
83

Volodymyr Mokhor1, Oleksandr Bakalynskyi1, Iaroslav Dorohyi 2,3, and Vasyl Tsurkan1,3

1 G. E. Pukhov Institute for Modeling in Energy Engineering of National Academy of Sciences of Ukraine,
15, General Naumov Str., Kyiv, 03164, Ukraine
2 Donetsk National Technical University, 56, Potebni Str., Lutsk, 43003, Ukraine
3 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
37, Prospect Beresteiskyi, Kyiv, 03056, Ukraine

Abstract
The representation of the architecture of an information security management system has been investigated.
The peculiarities of how the organization, as an environment, influences its key concepts and properties
have been demonstrated. This influence is reflected in the elements of connections, principles, and the
evolution of the information security management system. Describing its architecture within a specific
organization—considering the type, size, and nature of the organization—has been reduced to constructing
a model from the perspective of stakeholders. To achieve this, it is proposed to use systems engineering
based on a model, preceded by an analysis of its features and advantages. Secure system development
patterns and extensions of the Unified Modeling Language, including UMLsec and SysML, have been
discussed. Among these, SysML has been highlighted, and its practical application has been analyzed.
Additionally, relational probabilistic models have been researched as alternatives. Further stereotypes of the
SysML language have been identified.
Moreover, a method for presenting and justifying the design of information security management systems,
referred to as REISMSAD, has been proposed. Its use is oriented toward developing and documenting
architectural decisions, as well as justifying the project's development within the organization. This
approach has enabled the formulation of tasks for verifying the architectural decisions of information
security management systems. As a result, it has become possible to apply formal methods based on labeled
transition systems to solve these tasks. Consequently, achieving a unified representation of the architecture
model of the information security management system has become feasible, primarily from the perspectives
of various stakeholders. The language for modeling systems serves as the basis for such formalization.
According to its graphical notation, an architecture element is represented as a block, along with its
properties and the relationships between them.

Keywords
Risk assessment, risk treatment, information security management system architecture, model-based
systems engineering, model-based architecture, interested party.1

1. Introduction

The embodiment of the main concepts and properties of a system within its environment is reflected
in its elements, connections, principles, and evolution [1]. Such reflection is conventionally
represented by its architecture. The description of its creation within a specific environment and/or
community of stakeholders is determined by a model constructed from a particular perspective [2].

A characteristic feature of creating information security management systems is the focus on
ensuring the integrity of fundamental information properties within an organization. This is achieved
through risk assessment, which guarantees stakeholders proper handling of these risks [3]. In this
context, the organization is interpreted as the surrounding environment that defines the parameters
and conditions influencing the information security management system. Meanwhile, its main
concepts and properties are embodied in the elements and connections of the architecture [1, 4, 5].

ITS-2023: Information Technologies and Security, November 30, 2023, Kyiv, Ukraine

 v.mokhor@gmail.com (V. Mokhor); baov@meta.ua (O. Bakalynskyi);
argusyk@gmail.com (Ia. Dorohyi); v.v.tsurkan@gmail.com (V. Tsurkan)

 0000-0001-5419-9332 (V. Mokhor); 0000-0001-9712-2036 (O. Bakalynskyi);
0000-0003-3848-9852 (Ia. Dorohyi); 0000-0003-1352-042X (V. Tsurkan)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

84

With this interpretation, it becomes possible to establish probable influences on the information
security management system from the organization’s perspective, taking into account its type, size,
and nature [4]. Additionally, the model considers the existence and interaction with other
management systems, such as cybersecurity and private information security. This is crucial for
addressing the needs, expectations, and limitations of stakeholders within defined boundaries
(organization and organizational units). Therefore, a model-based representation of the architecture
of information security management systems is highly relevant.

2. Related Work

Engineering systems with security in mind has several advantages. Systems with added security are
evidently less prone to failures and breaches caused by malicious actors. The international standard
ISO/IEC 21827 [5] defines additional advantages for engineering organizations that prioritize security,
such as “savings from the absence of rework due to repeatability, predictable processes, and practices;
recognition of the true capability to perform tasks, especially in selecting sources; and an emphasis
on measured organizational competence (maturity) and improvement.”

Considering the advantages in reliability and cost, there is a significant body of work in the field
of security-focused systems engineering and software engineering. Several international standards
relate to secure software/system engineering. As mentioned, ISO/IEC 21827 pertains to this field,
providing motivation for security requirements in systems and defining ways to assess an
organization’s procedures for developing such systems. However, its primary focus lies in
determining an organization’s maturity regarding established processes, such as ensuring
information security and cybersecurity. This standard is complemented by guidelines [4, 6, 7] that
offer clear instructions on forming continuous and cohesive information security policies throughout
the organization. Key components are formally defined, namely: confidentiality, integrity,
availability, non-repudiation, and authenticity.

The Carnegie Mellon Software Engineering Institute published several “Secure Design Patterns”
through its CERT program [8]. Designed for maximum reusability in various design scenarios, these
high-level patterns provide strategies for use in system architecture, modular design, and
implementation, all with a security orientation. Each pattern is inspired by a specific vulnerability,
such as privilege escalation (a common method for executing malicious code or accessing resources
without proper permission) or input validation flaws (a common method for injecting SQL commands
through an interface to a database). Each pattern consists of predefined elements that define the
circumstances under which the design pattern can be used, including entities and code snippets for
application.

By analyzing information flow and system usage, it is possible to identify functionalities and
interactions that correspond to anticipated design patterns and create solutions that help avoid
common issues. With a plethora of standards and guidelines focused on secure architectures and
design patterns that promote secure development, it is evident that security is a multifaceted, systemic
issue. UMLsec is an extension of UML aimed solely at software development. This solution attempts
to incorporate security into UML during the development stage [9]. In relevant works, Jürjens
provides a comprehensive analysis of several standard UML diagrams that can supplement the
security analysis of software systems [10]. Regarding the physical elements of a system, he relies on
the deployment diagram to view the physical connections between devices.

While UMLsec is a useful step toward building secure system architectures, it is more beneficial
to consider a systems view, supported by SysML. AVATAR is an environment based on SysML,
developed within the European project EVITA, a consortium of security, academic, and automotive
industry partners researching secure networks on automotive platforms [11]. AVATAR extends
SysML through several stereotypes and security-based functions, including the use of temporary
functions in standard state diagrams, allowing for the modeling of delays between states and minimal

85

processing time [12]. Other extensions are designed for using traditional cryptographic algorithms as
part of the model. A formal proof language is then employed to verify that the security requirements
of the system are met. While this represents an important advancement, the techniques proposed by
the authors primarily focus on the cryptographic aspects of information security, with less detailed
exploration of system aspects such as architectural vulnerabilities and access control. The central
emphasis on encryption makes it unrealistic to detect vulnerabilities beyond confidentiality breaches
using AVATAR in its current form.

Additional attempts to explicitly model security systems within SysML and UML are proposed, as
seen in [13, 14]. Most of these approaches modify existing diagrams to allow for an explicit description
of security requirements; however, they offer little in terms of automatically extracting relevant
information from an existing model to identify security vulnerabilities.

An alternative to building on UML or SysML models is the use of Probabilistic Relational Models
(PRMs). PRMs are similar to class diagrams in UML but utilize probabilistic attributes (both
quantitative and qualitative) to represent the probabilistic characteristics of classes and the
relationships between attributes. In [15], a PRM-based language for modeling architectures at the
organizational level is proposed (CySeMoL). The probabilistic inference mechanism generates attack
probabilities (i.e., the probability that an attack will be executed and successfully completed) based
on data from previous attacks. The advantage of this technique is that system architects can reuse
components and inherit previously stored attack vector data. Additionally, all known types of attacks,
including denial of service, are captured, providing a comprehensive overview of the attack landscape.

3. SysML extension for modeling security systems

SysML is a powerful modeling language that can provide significant benefits for developers
concerned with security. First and foremost, SysML offers a standardized way for system engineers
and security experts to view systems of interest, helping to bridge the gap between these disciplines.

Models are typically created as part of the system lifecycle or, in the case of deployed systems,
constructed retroactively for documentation purposes. Therefore, using models as part of the security
assurance process aligns well with the typical use of SysML, resulting in minimal additional modeling
overhead.

Since models are often regarded as “living documents” that are maintained to reflect design
architecture choices and modifications, they serve as valuable sources of information for information
security professionals who require an accurate, up-to-date representation of the system for its proper
protection.

As previously discussed, SysML, in its original form, includes many built-in provisions for
stakeholders involved in security assurance. However, the idea of adding new features to extensible
modeling languages to better address security concerns is not without precedent, and SysML supports
such capabilities. For systems engineers, security is a primary objective when reviewing model data.
By applying the paradigm of separating concerns, systems engineers can specifically address security
issues as a key part of the system lifecycle, including information security management systems.

3.1. Developing a Threat Model

To determine what information is valuable from a security standpoint, it is essential to represent
concepts that are significant within the context of SysML. Figure 1 illustrates the relationship between
threat and risk [5].

This model provides a high-level description of risks related to information security. It defines

how threats exploit vulnerabilities in information assets. Countermeasures specific to these
vulnerabilities help minimize the risk to information assets. These relationships aid in identifying the

86

connections between threats, vulnerabilities, countermeasures, risk, and information assets.
Furthermore, SysML’s holistic view of the system allows for the expansion of these relationships to
encompass a broader range of concepts. Figure 2 presents a more comprehensive threat model,
intended to serve as the foundation for the security view within SysML.

Figure 1: Relationship between “Threat-Risk” [5]

Figure 2: Threat Agent Profile Model

87

Figure 2 presents a series of interconnected stereotypes that can be applied to blocks when
modeling information security management systems. In addition to the concepts presented in Figure
1, the SysML Threat Agent Profile describes how threats result from threat agents and reveals the
information assets that are vulnerable due to the exploitation of vulnerabilities by known threats.

Threat agents can be either human or computational devices (such as tablets or laptops) infected
with malicious software and capable of transmitting additional malicious payloads. Human threats
refer to actions (such as inserting a USB drive into a computer or deliberately disabling security
systems), while computational threats are modeled as actions that spread malicious software packages
or initiate more general threats (such as sending malicious commands). Computational devices serve
as both sources of threats and information assets that need to be protected due to the potential for
cascading attacks with multiple malicious payloads.

The model also illustrates how countermeasures are defined based on risk assessments of specific
threat agents, thereby closing the loop from threat agent to countermeasure.

3.2. Developing a Data Model Profile

Although the threat agent profile provides information on how threats interact with information
assets and vulnerable elements, it lacks a model of the interaction between assets and data. Without
considering data relationships from an information security perspective, the model remains
incomplete. Figure 3 presents a graphical representation of the data model, illustrating the
relationships between information assets, data storage devices, and communication protocols.

Figure 3: Data Model Profile

In its current state, the information in the data model regarding communication protocols is

limited, as it does not capture the layered nature of these protocols. In this work, the “Communication
Path” stereotype should be considered a model of the physical connections between devices, or, in
the case of wireless networks, an acknowledgment that data can circulate between connected assets.

3.3. Extension of the modeling tool

With the corresponding profiles contained in the system, the following stereotypes can be applied to
elements with existing models:

1. Asset: defines any resource that can be the target of an attack. The “criticality” representation
of the asset is maintained so that different information assets can be prioritized by importance
within the information security management system.

2. Communication Path: this stereotype can be applied to any relationship between model
elements and any block representing a communication protocol, such as TCP/IP. It provides

88

the ability to represent all communication paths, whether encrypted or not, and assess their
criticality to the information security management system.

3. Data Storage: data storage devices are information assets and data processors, so they can
indicate whether data is stored, encrypted, and what its criticality is.

4. Vulnerability: applied to classes. These classes capture the URLs of known vulnerability reports
and allow them to be associated with specific vulnerable elements (information assets).

5. Vulnerable Item: the vulnerable item is stored in the threat model as a type of information
asset. It should have a countermeasure that protects it and is associated with the vulnerability
class.

3.4. View on Information Security

Adding threat and data models to SysML allows for the inclusion of new information in the model
and creates a security view—specifically, a collection of visual representations of the system that
displays this new information. The security view should address the key security issues as defined in
[4, 6, 7].

3.4.1. Confidentiality

Confidentiality is defined as “the property that information is not made available or disclosed to
unauthorized individuals, entities, or processes” [6, 7]. To consider confidentiality, it is essential to
take into account how information is communicated. The “Communication Path” stereotype requires
that all communication paths be marked as encrypted or not. It is important to note that by using a
simple logical flag, a systems engineer can declare channels as encrypted, leaving the details about
encryption techniques to be developed in a more detailed specification later. Currently, there is no
formal representation of encrypted data in the model. Defining data as another type of information
asset will allow it to be included in the threat model. However, this approach will not apply the
“isEncrypted” flag, as it is a concept that does not apply to all types of assets [4, 6, 7].

3.4.2. Integrity

Integrity is defined as “the property of ensuring the accuracy and completeness of information assets”
[6, 7]. Using SysML adds additional meaning to “integrity,” as a security view will not benefit from
continuous security monitoring if the model’s integrity is compromised. Implementing checksums
for software and data allows for periodic automated checks to ensure that the current configuration
has maintained its integrity. Recording checksums for software and data in the toolchain is feasible
since updates are typically less frequent than those in standard IT systems and should always be
executed under a controlled deployment strategy. Such a strategy should include updates to the
system models to reflect changes [4, 6, 7].

3.4.3. Availability

Availability is defined as “the property of being accessible and usable upon demand by an authorized
entity” [5–7]. In the least harmful case, attacks compromising the availability of information assets
may deprive users of access to remote services or processes, incurring significant financial costs. In
the worst-case scenario, a service whose access is denied could involve an internal control mechanism
that, if denied for a sufficiently prolonged period, might lose control over a critical system or service.
Therefore, it is important not only to check interfaces for potential denial-of-service sources affecting
users but also to work backward from critical information assets to identify connections with threats
that could “flood” the controller with messages, ensuring the implementation of sensitive message
processing procedures. Most of the information necessary for evaluation is included in the original

89

SysML diagram. However, additional stereotyped delineation of ports on vulnerable elements allows
querying the tool to identify all ports not associated with mitigation actions against threats. In [16],
the availability of management systems used in the energy sector is investigated through interviews
with enterprise employees. The systems considered have SCADA components, disconnection
management, and distribution management. The study showed that many disconnections were
related to software issues on both primary and backup systems, as well as the underutilization of
hardware redundancy specifically for such cases. This has implications for security; if failover
recovery techniques are not applied (where the backup system has a completely different design from
the primary), vulnerabilities found in the software of one system will also exist in the other.

3.4.4. Non-repudiation

Non-repudiation is defined as “the ability to prove that an action or event occurred, so that this event
or action cannot be repudiated later” [5]. Indeed, actors in the information security management
system can trigger events by sending explicit commands or by reporting on variables associated with
predicted triggers. To ensure non-repudiation, an important factor is accurate data logging, which
indicates who executed a command and when. This underscores the significance of data integrity, as
malicious actors might attempt to deliberately edit logs to compromise the system’s non-repudiation.
Additionally, data recorded in logs is of little value if the source of the command is unidentified.

3.4.5. Authenticity

Authenticity is defined as “the property that ensures the identity of the information asset matches
the claimed identity. Authenticity relates to entities such as users, processes, systems, and
information” [5]. Authenticity is characterized by two types of interactions: direct (through device
authentication) and indirect (through the role of authentication in the authorization process).
Authentication is an extremely complex issue because, for security-critical systems, the need for
authentication can introduce an unacceptable delay between the detection of an event and the
response to it. Moreover, actions related to emergency management (e.g., emergency shutdowns)
often involve the same actions that a malicious user might want to exploit. Establishing a policy that
relaxes security during emergencies is dangerous, as it creates an additional incentive for attackers
to induce failures and may encourage legitimate users to perform potentially hazardous actions to
bypass security measures. Additionally, encryption and authentication increase the bandwidth
requirements of the communication flow, which is unacceptable for real-time management.

After successful user authentication, one can proceed to a separate authorization process. People,
as threat objects, should be associated with the access level they pose to the system, making risk
assessment more realistic. However, it is challenging to identify other elements within the threat
model that should be associated with security levels, as specific implementations of the authentication
process go beyond the scope of the high-level models considered in this work. The “Asset” stereotype
is not directly linked to security levels, as a single device may have multiple modes of functionality,
each with its own access level. For example, parameterization typically has a higher security level
than simple on/off commands.

4. Model-based information security management systems
architecture

The precondition for defining the architecture of an information security management system is
the analysis of the organization’s activities as the surrounding environment. Based on established
internal and external circumstances, requirements are formulated by stakeholders. Implementing
these requirements allows for the consideration and, ultimately, the satisfaction of defined needs,

90

expectations, and limitations. Consequently, transforming stakeholders’ perspectives into a vision for
a technical solution is essential. This transformation is crucial for presenting the characteristics,
attributes, and both functional and non-functional requirements of the information security
management system within the organization [1, 2, 4].

Considering the interests of stakeholders and the established functional and non-functional
requirements is achieved by creating alternative variants of information security management system
architectures. Each architecture defines elements and relationships between them, as well as
interfaces for interacting with other systems within the organization and with other organizations
(or structural parts of the same organization). Additionally, systems for managing cyber and
information security should consider their dependency on quality management systems, as these
generally form an integrated organizational management system [2, 4]. Interfaces and interactions
characterize the boundaries of the system’s creation and implementation. These aspects are taken
into account through the development of a model of the architecture of the information security
management system. To address this task, the use of system engineering based on a model is proposed
[17].

The proposed methodology allows for a shift away from a document-based approach to building
a model of the architecture of the information security management system. This approach achieves
uniformity in its representation, primarily from the perspectives of different stakeholders. Such
uniformity is important for both a clear understanding and the effective meeting of their needs,
expectations, and limitations. The foundation of this formalization is the SysML modeling language,
extended with additional security stereotypes, as previously mentioned, and an additional set of
stereotypes that describe the architecture of the security system according to [1], which will be
presented below. In graphical notation, an element of the architecture of the information security
management system is represented as a block, along with its properties and relationships to other
elements. Furthermore, the structure of each block can be further detailed through its ports and
interfaces. This capability is useful for depicting interactions both within the elements of the
architecture of the information security management system and with the surrounding environment.

To transform the model views of the architecture according to the ISO 42010 standard [1],
additional stereotypes of the SysML language should be created. The following stereotypes will be
utilized:

1. Architecture Description: Provides a description of the architecture.
2. Architecture: Represents the architecture as an entity.
3. Stakeholder: Describes the role, position, person, or organization that has an interest, right,
share, or requirement regarding the “Entity of Interest.”
4. Stakeholder Perspective: Describes the stakeholder’s perspective on the “Entity of Interest”
within its “Concern.”
5. Entity of Interest: Describes the subject of the architecture description.
6. Environment: Describes the context, conditions, and impact on the “Entity of Interest.”
7. Concern: Describes the stakeholder’s concern that is important to them.
8. Aspect: Describes a specific part of the character or nature of the “Entity of Interest.”
9. Architecture View: Describes a specific informational component that is part of the
“Architecture Description.”
10. Architecture Viewpoint: Describes a set of conventions, interpretations, and uses of the
“Architecture View” to highlight one or more “Concerns.”
11. Model Kind: Describes the model category, distinguished by its key characteristics and
modeling conventions.
12. View Component: Describes a specific part of one or more “Architecture Views.”
13. Model-Based View Component: Describes a specific part of one or more “Architecture Views”
that is governed or formulated by a specific “Model Kind.”

91

14. Non-model Based View Component: Describes a specific part of one or more “Architecture
Views” that is governed or formulated without using models.
Taking these into account, the architecture of the information security management system can

be represented by the following model in SysML graphical notation (Figure 4).

Figure 4: Model of the information security management system architecture

4.1. The method of representing the architecture of the information security
management system

The method of representing the architecture of the Information Security Management System
(ISMS) that we will discuss is called the Rationale and Evaluation of Information Security
Management System Architecture Design (REISMSAD). REISMSAD aims to assist architects in
creating and documenting architectural designs with a focus on architectural decisions and project
justifications. It encompasses three types of architectural knowledge: design issues (represented by
the “Stakeholder” element), design decisions (represented by the “Architecture Description” element),
and project outcomes (represented by the “Architecture” element). These knowledge objects are
represented by standard SysML objects.

92

The design issue refers to the set of materials that influence the designer’s or project’s decisions.
This entity encapsulates concepts such as functional requirements (e.g., scenarios), non-functional
requirements (e.g., all quality attributes), and project contexts. It also captures information about
design decisions and project justifications. Project outcomes include the decisions made, such as
classes, components, interfaces, and usage scenarios. Each individual type of architectural knowledge
object is captured by applying a predefined tag template of the stereotype.

In essence, REISMSAD is represented as a directed acyclic graph that connects the architecture
elements (CAE – “Architecture Element” elements) with the architecture rationale elements (AR –
“Architecture Description” elements) using the directed relationship ARtr. AR encapsulates the
“Architecture Description” result for the “Architecture.” Since AR has a 1:1 relationship with the
“Architecture,” it serves as the decision point for justifying the architecture. The relationship between
CAE and AR is represented by the directed association ARtr, which signifies a cause-and-effect
relationship.

Definition 1. The REISMSAD Model is a labeled transitive system, where:
 CAE is the set of nodes representing critical and non-critical elements of the architecture;
 𝐶𝐴𝐸଴ is a subset of initial states of architecture elements;
 AR is the set of nodes representing architecture rationale;
 𝐴 is a finite set of action labels;
 Σ is the set of system variables;
 𝐿 is the labeling function 𝐿: 𝐶𝐴𝐸 → 2ஊ for elements;
 𝑅 is the set 𝑅 ⊆ (𝐶𝐴𝐸 × 𝐴𝑅) ∪ (𝐴𝑅 × 𝐶𝐴𝐸) of directed links between nodes, which satisfies
the following conditions:

1. All nodes in AR must be associated with at least one cause and one effect, meaning there
exists ∀𝑟 ∈ 𝐴𝑅 a cause 𝑒 ∈ 𝐶𝐴𝐸 such that (𝑒, 𝑟) ∈ 𝑅 and there is an effect 𝑒′ ∈ 𝐶𝐴𝐸, where
(𝑟, 𝑒′) ∈ 𝑅.
2. There is no subset of R that forms a directed cycle.

The primary form of the model construct is a path of the form {𝐶𝐴𝐸ଵ, 𝐶𝐴𝐸ଶ, … } → 𝐴𝑅ଵ →

{𝐶𝐴𝐸௔ , 𝐶𝐴𝐸௕ , … }, where 𝐶𝐴𝐸ଵ, 𝐶𝐴𝐸ଶ are inputs or causes of the decision 𝐴𝑅ଵ and 𝐶𝐴𝐸௔ , 𝐶𝐴𝐸௕ are
outputs or consequences of this decision. Figure 5 illustrates a diagram demonstrating this defined
model construct. The multiplicity of relationships in the diagram shows that the motivational and
resulting sets CAE are non-empty sets connected through a single element AR. The uniqueness
constraint on the diagram specifies that each instance of CAE cannot be depicted more than once.

Figure 5: Cause-Effect Relationship between 𝐶𝐴𝐸 and 𝐴𝑅

Directed links ARtr represent cause-and-effect relationships. CAE leads to AR through the

motivation or constraints of the “Architecture Description,” which in turn generates CAE of type
“Architecture” having “Architecture Description.” CAE can function as both an input and an output
when used for two decisions. As an input, it can represent artifacts of the following types:

93

requirement, precedent, class, and implementation. As an output, it can be a new or revised design
element.

In REISMSAD, architectural elements (CAE) are artifacts that form parts of the architecture design.
They include needs that must be satisfied, technical and organizational constraints imposed on the
architecture project, assumptions to be verified, and design objects that result from architectural
design.

Architectural elements can also be classified from different architectural perspectives. This
classification focuses on various aspects of the project solution. The following perspectives on
architecture are used for classification: logic, data level, application, technologies, and security.

It is assumed that the architecture view includes requirements and environmental factors. Five

categories of architectural views have been created, describing different aspects of influence on
architectural design. System requirements include both functional and non-functional requirements.
This classification allows the architect to trace the process of justifying decisions back to specific
classes of root causes during analysis.

“Architecture” elements are the results of the design process and can be classified according to the
following architectural perspectives:

 Data-based – used by applications.
 Application-based – processing logic and software structure, critical and non-critical services.
 Technology-based – technologies and environments used for system implementation and

deployment, critical and non-critical components.
 Security-based – security profiles, risk management, critical and important components.

The REISMSAD approach allows for three types of architectural justifications: quantitative,
qualitative, and alternative architecture. Qualitative justification represents the justification process
and arguments in textual form, essentially outlining the pros and cons of each project decision.
Quantitative justification utilizes various criteria to evaluate project decisions. The third type involves
documenting and storing discarded alternative project decisions, which can be reviewed to assess the
sufficiency of existing evaluation parameters for current architectural projects and for future use in
other projects.

It should be noted that architectural decisions can evolve over time due to changes in
organizational processes and shifts in the environment itself. As these decisions evolve, the original
architectural design and the description of the decision-making process for this project may be lost.
Therefore, it is necessary to preserve the entire history of the project's evolution. To address this
need, an extended REISMSAD model is proposed.

Definition 2. The Extended REISMSAD Model is a labeled transitive system
𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷𝑒 = (𝐶𝐴𝐸, 𝐶𝐴𝐸଴, 𝐴𝑅, 𝐴, 𝑅, Σ, 𝐿),

with a bijective mapping function 𝑆𝑆𝑓: (𝐶𝐴𝐸 → 𝐶𝐴𝐸௛) ∪ (𝐴𝑅 → 𝐴𝑅௛) for each architectural element
or descriptions of architecture, where:

𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௖௨௥ = (𝐶𝐴𝐸௖௨௥ , 𝐶𝐴𝐸௖௨௥
଴ , 𝐴𝑅௖௨௥ , 𝐴௖௨௥ , 𝑅௖௨௥, Σ௖௨௥ , 𝐿௖௨௥)

current model of architecture, and the following conditions are satisfied:
𝐶𝐴𝐸௖௨௥ ⊆ 𝐶𝐴𝐸;
𝐴𝑅௖௨௥ ⊆ 𝐴𝑅;
𝐴௖௨௥ ⊆ 𝐴;
Σ௖௨௥ ⊆ Σ;
𝐶𝐴𝐸௖௨௥

଴ ⊆ 𝐶𝐴𝐸଴;
𝐿௖௨௥: 𝐶𝐴𝐸௖௨௥ → 2ஊ೎ೠೝ;
𝑅௖௨௥ ⊆ 𝑅 ∩ ൫(𝐶𝐴𝐸௖௨௥ × 𝐴𝑅௖௨௥) ∪ (𝐴𝑅௖௨௥ × 𝐶𝐴𝐸௖௨௥)൯,

there is no subset of 𝑅௖௨௥ that forms a directed cycle;

94

𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௛ = (𝐶𝐴𝐸௛ , 𝐶𝐴𝐸௛
௢, 𝐴𝑅௛ , 𝑅௛, Σ௛ , 𝐿௛), – historical architecture model, and the following

conditions hold:
𝐶𝐴𝐸௛ ⊆ 𝐶𝐴𝐸;
𝐴𝑅௛ ⊆ 𝐴𝑅;
𝐴௛ ⊆ 𝐴;
Σ௛ ⊆ Σ;
𝐶𝐴𝐸௛

଴ ⊆ 𝐶𝐴𝐸଴;
𝐿௛: 𝐶𝐴𝐸௛ → 2ஊ೓;
𝑅௛ ⊆ 𝑅 ∩ ൫(𝐶𝐴𝐸௛ × 𝐴𝑅௛) ∪ (𝐴𝑅௛ × 𝐶𝐴𝐸௛)൯,

there is no subset of the set 𝑅௛ that forms a directed cycle;
and for which the following conditions hold:

1. 𝐶𝐴𝐸௛ = 𝐶𝐴𝐸 \ 𝐶𝐴𝐸௖௨௥.
2. 𝐴𝑅௛ = 𝐴𝑅 \ 𝐴𝑅௖௨௥.
3. 𝐴௛ = 𝐴𝑅 \ 𝐴௖௨௥.
4. Σ௛ = Σ \ Σ௖௨௥.
5. 𝐶𝐴𝐸௛

଴ = 𝐶𝐴𝐸଴ \ 𝐶𝐴𝐸௖௨௥
଴ .

6. 𝐿௛ = 𝐿 \ 𝐿௖௨௥.
The corresponding model diagram is presented in Figure 6.

Figure 6: Diagram of the extended model REISMSADe

Definition 3. The model of the architectural solution for the Information Security Management

System is defined as a parallel composition of all individual design decisions concerning the systems,
components, and processes that constitute the architecture of the ISMS, as specified in the form of
LTS REISMSAD, i.e.: 𝑀 = 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷ଵ||ஃభ

. . ||ஃ೙షభ
𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௡, де 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷ଵ, … , 𝑅𝐸𝐼𝑆𝑀𝑆𝐴𝐷௡ –

the corresponding LTS, Λଵ, … , Λ௡ିଵ – are defined on the model synchronization pairs.

4.2. Verification of models based on LTS

Methods for model verification (MV) typically specify RS using temporal logic formulas [18].
Temporal logic formulas describe the temporal properties of computations (sequences of transitions)
of the model. The most commonly used logics in MV methods are Computational Tree Logic (CTL),
Linear Time Logic (LTL), and a combination of both, CTL⋆. An overview of model verification
methods is provided in [19].

The task of verifying models of architectural decisions in information security management
systems can be formulated as follows:

Task 1. Given a model of architectural decision 𝑀 = 𝑃ଵ|| … ||𝑃௡, where 𝑃ଵ, … , 𝑃௡ is the LTS of the
REISMSAD system. A formula (specification) 𝜑 in temporal logic with respect to the variables of

95

model M is provided. It is necessary to check the validity of formula 𝜑 in model M (denoted as 𝑀 ⊨

𝜑).

4.3. Task of verification of parameterized models of architectural decisions in
information security management systems.

This work considers a generalization of the model verification problem. Verification methods are
applied to architectural models of ISMS represented as SysML diagrams, consisting of a finite set of
architectural elements and architectural descriptions specified as Labeled Transition Systems (LTS).
Since the set of initial configurations is infinite, the set of architectural decision models with varying
numbers of processes is also infinite. Verifying several randomly selected models from this set does
not guarantee that the specifications will be fulfilled for all models in the set. For such systems, the
task can be generally formulated as follows:

Task 2. Given an infinite family of finite models of architectural decisions in ISMS denoted as
ℱ = {𝑀௡}, parameterized by a parameter 𝑛 ∈ 𝑁. A formula (specification) 𝜑 of temporal logic is
given. It is necessary to verify the validity of the formula 𝜑 on all models ℱ, that is 𝑀௡ ⊨ 𝜑, for all 𝑛.
This task is called parameterized model verification (PMV).

The formulation of Task 2 requires clarification since the general formulation does not explicitly
specify how to define the family ℱ and the specification 𝜑. Therefore, we will consider the following
variant of Task 2.

Task 3. Given an infinite family of finite models of architectural decisions in ISMS denoted as
ℱ = {𝑀௡}, parameterized by a parameter 𝑛 ∈ 𝑁. Each model 𝑀௡ = 𝑄||𝑃ଵ|| … ||𝑃௡ consists of an LTS
of a fixed model REISMSAD 𝑄 and 𝑛 instances of LTS of alternative models 𝑃௜. 𝐼 ⊆ ℕ is a fixed finite
set of indices of observed alternative models, instances of prototypes 𝑃. The specification 𝜑 of
temporal logic is given relative to variables defined in the models 𝑃௜, 𝑖 ∈ 𝐼 and variables of the model
𝑄. It is necessary to verify the validity of the formula 𝜑 on all models in the family ℱ, that is 𝑀௡ ⊨ 𝜑,
for all 𝑛.

In fact, in the formulation of Task 3, only one fixed model 𝑄 and 𝑛 instances of prototypes 𝑃 are
used. We can consider a variant of the task where there are several fixed models 𝑄ଵ, … , 𝑄௠ and several
alternative models 𝑃௔ , 𝑃௕ , … , 𝑃௭, and a model

𝑀௡ = 𝑄ଵ‖… ‖𝑄௠ฮ𝑃ଵ
௔‖… ‖𝑃௡ೌ

௔ … ฮ𝑃ଵ
௭‖… ‖𝑃௡೥

௭ ,
where 𝑛௔ + ⋯ + 𝑛௭ = 𝑛 is the parameter. In some cases, this task can be reduced to the formulation
of Task 3 by constructing the LTS of the model 𝑄 as a parallel composition of LTS of models
𝑄ଵ, … , 𝑄௠, and the LTS of the prototype 𝑃 as a parallel composition of LTS of prototypes
𝑃௔ , 𝑃௕ , … , 𝑃௭.

The proposed formulation of the tasks in the form of (1)–(3) enables the application of a wide
range of formalized methods for verifying parameterized models specified as Labeled Transition
Systems (LTS). In this work, one of the methods for searching invariants [19] was employed for the
verification of the constructed models during the implementation of a unified design system.

5. Conclusion

The main concepts and properties of information security management systems in their
environment are reflected by elements, connections, principles, and evolution. The environment can
refer to the organization as a whole or to a specific structural part. Depending on its type, size, and
nature, its influence is assessed. This representation within a specific environment is characterized
by an architectural model of the information security management system, built from the perspective
of stakeholders.

96

To achieve this, the advantages of using systems engineering with security considerations in
organizations have been analyzed. Secure design patterns aimed at preventing vulnerabilities from
being exploited by threats to the security of information assets have been discussed. Special attention
has been paid to extending typical modeling languages, such as UMLsec. Among them, SysML has
been highlighted, and the AVATAR environment based on it has been studied as an example.
Additionally, the application of relational probabilistic models has been analyzed as an alternative to
using UML and SysML.

The appropriateness of using the SysML modeling language as an extension of UML has been
justified. In this context, the visualization of the relationship between threat and risk has been
considered, leading to an extension with a detailed representation of threat agents. The interaction
between information assets and data has also been included, expanding the list of stereotypes (e.g.,
data repository, communication pathway). Furthermore, perspectives on information security
assurance have been identified, with a focus on information properties, primarily complemented by
non-repudiation and authenticity. This has resulted in the proposal of additional SysML stereotypes
to transform the defined perspectives.

A method for presenting and justifying the design of information security management systems,
called REISMSAD, has been proposed. Its application is oriented toward developing and documenting
architectural decisions, as well as justifying the project. It encompasses three types of architectural
knowledge: design issues (the “Interest” element), design decisions (the “Architecture Description”
element), and project design results (the “Architecture” element). The proposed method facilitates
justification through quantitative and qualitative aspects, as well as the use of alternative
architectures. This has led to the formulation of a task for verifying architectural decisions within
information security management systems, allowing for the application of formal methods based on
LTS for this purpose.

Therefore, the use of model-based systems engineering enables a shift away from a document-
based approach to constructing architectural models of information security management systems.
This approach achieves uniformity in representations, primarily from the perspectives of various
stakeholders. The SysML modeling language serves as the foundation for such formalization.

Acknowledgements

The authors would like to express their gratitude to colleagues who participated in discussions on the
research materials presented at various scientific and technical seminars and conferences.

References

[1] ISO/IEC/IEEE 42010, Software, systems and enterprise. Architecture description, 2022. URL:
https://www.iso.org/standard/74393.html.

[2] ISO/IEC/IEEE 15288, Systems and software engineering. System life cycle processes, 2023. URL:
https://www.iso.org/standard/81702.html.

[3] V. Mokhor, О. Bakalynskyi, V. Tsurkan, Probabilistic criterion of information security
management system development, in: Proceedings of the XIX International scientific and
practical conference Information Technologies and Security, ITS 2023, CEUR Workshop, Aachen,
Germany, 2023, volume 2577, pp. 159–168. URL: http://ceur-ws.org/Vol-2577/ paper13.pdf.

[4] ISO/IEC 27001, Information security, cybersecurity and privacy protection. Information security
management systems. Requirements, 2022. URL: https://www.iso.org/standard/ 27001.

[5] ISO/IEC 21827, Information technology. Security techniques. Systems Security Engineering.
Capability Maturity Model® (SSE-CMM®), 2008. URL: https://www.iso.org/standard/
44716.html.

97

[6] ISO/IEC 27032, Cybersecurity. Guidelines for Internet security, 2023. URL: https://www.iso.org/
standard/76070.html.

[7] ISO/IEC 27005, Information security, cybersecurity and privacy protection. Guidance on managing
information security risks, 2022. URL: https://www.iso.org/standard/80585.html.

[8] Technical Report CMU/SEI-2009-TR-010, (2009), Secure Design Patterns, 2009. URL:
https://insights.sei.cmu.edu/documents/813/2009_005_001_15110.pdf.

[9] J. Jürjens, UMLsec: Extending UML for Secure Systems Development, In: JM. Jézéquel,
H. Hussmann, S. Cook (Eds.) “UML” 2002 – The Unified Modeling Language. UML 2002, volume
2460 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2002, pp. 412-425. doi:
10.1007/3-540-45800-X_32.

[10] J. Jürjens, Secure Systems Development with UML, Springer, Berlin, Heidelberg, 2004. doi:

10.1007/b137706.
[11] EVITA: E-safety vehicle intrusion protected applications, 2008. URL: www.evita-project.org.
[12] G. Pedroza, L. Apvrille, D. Knorreck, AVATAR: A SysML Environment for the Formal

Verification of Safety and Security Properties. in: Proceedings of the 11th Annual International
Conference on New Technologies of Distributed Systems, IEEE Xplore, Paris, France, 2011, pp.
1–10. doi: 10.1109/NOTERE.2011.5957992.

[13] M. M. Jamjoom, A. S. Alghamdi, I. Ahmad, Service Orientated Architecture Support in Various
Architecture Frameworks: A Brief Review. in: Proceedings of the World Congress on
Engineering and Computer Science, IMECS 2012, Newswood Limited, San Francisco, USA, 2012,
volume II, pp. 1–6.

[14] Y. Dorogyy, Meta model of compensatory-decompensational approach for architecture of critical
it infrastructure designing. in: Proceedings of the 14th International Conference on Advanced
Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET 2018, IEEE
Xplore, Lviv-Slavske, Ukraine, 2018, pp. 223–228. doi: 10.1109/ TCSET.2018.8336191.

[15] H. Holm, T. Sommestadm, M. Ekstedt, L. NordströM, CySeMoL: A tool for cyber security analysis
of enterprises. in: Proceedings of the 22nd International Conference and Exhibition on Electricity
Distribution, CIRED 2013, IEEE Xplore, Stockholm, Sweden, 2013, pp. 1–4. doi:
10.1049/cp.2013.1077.

[16] M. Jensen, C. Sel, U. Franke, H. Holm, L. Nordstrom, Availability of a SCADA/OMS/DMS System –
A Case Study. in: Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference
Europe, ISGT Europe, 2010, IEEE Xplore, Gothenburg, Sweden, 2010, pp. 1–8. doi:
10.1109/ISGTEUROPE.2010.5638912.

[17] OMG Systems Modeling Language. URL: https://www.omg.org/spec/SysML/1.6.
[18] S. F. Telenyk et al., Methods for Investigating Properties of High-performance Infrastructures. The

review, Control systems and computers, 1 (2015), 3–13.
[19] Y. Y. Dorogyy, V. V. Tsurkan, A survey of parametric model verification methods, Collection of

scientific publications of NUS, 12 (1) (2020), 82–90. doi: 10.15589/znp2020.1(479).10.

