based on labeled 
transition systems to solve these tasks. Consequently, achieving a unified representation of the architecture 
model of the information security management system has become feasible, primarily from the perspectives 
of various stakeholders. The language for modeling systems serves as the basis for such formalization. 
According to its graphical notation, an architecture element is represented as a block, along with its 
properties and the relationships between them. 

Keywords  
Risk assessment, risk treatment, information security management system architecture, model-based 
systems engineering, model-based architecture, interested party.1 

1. Introduction 

The embodiment of the main concepts and properties of a system within its environment is reflected 
in its elements, connections, principles, and evolution [1]. Such reflection is conventionally 
represented by its architecture. The description of its creation within a specific environment and/or 
community of stakeholders is determined by a model constructed from a particular perspective [2]. 

A characteristic feature of creating information security management systems is the focus on 
ensuring the integrity of fundamental information properties within an organization. This is achieved 
through risk assessment, which guarantees stakeholders proper handling of these risks [3]. In this 
context, the organization is interpreted as the surrounding environment that defines the parameters 
and conditions influencing the information security management system. Meanwhile, its main 
concepts and properties are embodied in the elements and connections of the architecture [1, 4, 5]. 
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With this interpretation, it becomes possible to establish probable influences on the information 
security management system from the organization’s perspective, taking into account its type, size, 
and nature [4]. Additionally, the model considers the existence and interaction with other 
management systems, such as cybersecurity and private information security. This is crucial for 
addressing the needs, expectations, and limitations of stakeholders within defined boundaries 
(organization and organizational units). Therefore, a model-based representation of the architecture 
of information security management systems is highly relevant. 

2. Related Work 

Engineering systems with security in mind has several advantages. Systems with added security are 
evidently less prone to failures and breaches caused by malicious actors. The international standard 
ISO/IEC 21827 [5] defines additional advantages for engineering organizations that prioritize security, 
such as “savings from the absence of rework due to repeatability, predictable processes, and practices; 
recognition of the true capability to perform tasks, especially in selecting sources; and an emphasis 
on measured organizational competence (maturity) and improvement.” 

Considering the advantages in reliability and cost, there is a significant body of work in the field 
of security-focused systems engineering and software engineering. Several international standards 
relate to secure software/system engineering. As mentioned, ISO/IEC 21827 pertains to this field, 
providing motivation for security requirements in systems and defining ways to assess an 
organization’s procedures for developing such systems. However, its primary focus lies in 
determining an organization’s maturity regarding established processes, such as ensuring 
information security and cybersecurity. This standard is complemented by guidelines [4, 6, 7] that 
offer clear instructions on forming continuous and cohesive information security policies throughout 
the organization. Key components are formally defined, namely: confidentiality, integrity, 
availability, non-repudiation, and authenticity. 

The Carnegie Mellon Software Engineering Institute published several “Secure Design Patterns” 
through its CERT program [8]. Designed for maximum reusability in various design scenarios, these 
high-level patterns provide strategies for use in system architecture, modular design, and 
implementation, all with a security orientation. Each pattern is inspired by a specific vulnerability, 
such as privilege escalation (a common method for executing malicious code or accessing resources 
without proper permission) or input validation flaws (a common method for injecting SQL commands 
through an interface to a database). Each pattern consists of predefined elements that define the 
circumstances under which the design pattern can be used, including entities and code snippets for 
application. 

By analyzing information flow and system usage, it is possible to identify functionalities and 
interactions that correspond to anticipated design patterns and create solutions that help avoid 
common issues. With a plethora of standards and guidelines focused on secure architectures and 
design patterns that promote secure development, it is evident that security is a multifaceted, systemic 
issue. UMLsec is an extension of UML aimed solely at software development. This solution attempts 
to incorporate security into UML during the development stage [9]. In relevant works, Jürjens 
provides a comprehensive analysis of several standard UML diagrams that can supplement the 
security analysis of software systems [10]. Regarding the physical elements of a system, he relies on 
the deployment diagram to view the physical connections between devices. 

While UMLsec is a useful step toward building secure system architectures, it is more beneficial 
to consider a systems view, supported by SysML. AVATAR is an environment based on SysML, 
developed within the European project EVITA, a consortium of security, academic, and automotive 
industry partners researching secure networks on automotive platforms [11]. AVATAR extends 
SysML through several stereotypes and security-based functions, including the use of temporary 
functions in standard state diagrams, allowing for the modeling of delays between states and minimal 
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processing time [12]. Other extensions are designed for using traditional cryptographic algorithms as 
part of the model. A formal proof language is then employed to verify that the security requirements 
of the system are met. While this represents an important advancement, the techniques proposed by 
the authors primarily focus on the cryptographic aspects of information security, with less detailed 
exploration of system aspects such as architectural vulnerabilities and access control. The central 
emphasis on encryption makes it unrealistic to detect vulnerabilities beyond confidentiality breaches 
using AVATAR in its current form. 

Additional attempts to explicitly model security systems within SysML and UML are proposed, as 
seen in [13, 14]. Most of these approaches modify existing diagrams to allow for an explicit description 
of security requirements; however, they offer little in terms of automatically extracting relevant 
information from an existing model to identify security vulnerabilities. 

An alternative to building on UML or SysML models is the use of Probabilistic Relational Models 
(PRMs). PRMs are similar to class diagrams in UML but utilize probabilistic attributes (both 
quantitative and qualitative) to represent the probabilistic characteristics of classes and the 
relationships between attributes. In [15], a PRM-based language for modeling architectures at the 
organizational level is proposed (CySeMoL). The probabilistic inference mechanism generates attack 
probabilities (i.e., the probability that an attack will be executed and successfully completed) based 
on data from previous attacks. The advantage of this technique is that system architects can reuse 
components and inherit previously stored attack vector data. Additionally, all known types of attacks, 
including denial of service, are captured, providing a comprehensive overview of the attack landscape. 

3. SysML extension for modeling security systems 

SysML is a powerful modeling language that can provide significant benefits for developers 
concerned with security. First and foremost, SysML offers a standardized way for system engineers 
and security experts to view systems of interest, helping to bridge the gap between these disciplines. 

Models are typically created as part of the system lifecycle or, in the case of deployed systems, 
constructed retroactively for documentation purposes. Therefore, using models as part of the security 
assurance process aligns well with the typical use of SysML, resulting in minimal additional modeling 
overhead. 

Since models are often regarded as “living documents” that are maintained to reflect design 
architecture choices and modifications, they serve as valuable sources of information for information 
security professionals who require an accurate, up-to-date representation of the system for its proper 
protection. 

As previously discussed, SysML, in its original form, includes many built-in provisions for 
stakeholders involved in security assurance. However, the idea of adding new features to extensible 
modeling languages to better address security concerns is not without precedent, and SysML supports 
such capabilities. For systems engineers, security is a primary objective when reviewing model data. 
By applying the paradigm of separating concerns, systems engineers can specifically address security 
issues as a key part of the system lifecycle, including information security management systems. 

3.1. Developing a Threat Model 

To determine what information is valuable from a security standpoint, it is essential to represent 
concepts that are significant within the context of SysML. Figure 1 illustrates the relationship between 
threat and risk [5]. 

 
This model provides a high-level description of risks related to information security. It defines 

how threats exploit vulnerabilities in information assets. Countermeasures specific to these 
vulnerabilities help minimize the risk to information assets. These relationships aid in identifying the 
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connections between threats, vulnerabilities, countermeasures, risk, and information assets. 
Furthermore, SysML’s holistic view of the system allows for the expansion of these relationships to 
encompass a broader range of concepts. Figure 2 presents a more comprehensive threat model, 
intended to serve as the foundation for the security view within SysML. 

 

 
Figure 1: Relationship between “Threat-Risk” [5] 

 

 
Figure 2: Threat Agent Profile Model 
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Figure 2 presents a series of interconnected stereotypes that can be applied to blocks when 
modeling information security management systems. In addition to the concepts presented in Figure 
1, the SysML Threat Agent Profile describes how threats result from threat agents and reveals the 
information assets that are vulnerable due to the exploitation of vulnerabilities by known threats. 

Threat agents can be either human or computational devices (such as tablets or laptops) infected 
with malicious software and capable of transmitting additional malicious payloads. Human threats 
refer to actions (such as inserting a USB drive into a computer or deliberately disabling security 
systems), while computational threats are modeled as actions that spread malicious software packages 
or initiate more general threats (such as sending malicious commands). Computational devices serve 
as both sources of threats and information assets that need to be protected due to the potential for 
cascading attacks with multiple malicious payloads. 

The model also illustrates how countermeasures are defined based on risk assessments of specific 
threat agents, thereby closing the loop from threat agent to countermeasure. 

3.2. Developing a Data Model Profile 

Although the threat agent profile provides information on how threats interact with information 
assets and vulnerable elements, it lacks a model of the interaction between assets and data. Without 
considering data relationships from an information security perspective, the model remains 
incomplete. Figure 3 presents a graphical representation of the data model, illustrating the 
relationships between information assets, data storage devices, and communication protocols. 

 

 
Figure 3: Data Model Profile 

 
In its current state, the information in the data model regarding communication protocols is 

limited, as it does not capture the layered nature of these protocols. In this work, the “Communication 
Path” stereotype should be considered a model of the physical connections between devices, or, in 
the case of wireless networks, an acknowledgment that data can circulate between connected assets. 

3.3. Extension of the modeling tool 

With the corresponding profiles contained in the system, the following stereotypes can be applied to 
elements with existing models: 

1. Asset: defines any resource that can be the target of an attack. The “criticality” representation 
of the asset is maintained so that different information assets can be prioritized by importance 
within the information security management system. 

2. Communication Path: this stereotype can be applied to any relationship between model 
elements and any block representing a communication protocol, such as TCP/IP. It provides 
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the ability to represent all communication paths, whether encrypted or not, and assess their 
criticality to the information security management system. 

3. Data Storage: data storage devices are information assets and data processors, so they can 
indicate whether data is stored, encrypted, and what its criticality is. 

4. Vulnerability: applied to classes. These classes capture the URLs of known vulnerability reports 
and allow them to be associated with specific vulnerable elements (information assets). 

5. Vulnerable Item: the vulnerable item is stored in the threat model as a type of information 
asset. It should have a countermeasure that protects it and is associated with the vulnerability 
class. 

3.4. View on Information Security 

Adding threat and data models to SysML allows for the inclusion of new information in the model 
and creates a security view—specifically, a collection of visual representations of the system that 
displays this new information. The security view should address the key security issues as defined in 
[4, 6, 7]. 

3.4.1. Confidentiality 

Confidentiality is defined as “the property that information is not made available or disclosed to 
unauthorized individuals, entities, or processes” [6, 7]. To consider confidentiality, it is essential to 
take into account how information is communicated. The “Communication Path” stereotype requires 
that all communication paths be marked as encrypted or not. It is important to note that by using a 
simple logical flag, a systems engineer can declare channels as encrypted, leaving the details about 
encryption techniques to be developed in a more detailed specification later. Currently, there is no 
formal representation of encrypted data in the model. Defining data as another type of information 
asset will allow it to be included in the threat model. However, this approach will not apply the 
“isEncrypted” flag, as it is a concept that does not apply to all types of assets [4, 6, 7]. 

3.4.2. Integrity 

Integrity is defined as “the property of ensuring the accuracy and completeness of information assets” 
[6, 7]. Using SysML adds additional meaning to “integrity,” as a security view will not benefit from 
continuous security monitoring if the model’s integrity is compromised. Implementing checksums 
for software and data allows for periodic automated checks to ensure that the current configuration 
has maintained its integrity. Recording checksums for software and data in the toolchain is feasible 
since updates are typically less frequent than those in standard IT systems and should always be 
executed under a controlled deployment strategy. Such a strategy should include updates to the 
system models to reflect changes [4, 6, 7]. 

3.4.3. Availability 

Availability is defined as “the property of being accessible and usable upon demand by an authorized 
entity” [5–7]. In the least harmful case, attacks compromising the availability of information assets 
may deprive users of access to remote services or processes, incurring significant financial costs. In 
the worst-case scenario, a service whose access is denied could involve an internal control mechanism 
that, if denied for a sufficiently prolonged period, might lose control over a critical system or service. 
Therefore, it is important not only to check interfaces for potential denial-of-service sources affecting 
users but also to work backward from critical information assets to identify connections with threats 
that could “flood” the controller with messages, ensuring the implementation of sensitive message 
processing procedures. Most of the information necessary for evaluation is included in the original 
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SysML diagram. However, additional stereotyped delineation of ports on vulnerable elements allows 
querying the tool to identify all ports not associated with mitigation actions against threats. In [16], 
the availability of management systems used in the energy sector is investigated through interviews 
with enterprise employees. The systems considered have SCADA components, disconnection 
management, and distribution management. The study showed that many disconnections were 
related to software issues on both primary and backup systems, as well as the underutilization of 
hardware redundancy specifically for such cases. This has implications for security; if failover 
recovery techniques are not applied (where the backup system has a completely different design from 
the primary), vulnerabilities found in the software of one system will also exist in the other. 

3.4.4. Non-repudiation 

Non-repudiation is defined as “the ability to prove that an action or event occurred, so that this event 
or action cannot be repudiated later” [5]. Indeed, actors in the information security management 
system can trigger events by sending explicit commands or by reporting on variables associated with 
predicted triggers. To ensure non-repudiation, an important factor is accurate data logging, which 
indicates who executed a command and when. This underscores the significance of data integrity, as 
malicious actors might attempt to deliberately edit logs to compromise the system’s non-repudiation. 
Additionally, data recorded in logs is of little value if the source of the command is unidentified. 

3.4.5. Authenticity 

Authenticity is defined as “the property that ensures the identity of the information asset matches 
the claimed identity. Authenticity relates to entities such as users, processes, systems, and 
information” [5]. Authenticity is characterized by two types of interactions: direct (through device 
authentication) and indirect (through the role of authentication in the authorization process). 
Authentication is an extremely complex issue because, for security-critical systems, the need for 
authentication can introduce an unacceptable delay between the detection of an event and the 
response to it. Moreover, actions related to emergency management (e.g., emergency shutdowns) 
often involve the same actions that a malicious user might want to exploit. Establishing a policy that 
relaxes security during emergencies is dangerous, as it creates an additional incentive for attackers 
to induce failures and may encourage legitimate users to perform potentially hazardous actions to 
bypass security measures. Additionally, encryption and authentication increase the bandwidth 
requirements of the communication flow, which is unacceptable for real-time management. 

After successful user authentication, one can proceed to a separate authorization process. People, 
as threat objects, should be associated with the access level they pose to the system, making risk 
assessment more realistic. However, it is challenging to identify other elements within the threat 
model that should be associated with security levels, as specific implementations of the authentication 
process go beyond the scope of the high-level models considered in this work. The “Asset” stereotype 
is not directly linked to security levels, as a single device may have multiple modes of functionality, 
each with its own access level. For example, parameterization typically has a higher security level 
than simple on/off commands. 

4. Model-based information security management systems 
architecture 

The precondition for defining the architecture of an information security management system is 
the analysis of the organization’s activities as the surrounding environment. Based on established 
internal and external circumstances, requirements are formulated by stakeholders. Implementing 
these requirements allows for the consideration and, ultimately, the satisfaction of defined needs, 
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expectations, and limitations. Consequently, transforming stakeholders’ perspectives into a vision for 
a technical solution is essential. This transformation is crucial for presenting the characteristics, 
attributes, and both functional and non-functional requirements of the information security 
management system within the organization [1, 2, 4]. 

Considering the interests of stakeholders and the established functional and non-functional 
requirements is achieved by creating alternative variants of information security management system 
architectures. Each architecture defines elements and relationships between them, as well as 
interfaces for interacting with other systems within the organization and with other organizations 
(or structural parts of the same organization). Additionally, systems for managing cyber and 
information security should consider their dependency on quality management systems, as these 
generally form an integrated organizational management system [2, 4]. Interfaces and interactions 
characterize the boundaries of the system’s creation and implementation. These aspects are taken 
into account through the development of a model of the architecture of the information security 
management system. To address this task, the use of system engineering based on a model is proposed 
[17]. 

The proposed methodology allows for a shift away from a document-based approach to building 
a model of the architecture of the information security management system. This approach achieves 
uniformity in its representation, primarily from the perspectives of different stakeholders. Such 
uniformity is important for both a clear understanding and the effective meeting of their needs, 
expectations, and limitations. The foundation of this formalization is the SysML modeling language, 
extended with additional security stereotypes, as previously mentioned, and an additional set of 
stereotypes that describe the architecture of the security system according to [1], which will be 
presented below. In graphical notation, an element of the architecture of the information security 
management system is represented as a block, along with its properties and relationships to other 
elements. Furthermore, the structure of each block can be further detailed through its ports and 
interfaces. This capability is useful for depicting interactions both within the elements of the 
architecture of the information security management system and with the surrounding environment. 

To transform the model views of the architecture according to the ISO 42010 standard [1], 
additional stereotypes of the SysML language should be created. The following stereotypes will be 
utilized: 

1. Architecture Description: Provides a description of the architecture. 
2. Architecture: Represents the architecture as an entity. 
3. Stakeholder: Describes the role, position, person, or organization that has an interest, right, 
share, or requirement regarding the “Entity of Interest.” 
4. Stakeholder Perspective: Describes the stakeholder’s perspective on the “Entity of Interest” 
within its “Concern.” 
5. Entity of Interest: Describes the subject of the architecture description. 
6. Environment: Describes the context, conditions, and impact on the “Entity of Interest.” 
7. Concern: Describes the stakeholder’s concern that is important to them. 
8. Aspect: Describes a specific part of the character or nature of the “Entity of Interest.” 
9. Architecture View: Describes a specific informational component that is part of the 
“Architecture Description.” 
10. Architecture Viewpoint: Describes a set of conventions, interpretations, and uses of the 
“Architecture View” to highlight one or more “Concerns.” 
11. Model Kind: Describes the model category, distinguished by its key characteristics and 
modeling conventions. 
12. View Component: Describes a specific part of one or more “Architecture Views.” 
13. Model-Based View Component: Describes a specific part of one or more “Architecture Views” 
that is governed or formulated by a specific “Model Kind.” 
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14. Non-model Based View Component: Describes a specific part of one or more “Architecture 
Views” that is governed or formulated without using models. 
Taking these into account, the architecture of the information security management system can 

be represented by the following model in SysML graphical notation (Figure 4). 
 

 
Figure 4: Model of the information security management system architecture 

4.1. The method of representing the architecture of the information security 
management system 

The method of representing the architecture of the Information Security Management System 
(ISMS) that we will discuss is called the Rationale and Evaluation of Information Security 
Management System Architecture Design (REISMSAD). REISMSAD aims to assist architects in 
creating and documenting architectural designs with a focus on architectural decisions and project 
justifications. It encompasses three types of architectural knowledge: design issues (represented by 
the “Stakeholder” element), design decisions (represented by the “Architecture Description” element), 
and project outcomes (represented by the “Architecture” element). These knowledge objects are 
represented by standard SysML objects. 
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The design issue refers to the set of materials that influence the designer’s or project’s decisions. 
This entity encapsulates concepts such as functional requirements (e.g., scenarios), non-functional 
requirements (e.g., all quality attributes), and project contexts. It also captures information about 
design decisions and project justifications. Project outcomes include the decisions made, such as 
classes, components, interfaces, and usage scenarios. Each individual type of architectural knowledge 
object is captured by applying a predefined tag template of the stereotype. 

In essence, REISMSAD is represented as a directed acyclic graph that connects the architecture 
elements (CAE – “Architecture Element” elements) with the architecture rationale elements (AR – 
“Architecture Description” elements) using the directed relationship ARtr. AR encapsulates the 
“Architecture Description” result for the “Architecture.” Since AR has a 1:1 relationship with the 
“Architecture,” it serves as the decision point for justifying the architecture. The relationship between 
CAE and AR is represented by the directed association ARtr, which signifies a cause-and-effect 
relationship. 

Definition 1. The REISMSAD Model is a labeled transitive system, where: 
 CAE is the set of nodes representing critical and non-critical elements of the architecture; 
 𝐶𝐴𝐸଴ is a subset of initial states of architecture elements; 
 AR is the set of nodes representing architecture rationale; 
 𝐴 is a finite set of action labels; 
 Σ is the set of system variables; 
 𝐿 is the labeling function 𝐿: 𝐶𝐴𝐸 → 2ஊ for elements; 
 𝑅 is the set 𝑅 ⊆ (𝐶𝐴𝐸 × 𝐴𝑅) ∪ (𝐴𝑅 × 𝐶𝐴𝐸) of directed links between nodes, which satisfies 
the following conditions: 

1. All nodes in AR must be associated with at least one cause and one effect, meaning there 
exists ∀𝑟 ∈ 𝐴𝑅 a cause 𝑒 ∈ 𝐶𝐴𝐸 such that (𝑒, 𝑟) ∈ 𝑅 and there is an effect 𝑒′ ∈ 𝐶𝐴𝐸, where 
(𝑟, 𝑒′) ∈ 𝑅. 
2. There is no subset of R that forms a directed cycle. 

The primary form of the model construct is a path of the form {𝐶𝐴𝐸ଵ, 𝐶𝐴𝐸ଶ, … } → 𝐴𝑅ଵ →

{𝐶𝐴𝐸௔ , 𝐶𝐴𝐸௕ , … }, where 𝐶𝐴𝐸ଵ, 𝐶𝐴𝐸ଶ are inputs or causes of the decision 𝐴𝑅ଵ and 𝐶𝐴𝐸௔ , 𝐶𝐴𝐸௕ are 
outputs or consequences of this decision. Figure 5 illustrates a diagram demonstrating this defined 
model construct. The multiplicity of relationships in the diagram shows that the motivational and 
resulting sets CAE are non-empty sets connected through a single element AR. The uniqueness 
constraint on the diagram specifies that each instance of CAE cannot be depicted more than once. 

 

 
Figure 5: Cause-Effect Relationship between 𝐶𝐴𝐸 and 𝐴𝑅 

 
Directed links ARtr represent cause-and-effect relationships. CAE leads to AR through the 

motivation or constraints of the “Architecture Description,” which in turn generates CAE of type 
“Architecture” having “Architecture Description.” CAE can function as both an input and an output 
when used for two decisions. As an input, it can represent artifacts of the following types: 
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requirement, precedent, class, and implementation. As an output, it can be a new or revised design 
element. 

In REISMSAD, architectural elements (CAE) are artifacts that form parts of the architecture design. 
They include needs that must be satisfied, technical and organizational constraints imposed on the 
architecture project, assumptions to be verified, and design objects that result from architectural 
design. 

Architectural elements can also be classified from different architectural perspectives. This 
classification focuses on various aspects of the project solution. The following perspectives on 
architecture are used for classification: logic, data level, application, technologies, and security. 

 
It is assumed that the architecture view includes requirements and environmental factors. Five 

categories of architectural views have been created, describing different aspects of influence on 
architectural design. System requirements include both functional and non-functional requirements. 
This classification allows the architect to trace the process of justifying decisions back to specific 
classes of root causes during analysis. 

“Architecture” elements are the results of the design process and can be classified according to the 
following architectural perspectives: 

 Data-based – used by applications. 
 Application-based – processing logic and software structure, critical and non-critical services. 
 Technology-based – technologies and environments used for system implementation and 

deployment, critical and non-critical components. 
 Security-based – security profiles, risk management, critical and important components. 

The REISMSAD approach allows for three types of architectural justifications: quantitative, 
qualitative, and alternative architecture. Qualitative justification represents the justification process 
and arguments in textual form, essentially outlining the pros and cons of each project decision. 
Quantitative justification utilizes various criteria to evaluate project decisions. The third type involves 
documenting and storing discarded alternative project decisions, which can be reviewed to assess the 
sufficiency of existing evaluation parameters for current architectural projects and for future use in 
other projects. 

It should be noted that architectural decisions can evolve over time due to changes in 
organizational processes and shifts in the environment itself. As these decisions evolve, the original 
architectural design and the description of the decision-making process for this project may be lost. 
Therefore, it is necessary to preserve the entire history of the project's evolution. To address this 
need, an extended REISMSAD model is proposed. 

Definition 2. The Extended REISMSAD Model is a labeled transitive system 
𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷𝑒 = (𝐶𝐴𝐸, 𝐶𝐴𝐸଴, 𝐴𝑅, 𝐴, 𝑅, Σ, 𝐿), 

with a bijective mapping function 𝑆𝑆𝑓: (𝐶𝐴𝐸 → 𝐶𝐴𝐸௛) ∪ (𝐴𝑅 → 𝐴𝑅௛) for each architectural element 
or descriptions of architecture, where:  

𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௖௨௥ = (𝐶𝐴𝐸௖௨௥ , 𝐶𝐴𝐸௖௨௥
଴ , 𝐴𝑅௖௨௥ , 𝐴௖௨௥ , 𝑅௖௨௥, Σ௖௨௥ , 𝐿௖௨௥) 

current model of architecture, and the following conditions are satisfied: 
𝐶𝐴𝐸௖௨௥ ⊆ 𝐶𝐴𝐸; 
𝐴𝑅௖௨௥ ⊆ 𝐴𝑅; 
𝐴௖௨௥ ⊆ 𝐴; 
Σ௖௨௥ ⊆ Σ; 
𝐶𝐴𝐸௖௨௥

଴ ⊆ 𝐶𝐴𝐸଴; 
𝐿௖௨௥: 𝐶𝐴𝐸௖௨௥ → 2ஊ೎ೠೝ; 
𝑅௖௨௥ ⊆ 𝑅 ∩ ൫(𝐶𝐴𝐸௖௨௥ × 𝐴𝑅௖௨௥) ∪ (𝐴𝑅௖௨௥ × 𝐶𝐴𝐸௖௨௥)൯, 

there is no subset of 𝑅௖௨௥ that forms a directed cycle; 
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𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௛ = (𝐶𝐴𝐸௛ ,  𝐶𝐴𝐸௛
௢, 𝐴𝑅௛ , 𝑅௛, Σ௛ , 𝐿௛), – historical architecture model, and the following 

conditions hold: 
𝐶𝐴𝐸௛ ⊆ 𝐶𝐴𝐸; 
𝐴𝑅௛ ⊆ 𝐴𝑅; 
𝐴௛ ⊆ 𝐴; 
Σ௛ ⊆ Σ; 
𝐶𝐴𝐸௛

଴ ⊆ 𝐶𝐴𝐸଴; 
𝐿௛: 𝐶𝐴𝐸௛ → 2ஊ೓; 
𝑅௛ ⊆ 𝑅 ∩ ൫(𝐶𝐴𝐸௛ × 𝐴𝑅௛) ∪ (𝐴𝑅௛ × 𝐶𝐴𝐸௛)൯, 

there is no subset of the set 𝑅௛ that forms a directed cycle; 
and for which the following conditions hold: 

1. 𝐶𝐴𝐸௛ = 𝐶𝐴𝐸 \ 𝐶𝐴𝐸௖௨௥. 
2. 𝐴𝑅௛ = 𝐴𝑅 \ 𝐴𝑅௖௨௥. 
3. 𝐴௛ = 𝐴𝑅 \ 𝐴௖௨௥. 
4. Σ௛ = Σ \ Σ௖௨௥. 
5. 𝐶𝐴𝐸௛

଴ = 𝐶𝐴𝐸଴ \ 𝐶𝐴𝐸௖௨௥
଴ . 

6. 𝐿௛ = 𝐿 \ 𝐿௖௨௥. 
The corresponding model diagram is presented in Figure 6. 
 

 
Figure 6: Diagram of the extended model REISMSADe 

 
Definition 3. The model of the architectural solution for the Information Security Management 

System is defined as a parallel composition of all individual design decisions concerning the systems, 
components, and processes that constitute the architecture of the ISMS, as specified in the form of 
LTS REISMSAD, i.e.: 𝑀 = 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷ଵ||ஃభ

. . ||ஃ೙షభ
𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௡, де 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷ଵ, … , 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௡ – 

the corresponding LTS, Λଵ, … , Λ௡ିଵ – are defined on the model synchronization pairs. 

4.2. Verification of models based on LTS 

Methods for model verification (MV) typically specify RS using temporal logic formulas [18]. 
Temporal logic formulas describe the temporal properties of computations (sequences of transitions) 
of the model. The most commonly used logics in MV methods are Computational Tree Logic (CTL), 
Linear Time Logic (LTL), and a combination of both, CTL⋆. An overview of model verification 
methods is provided in [19]. 

The task of verifying models of architectural decisions in information security management 
systems can be formulated as follows: 

Task 1. Given a model of architectural decision 𝑀 = 𝑃ଵ|| … ||𝑃௡, where 𝑃ଵ, … , 𝑃௡ is the LTS of the 
REISMSAD system. A formula (specification) 𝜑 in temporal logic with respect to the variables of 
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model M is provided. It is necessary to check the validity of formula 𝜑 in model M (denoted as 𝑀 ⊨

𝜑). 

4.3. Task of verification of parameterized models of architectural decisions in 
information security management systems. 

This work considers a generalization of the model verification problem. Verification methods are 
applied to architectural models of ISMS represented as SysML diagrams, consisting of a finite set of 
architectural elements and architectural descriptions specified as Labeled Transition Systems (LTS). 
Since the set of initial configurations is infinite, the set of architectural decision models with varying 
numbers of processes is also infinite. Verifying several randomly selected models from this set does 
not guarantee that the specifications will be fulfilled for all models in the set. For such systems, the 
task can be generally formulated as follows: 

Task 2. Given an infinite family of finite models of architectural decisions in ISMS denoted as 
ℱ = {𝑀௡}, parameterized by a parameter 𝑛 ∈ 𝑁. A formula (specification) 𝜑 of temporal logic is 
given. It is necessary to verify the validity of the formula 𝜑 on all models ℱ, that is 𝑀௡ ⊨ 𝜑, for all 𝑛. 
This task is called parameterized model verification (PMV). 

The formulation of Task 2 requires clarification since the general formulation does not explicitly 
specify how to define the family ℱ and the specification 𝜑. Therefore, we will consider the following 
variant of Task 2. 

Task 3. Given an infinite family of finite models of architectural decisions in ISMS denoted as 
ℱ = {𝑀௡}, parameterized by a parameter 𝑛 ∈ 𝑁. Each model 𝑀௡ = 𝑄||𝑃ଵ|| … ||𝑃௡ consists of an LTS 
of a fixed model REISMSAD 𝑄 and 𝑛 instances of LTS of alternative models 𝑃௜. 𝐼 ⊆ ℕ is a fixed finite 
set of indices of observed alternative models, instances of prototypes 𝑃. The specification 𝜑 of 
temporal logic is given relative to variables defined in the models 𝑃௜, 𝑖 ∈ 𝐼 and variables of the model 
𝑄. It is necessary to verify the validity of the formula 𝜑 on all models in the family ℱ, that is 𝑀௡ ⊨ 𝜑, 
for all 𝑛. 

In fact, in the formulation of Task 3, only one fixed model 𝑄 and 𝑛 instances of prototypes 𝑃 are 
used. We can consider a variant of the task where there are several fixed models 𝑄ଵ, … , 𝑄௠ and several 
alternative models 𝑃௔ , 𝑃௕ , … , 𝑃௭, and a model 

𝑀௡ = 𝑄ଵ‖… ‖𝑄௠ฮ𝑃ଵ
௔‖… ‖𝑃௡ೌ

௔ … ฮ𝑃ଵ
௭‖… ‖𝑃௡೥

௭ , 
where 𝑛௔ + ⋯ + 𝑛௭ = 𝑛 is the parameter. In some cases, this task can be reduced to the formulation 
of Task 3 by constructing the LTS of the model 𝑄 as a parallel composition of LTS of models 
𝑄ଵ, … , 𝑄௠, and the LTS of the prototype 𝑃 as a parallel composition of LTS of prototypes 
𝑃௔ , 𝑃௕ , … , 𝑃௭. 

The proposed formulation of the tasks in the form of (1)–(3) enables the application of a wide 
range of formalized methods for verifying parameterized models specified as Labeled Transition 
Systems (LTS). In this work, one of the methods for searching invariants [19] was employed for the 
verification of the constructed models during the implementation of a unified design system. 

5. Conclusion 

The main concepts and properties of information security management systems in their 
environment are reflected by elements, connections, principles, and evolution. The environment can 
refer to the organization as a whole or to a specific structural part. Depending on its type, size, and 
nature, its influence is assessed. This representation within a specific environment is characterized 
by an architectural model of the information security management system, built from the perspective 
of stakeholders. 
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To achieve this, the advantages of using systems engineering with security considerations in 
organizations have been analyzed. Secure design patterns aimed at preventing vulnerabilities from 
being exploited by threats to the security of information assets have been discussed. Special attention 
has been paid to extending typical modeling languages, such as UMLsec. Among them, SysML has 
been highlighted, and the AVATAR environment based on it has been studied as an example. 
Additionally, the application of relational probabilistic models has been analyzed as an alternative to 
using UML and SysML. 

The appropriateness of using the SysML modeling language as an extension of UML has been 
justified. In this context, the visualization of the relationship between threat and risk has been 
considered, leading to an extension with a detailed representation of threat agents. The interaction 
between information assets and data has also been included, expanding the list of stereotypes (e.g., 
data repository, communication pathway). Furthermore, perspectives on information security 
assurance have been identified, with a focus on information properties, primarily complemented by 
non-repudiation and authenticity. This has resulted in the proposal of additional SysML stereotypes 
to transform the defined perspectives. 

A method for presenting and justifying the design of information security management systems, 
called REISMSAD, has been proposed. Its application is oriented toward developing and documenting 
architectural decisions, as well as justifying the project. It encompasses three types of architectural 
knowledge: design issues (the “Interest” element), design decisions (the “Architecture Description” 
element), and project design results (the “Architecture” element). The proposed method facilitates 
justification through quantitative and qualitative aspects, as well as the use of alternative 
architectures. This has led to the formulation of a task for verifying architectural decisions within 
information security management systems, allowing for the application of formal methods based on 
LTS for this purpose. 

Therefore, the use of model-based systems engineering enables a shift away from a document-
based approach to constructing architectural models of information security management systems. 
This approach achieves uniformity in representations, primarily from the perspectives of various 
stakeholders. The SysML modeling language serves as the foundation for such formalization. 
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