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Abstract
The identification of semantic concepts in tabular data is crucial for numerous applications, including data
integration, cleaning, retrieval, feature engineering, and model development in machine learning. Recently,
various studies have introduced methods using supervised learning or heuristic models to annotate semantic types.
However, these approaches have limitations, making it difficult for them to generalize to a wide range of concepts
or examples. Additionally, many neural network-based methods struggle with scalability, and the majority of
the existing techniques do not perform well with numerical data. We present Kepler-aSI, a column-to-concept
mapping technique that employs a maximum likelihood estimation approach through sets. This method effectively
leverages large amounts of publicly available table data, even in the presence of some noise. We showcase the
effectiveness of Kepler-aSI in the Semtab2024 challenge.

1. Introduction

Semantic annotation of structured data plays a vital role in various applications, from information
retrieval and data preparation to training classifiers. For instance, schema matching in data integration
demands accurate identification of column types in input tables [38]. Similarly, automated data cleaning
and transformation techniques use semantic types to establish validation rules [30]. Tasks like dataset
discovery [46] and feature acquisition in machine learning [24] depend on assessing the semantic
similarity of entities across multiple tables. Many commercial tools, including Google Data Studio [34],
Microsoft Power BI [37], and Tableau [12], leverage these annotations to interpret input data, detect
inconsistencies, and create visualizations. Semantic annotation of a table column involves identifying
real-world concepts that represent the data’s meaning. While this process is critical for numerous data
science applications, most systems currently rely on regular expression or rule-based techniques to
identify column types. These methods necessitate predefined models, struggle with noisy datasets, and
fail to generalize beyond the input models. Recently, there has been increasing interest in applying deep
learning techniques to detect semantic types, due to their robustness against noisy data and superiority
over traditional rule-based systems. Earlier approaches can be divided into two categories based on the
training data used and the types of concepts they identify.

(a) Knowledge Graphs: ColNet [15] and HNN [16] are among the latest methods that utilize semantic
types derived from knowledge graphs like Wikidata. These techniques generate candidate types and
train classifiers to estimate the likelihood of each candidate type. However, they mainly identify
semantic types for columns partially present in the knowledge graphs and struggle to generalize to
broader categories, such as person names.
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(b) Tabular Data: Sherlock [26] and Sato [45] are recent approaches that treat the task of labeling
concepts as a multi-class classification problem. These methods train classifiers using open data but are
confined to concepts that precisely match the predefined list of Wikidata concepts.

To address the limitations of prior work, we make the following observations :

1. There is a plethora of publicly available structured data from diverse sources such as data.gov,
Wikipedia tables, explored web table collections, and others, as well as knowledge graphs like
DBPedia and Wikidata;

2. It is true that not all sources are well-organized, and some degree of noise within each source must
be considered. However, a robust ensemble from multiple input sources can help eliminate noise.
While a strict classification modeling method may require reference data, a carefully designed
probability estimation method can be more tolerant of noise and scale with larger data contents;

3. Numerical data requires special treatment compared to categorical entity data. Although a
numerical value is less unique than a named entity (e.g., 20 can mean several things), a group of
numbers representing a certain concept follows particular patterns. The use of meta-features
such as range and distribution aids in the rapid identification of numerical concepts and is robust
to small amounts of noise;

4. Instead of considering each column of the table in isolation, the overall context of the dataset,
combined with information from a knowledge graph (KG), allows for the joint estimation of the
probability of correspondence between the KG concepts and the attributes of the tabular data.
This improves the identification of links and similarities by taking into account the relationships
between the concepts in the KG and the structures of the tabular data.

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) was estab-
lished to evaluate systems by proposing different tasks and datasets [2, 3, 19, 27, 28, 25]. Systems use
various methods to generate annotations, either by analyzing large knowledge bases [2, 3, 4, 19, 27, 28,
25] or by using classification based on training examples [22, 40].

We develop our solution within the Kepler-aSI system[9, 8, 6], and we present the results obtained
from its use in the SemTab challenge on tabular data to knowledge graph matching, as described in
Section 2 & 3. This challenge evaluates various semantic annotation methods on large-scale tabular
data. In Section 4, we describe our approach by detailing the similarities and differences with other
competing approaches.

2. SemTab Challenge

Figure 1: SemTab tasks

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) evaluates
table annotation systems on various datasets and annotation tasks [20]. In its sixth edition (SemTab



2024), it consists of two rounds, each featuring a variety of tables to be annotated with concepts from
Wikidata. The evaluation of system accuracy follows a similar approach to previous versions of SemTab.
Specifically, SemTab20241 is based on using typical multi-class classification metrics, as detailed below.
Additionally, for the CTA task, we adopt the "cscore" metric to reflect the distance in the type hierarchy
between the predicted column type and the ground truth semantic type.

The challenge is divided into five annotation tasks ( Figure 1):

• CTA Task: Assigning a semantic type (a Wikidata class as fine-grained as possible) to a column.
• CEA Task: Matching a cell to a Wikidata entity.
• CPA Task: Assigning a Wikidata property to the relationship between two columns.
• RA Task: Assigning a Wikidata entity to a table row.
• TD Task: Assigning a Wikidata class to a table.

2.1. Table Types :

• Horizontal Tables : A grid where each row represents one entity and each column shares the
same semantic type .

Figure 2: Horizontal Table Example

• Entity Tables : A list where rows describe different properties of a single entity, with each row
representing a property of that entity.

Figure 3: Entity Table Example

3. Related Work

In this section, we discuss prior technqiues that have been developed to identify the type of a column.

1https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html



3.1. Regular Expression and Lookup-Based Techniques

Many techniques have been developed to identify the type of a column in semantic tables, often relying
on regular expressions and lookup-based methods. These techniques use manually defined patterns
to identify column types, which play a critical role in various data science pipelines such as feature
enrichment [24], schema mapping, data cleaning and transformation [29, 30], and structured data
search [23]. However, the manual effort required for enumerating these patterns can be significant. To
reduce this manual effort, some techniques perform fuzzy lookups of each cell value over knowledge
graphs to identify concepts [18, 24, 28]. These methods assume that the cell values are present in the
knowledge graphs and are not robust to noise. Deng et al. [21] presented a scalable method based
on fuzzy matching between entities for a concept and the cell values of a column, using similarity
scores for ranking. However, this approach can lack robustness, as it might confuse similar entities
(e.g., movies and novels with the same name). For numerical columns, Neumaier et al. [35] developed a
method that clusters values and uses nearest neighbor search to identify the most likely concept. This
method does not leverage column metadata and the context of co-occurring columns.

3.2. Graphical Models

Advanced concept identification techniques generate features for each input column and use probabilistic
graphical models to predict labels. Limaye et al. [31] use a graphical model to collectively determine cell
annotations, column annotations, and binary column relationships. While effective, these techniques
can be sensitive to noisy values and might not capture semantically similar values, which have been
successfully captured by recent word embedding-based techniques.

3.3. Learning Approaches Using Neural Networks

Chen et al. [15] introduced ColNet, a CNN-based approach for classification. It constructs positive and
negative examples by looking up cell values over DBPedia, embedding these examples using word2vec
to train the CNN. This approach helps build context among different cells in the column. Chen et al. [16]
extended this method to leverage inter-column semantics using a hybrid neural network (HNN), though
this technique is slow, requiring extensive training time. Sherlock [26] models concept identification as
a multi-class classification problem, training a multi-input feed-forward deep neural network over a
large corpus of open data containing more than 600K columns referring to 78 semantic types. However,
its reliance on large amounts of training data limits its applicability to less common concepts. SATO
[45] builds on Sherlock by using context from co-occurring columns to jointly predict the concept of all
columns in a dataset, treating the table as a document to generate a vector of terms representative of
the table context. Nevertheless, its effectiveness is limited when column ordering is irrelevant.

3.4. Semantic Table Interpretation Systems

This section examines the literature by analyzing various contributions, focusing on the tasks of Column
Type Annotation (CTA), Column Entity Annotation (CEA), and Column Pair Annotation (CPA). The
methods are discussed from different perspectives: strengths, gaps, and the impact of table elements
and/or the knowledge graph (𝒦𝒢) structure on performance metrics. Various research works have
tackled the issue of Semantic Table Interpretation (STI), varying in their deployed techniques and
adopted approaches.

TabEL [13] begins with preprocessing, generates candidates for each cell using the YAGO ontology,
and ranks them according to their string similarity with the cell. An undirected probabilistic graph
model is then generated to capture the contextual co-occurrences of the entities. ADOG [36] uses an
aggregation of string-based similarity, the number of property occurrences, and the normalized score
of the Elasticsearch tool for each match via DBPedia. Tabularisi [41] relies on a statistical approach
using TF-IDF to rank candidates for the CEA task. The scores are aggregated from TF-IDF, Levenshtein



similarity, and word similarity. Magic [39] uses comparison matrices called INK embeddings to improve
computational efficiency and perform CEA, CPA, and CTA annotations. It also introduces the concept
of a key column for annotation. LOD4ALL [33] uses an RDF storage database and a score database to
generate candidates and performs CTA, CEA, and CPA tasks after filtering the CTA results. CSV2KG
[43] goes through six phases, including raw cell annotations, candidate disambiguation, and inferring
column types and properties between columns. LinkingPark [17] uses a cascading approach to generate
candidate entities and property links for annotation. DAGOBAH [14] consists of sequential tools to
identify semantic relationships, enrich knowledge graphs, and produce metadata for reference. JenTab
[1] operates through nine modules to generate and filter candidates for CTA, CEA, and CPA tasks using
various filtering and solution selection strategies. LexMa [42] starts with preprocessing, evaluates lexical
matching based on cosine similarity, and uses Wikidata and DBPedia search services. MantisTable [18]
categorizes columns, generates candidates from SPARQL queries, performs cross-compatibility analysis
for CEA, and uses majority voting for CPA. DAGOBAH Embeddings [14] proposes an annotation vision
based on embedding vector spaces, using K-means clustering and TransE embeddings. Radar Station
[32] uses graph embedding to detect latent relationships between entities and improve disambiguation.
TCN [44] exploits intra and inter-table contextual information for CTA and CPA tasks, using transfer
learning and unsupervised BERT-like pre-training. DODUO [40] learns to annotate relationships
between column type and column pair by injecting table contexts into the prediction process, using
column representations and token sequences.

4. Kepler-aSI approach

Figure 4: Kepler-aSI Approach

In this section, we will provide a detailed description of our system and highlight some fundamental
concepts related to the technical challenges we have identified. To tackle the tasks presented in the
SemTab challenge, our system, Kepler-aSI [10, 11, 7], follows the workflow illustrated in Figure 4. It



consists of five main nested modules, namely Preprocessing, Query Engine, (and/or External Resource
Consultation), 𝒦𝒢 Candidate Filtering, Annotation, and File Generation. While the overall steps remain
the same for each round, minor adjustments may be made based on specific variations observed in each
case.

4.1. Module 1: Pre-processing

1. Data Sources : Data is extracted from two main sources:

• Data Lakes : Tables containing various columns, for example, a country table with columns
such as ’Country Name,’ ’Population,’ and ’Capital.’

• Knowledge Graphs : Databases like DBPedia and Wikidata, providing structured information
about entities such as countries and their attributes.

2. Data Extraction and Categorization Columns are processed according to their specific types:

• Categorical String Columns :
– For example, for a ’Country Name’ column, extracting entities like ’France’ and ’Canada.’
– Creating a concept index by counting the occurrences of each country.

• Numerical Columns :
– For a ’Population’ column, structuring values into intervals (e.g., 1 to 10 million, 10 to

50 million).

• Mixed-Type Columns :
– For example, a column containing combinations of country names and capitals (such

as ’France - Paris’), where techniques for both categorical and numerical columns are
combined.

3. Indexing : Various indices facilitate prediction and annotation:

• Inverted Entity Concept Count Index:
– Associates each country (e.g., ’France’) with related concepts, such as population and

capital, along with their occurrences in the data.

• Numeric Interval Tree Index:
– Structures population data into an interval tree, for example, ’1-10 million’ and ’10-50

million,’ for efficient analysis.

• Belief Sharing Index:
– Uses tools like Word2Vec to create similarity vectors, for instance, to understand that

’France’ and ’Germany’ are geographical entities.

• Composite Pattern Tree Index:
– Generates models linking data columns, such as the association between ’Country

Name’ and ’Population.’

• Column Co-occurrence and Tuple Validation Index:



– Validates relationships between concepts using knowledge graphs, such as ’France -
capitalCity - Paris.’

4. Prediction Models : Specific models predict column types and annotate cells:

• Categorical Entity Column Prediction:
– For a ’Country Name’ column, using the entity concept index to predict country names

in the test data.

• Numerical Column Prediction:
– For a ’Population’ column, using the numeric interval tree indices to predict value

ranges in the test columns.

• Mixed-Type Column Prediction:
– For a mixed-type column, using belief sharing indices and composite models to predict

data combinations.

5. Validation and Ranking :
• Column Concept Co-existence and Tuple Validation:

– Validate the predicted concepts and rank annotations using the column co-occurrence
and tuple validation index.

• Final Result:
– Generate ranked lists of concepts for each column in the test data, providing precise

annotations for each column type.

4.2. Module 2: Semantic Annotation

After performing the various pre-processing treatments, the tabular data annotation phase can be
triggered.

4.2.1. Query Engine Sub-module

The annotation module acts as the core component of the annotation phase. It allows us to extract
candidate annotations from Knowledge Graphs (such as Wikidata) using parameterized SPARQL queries.
At the beginning of the annotation phase, a switcher component examines the annotation context and
determines the appropriate query to execute. This process is further detailed in the following section.

Starting from an English entity description, below is an example of a SPARQL query to retrieve the label,
class name, and properties from Wikidata (or possibly DBPedia):

1

2 e n d p o i n t _ u r l = " h t t p s : / / query . w i k i d a t a . org / s p a r q l "
3 query = " " "
4 SELECT ? i t e m L a b e l ? c l a s s ? p r o p e r t y
5 WHERE {
6 ? i tem ? i t e m D e s c r i p t i o n "% s "@en .
7 ? i tem wdt : P31 ? c l a s s
8 } " " "



4.2.2. Assigning a Semantic Type to a Column (CTA)

The task is to annotate each entity column with elements from Wikidata (or possibly DBPedia) as its
type, identified during the preprocessing phase.

Algorithm 1: CTA task
Input: Table 𝒯
Output: Annotated Table 𝒯 ′

1 𝑖← 0
2 while 𝑐𝑜𝑙𝑖 ∈ 𝒯 do
3 𝑐𝑙𝑎𝑠𝑠_𝑎𝑛𝑛𝑜𝑡← ∅ /* Assigning a semantic type to a column. */

4 while 𝑐𝑒𝑙𝑙 ∈ 𝑐𝑜𝑙 do
5 𝐿𝑎𝑏𝑒𝑙← 𝑐𝑒𝑙𝑙.𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑉 𝑎𝑙𝑢𝑒
6 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙← 𝑆𝑝𝑒𝑙𝑙𝐶ℎ𝑒𝑐𝑘𝐸𝑛𝑔𝑖𝑛𝑒(𝐿𝑎𝑏𝑒𝑙)
7 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑄𝑢𝑒𝑟𝑦𝐸𝑛𝑔𝑖𝑛𝑒(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙)
8 𝑐𝑙𝑎𝑠𝑠_𝑎𝑛𝑛𝑜𝑡← 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

9 Annotate(𝒯 ′.𝑐𝑜𝑙𝑖, 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝑅𝑎𝑛𝑘𝑒𝑑𝐶𝑙𝑎𝑠𝑠(𝑐𝑙𝑎𝑠𝑠_𝑎𝑛𝑛𝑜𝑡))

To annotate each entity column with elements from Wikidata, we utilize the tags associated with
each item in Wikidata. This approach enables the identification of semantic information. The CTA task
is accomplished by using the Wikidata APIs to search for an item based on its description. During the
pre-processing phase, we collect essential information about each entity from Wikidata, including its
instance list (indicated by the instanceOf primitive and identified by the P31 code), its subclasses
(indicated by the subclassOf primitive and identified by the P279 code), and its overlaps with other
classes (indicated by the partOf primitive and identified by the P361 code). To perform the CTA
task, we use a SPARQL query that leverages this entity information. The SPARQL query serves as
an interrogation tool, utilizing the gathered information about the entity’s instances (P31), subclasses
(P279), or class overlaps (P361) to determine the appropriate data type. The result of the SPARQL
query may yield a single type. However, in cases where multiple types are returned, a disambiguation
treatment is carried out to resolve the ambiguity. The syntax for the SPARQL query is as follows:

1

2 PREFIX r d f s : < h t t p : / / w i k i d a t a . org / r e s o u r c e / >
3 SELECT ? i tem ? i t e m L a b e l ? c l a s s
4 WHERE {
5 ? i tem ? i t e m D e s c r i p t i o n "%s "@en .
6 ? i tem wdt : P31 ? c l a s s
7 }

Listing 1: The SPARQL query for the CTA task.

To ensure efficient and fast information retrieval, all the candidates obtained from the query are
indexed using effective techniques. Each identified annotation is indexed and stored in a NoSQL
database, specifically MongoDB2. This allows for efficient storage and retrieval of the annotations.
The final annotation, which represents the result of the matching process, is determined by querying
this MongoDB database through its integrated search engine. MongoDB was chosen as the database
solution due to its ability to handle nested structures, which is important for organizing the annotations.
Additionally, MongoDB offers significant performance benefits, such as scalability and efficient search
capabilities, resulting in improved execution times. By using MongoDB, we can leverage its processing
capabilities and benefit from its efficient scaling and search efficiency, ensuring the smooth and effective
retrieval of annotations during the matching process.

2https://www.mongodb.com/docs/



4.2.3. Assigning a Cell to a 𝒦𝒢 Entity (CEA)

The CEA task focuses on annotating the cells of a given table with specific entities listed on Wikidata or
DBPedia. This task follows the same principle as the CTA task. Algorithm ?? provides an overview of
the CEA task.

Algorithm 2: CEA task

Data: Table 𝒯
Result: Annotated Table 𝒯 ′

1 𝑖← 0
2 while 𝑟𝑜𝑤𝑖 ∈ 𝒯 do
3 𝑒𝑛𝑡𝑖𝑡𝑦_𝑎𝑛𝑛𝑜𝑡← ∅ /* Matching a cell to a Wikidata entity. */

4 while 𝑐𝑒𝑙𝑙 ∈ 𝑟𝑜𝑤 do
5 𝐿𝑎𝑏𝑒𝑙← 𝑐𝑒𝑙𝑙.𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑉 𝑎𝑙𝑢𝑒
6 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙← 𝑆𝑝𝑒𝑙𝑙𝐶ℎ𝑒𝑐𝑘𝐸𝑛𝑔𝑖𝑛𝑒(𝐿𝑎𝑏𝑒𝑙)
7 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑄𝑢𝑒𝑟𝑦𝐸𝑛𝑔𝑖𝑛𝑒(𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐿𝑎𝑏𝑒𝑙)
8 𝑒𝑛𝑡𝑖𝑡𝑦_𝑎𝑛𝑛𝑜𝑡← 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠;

9 Annotate(𝒯 ′.row𝑖, 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝑅𝑎𝑛𝑘𝑒𝑑𝐸𝑛𝑡𝑖𝑡𝑦(𝑒𝑛𝑡𝑖𝑡𝑦_𝑎𝑛𝑛𝑜𝑡)

Our approach reuses the results of the CTA task process by introducing the necessary modifications
to the SPARQL query. If the operation returns more than one annotation, we run a treatment based
on examining the context of the considered column, relative to what was obtained with the CTA task,
to overcome the ambiguity problem. Analogously to the CTA task, the CEA task can be performed
through a SPARQL query as in the listing. The CEA task aims to annotate the cells of a given table to a
specific entity listed on Wikidata or eventually another 𝒦𝒢. Moreover, if the concerned cells belong
to columns already annotated during the CTA task, then their result can be reused by making the
necessary adjustments. The process is the same as the CTA task. If the return value of the SPARQL
query is a single candidate, then this candidate is retained as an annotation. If we get more than one
candidate, the list is further processed to disambiguate. The SPARQL query syntax is as follows:

1

2 PREFIX r d f s : < h t t p : / / w i k i d a t a . org / r e s o u r c e / >
3 SELECT ? o b j e c t ? o b j e c t L a b e l ? c l a s s
4 WHERE {
5 ? o b j e c t ? o b j e c t D e s c r i p t i o n "%s "@en .
6 ? o b j e c t wdt : P31 ? c l a s s
7 }

Listing 2: The SPARQL query dealing with the CEA task.

4.2.4. Matching a Property to a 𝒦𝒢 Entity (CPA)

After annotating the cell values as well as the different types of each of the considered entities, we
identify the relationships between two cells appearing on the same row via a property using a SPARQL
query, as detailed by Algorithm 3. Indeed, the CPA task involves annotating the relationship between
two cells in a given row via a property. Similarly, this task is performed analogously to the CTA and
CEA tasks. The only difference in the CPA task is that the SPARQL query must select both the entity
and the corresponding attributes as depicted by the following listing:

1

2 PREFIX r d f s : < h t t p : / / w i k i d a t a . org / r e s o u r c e / >
3 SELECT ? i tem1 ? p r o p e r t y ? i t em2
4 WHERE {
5 BIND ( wdt : P279 AS ? p r o p e r t y )
6 ? i t em1 ? p r o p e r t y ? i t em2 .



7 OPTIONAL { ? i t em1 wdt : P31 ? c l a s s . }
8 OPTIONAL { ? i t em2 wdt : P31 ? c l a s s . }
9 }

Listing 3: The SPARQL query designed for the CEA task.

The properties are easy to match since we have already detected them during CEA and CTA task
processing.

Algorithm 3: CPA task

Data: Table 𝒯
Result: Annotated Table 𝒯 ′

1 𝑖← 0 𝑗 ← 0
2 while (𝑐𝑜𝑙𝑖, 𝑐𝑜𝑙𝑗) ∈ 𝒯 𝑎𝑛𝑑𝑖 ̸= 𝑗 do
3 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑎𝑛𝑛𝑜𝑡← ∅/* Assigning a KG property to the relationship between two

columns. */

4 𝒦𝒢_𝑐𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙1 ← 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒(T’.𝑐𝑜𝑙𝑖, 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝑙𝑎𝑠𝑠(𝑐𝑙𝑎𝑠𝑠_𝑎𝑛𝑛𝑜𝑡))
5 𝒦𝒢_𝑐𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙2 ← 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒(T’.𝑐𝑜𝑙𝑗 , 𝑔𝑒𝑡𝑀𝑜𝑠𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡𝐶𝑙𝑎𝑠𝑠(𝑐𝑙𝑎𝑠𝑠_𝑎𝑛𝑛𝑜𝑡))
6 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑄𝑢𝑒𝑟𝑦𝐸𝑛𝑔𝑖𝑛𝑒(𝒦𝒢_𝑐𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙1,𝒦𝒢_𝑐𝑙𝑎𝑠𝑠_𝐿𝑎𝑏𝑒𝑙2)
7 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑎𝑛𝑛𝑜𝑡← 𝒦𝒢_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠;
8 Annotate(𝒯 ′.col𝑖,T’.𝑐𝑜𝑙𝑗 , 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝑅𝑎𝑛𝑘𝑒𝑑𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦_𝑎𝑛𝑛𝑜𝑡)

The CPA task aims to annotate the relationship between two cells within a row by utilizing a
specific property. This task follows a similar approach to the CTA and CEA tasks, employing analogous
techniques and methodologies. However, there is a key distinction in the CPA task, as the SPARQL
query is designed to select both the entity and the corresponding attributes. During the CPA task,
the matching of properties becomes straightforward due to the prior determination of properties in
the CEA and CTA task processing stages. This ensures seamless integration of the CPA task into the
overall annotation process. The primary objective of the CPA task is to establish and annotate the
relationship between two cells within a row, leveraging the identified properties. By leveraging the
information obtained from the CEA and CTA tasks, the CPA task contributes to enhancing the semantic
understanding and interpretation of the tabular data.

4.2.5. Disambiguation

It is important to acknowledge that an entity within Knowledge Graphs can have multiple classes
associated with it. The presence of multiple classes for an entity enriches its representation and provides
a more comprehensive understanding of its semantic context within the Knowledge Graphs.

• CTA Candidates Disambiguation: To determine the optimal annotation for a given class or
column from the available semantic annotation candidates, a selection process is employed that
is based on voting and distance similarities. This involves calculating the average score of the
search results, considering contributions from each column and scores obtained from distance
similarity calculations. The goal is to identify the candidate feature with the highest average
score, which is then chosen as the final annotation. The voting mechanism aggregates preferences
from different columns, aiding in the selection of the most suitable annotation. Additionally, the
consideration of distance similarities provides a measure of proximity between candidate features
and the desired annotation. Through this process, we enhance the accuracy and reliability of the
final annotation decision.

• CEA Candidates Disambiguation: To determine the optimal feature annotation among avail-
able semantic annotation candidates, a selection process is used that involves calculating the



average score of the search results, taking into account both the row-based voting score and the
distance similarity score. The row-based voting score reflects preferences from different rows,
while the distance similarity score quantifies the similarity between candidate features and the
desired annotation. By combining these scores, the candidate with the highest average score is
selected as the final annotation. This process ensures alignment with row preferences and strong
similarity to the desired annotation, facilitating the identification of the most appropriate and
reliable feature annotation.

• CPA Candidates Disambiguation: In selecting the optimal annotation for a property between
two columns from available semantic annotation candidates, a selection approach is used that
involves calculating the average score of the search results. This calculation considers both the
Match value score between cells of the two columns and the similarity score of distances. The
Match value score measures the compatibility between cell values, while the similarity score
evaluates the proximity between candidate properties. The candidate with the highest average
score, reflecting both the Match value score and distance similarity score, is selected as the
final property annotation. This process ensures that the chosen property annotation effectively
captures relationships between the two columns, considering both cell value compatibility and
distance similarity.

4.3. 𝒦𝒢_Candidates Filtering Module

The candidate annotation filtering process is facilitated by an efficient and rapid Information Retrieval
technique. Once candidate annotations are identified, they are indexed and stored in a NoSQL database,
specifically MongoDB. The final annotation is then determined as the result of querying this database
using its integrated search engine, selecting the candidate annotation with the highest score and top
rank, as outlined in lines 10 and 8 of Algorithms 1, 2, and 3, respectively [5]. MongoDB is chosen for
its execution speed, scalability, and search efficiency, which contribute to the enhanced performance
and effectiveness of the candidate annotation filtering process. By leveraging MongoDB’s capabilities,
efficient retrieval and selection of the most suitable annotations are ensured, streamlining the overall
annotation workflow.

5. Kepler-aSI performance and results

In this section, we will present the results of Kepler-aSI for the various matching tasks in the second
round of SemTab 20243. These results highlight the strengths of Kepler-aSI, showcasing its encouraging
performance despite the range of challenges encountered.

In Round 2, the datasets are expanded versions of those from Round 1, aiming to assess the accuracy of
solutions that can scale effectively, given the common trade-off between accuracy and performance. The
dataset WikidataTables2024R24 is quite similar to its Round 1 counterpart but features slight variations
and includes 78,745 tables. Additionally, the datasets tBiodivL - Large5 and tBiomedL-Large6 are used,
with Wikidata7 serving as the target knowledge graph. For offline use, the March 20, 2024 dump is
available, and assistance with triplestore setup can be sought from the organizers.

All datasets are organized into two data folds: training and validation. Specifically, WikidataTables
comprises relational (horizontal) tables, while tBiodiv and tBiomed feature both entity (vertical) and
relational (horizontal) tables. The supported tasks and their formats are as follows:

3https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html
4https://sem-tab-challenge.github.io/2024/tracks/accuracy-track.html
5https://zenodo.org/records/10283083
6https://zenodo.org/records/10283119
7https://zenodo.org/records/12588085



Table 1
Results for Round 2

F1 Score Precision Rank
TBiodiv-Large-Relational-CTA 0.741 0.741 1

TBiomed-Large-Relational-CTA 0.867 0.867 1

• WikidataTables: CEA, CTA, CPA
• Relational Tables in tBiomed & tBiodiv: CEA, CTA, CPA, RA, TD
• Entity Tables in tBiomed & tBiodiv: CEA, RA, TD

The target formats are:

• CEA: table name, column id, row id
• CTA: table name, column id
• CPA: table name, subject column id, object column id
• RA: table name, row id
• TD: table name

Now, we will present the results of Kepler-aSI for the various matching tasks in the second round
of SemTab 2024. These results highlight the strengths of Kepler-aSI, showcasing its encouraging
performance despite the range of challenges encountered.Summary of metrics for this round is in Table
1.

6. Conclusion & Future Work

To summarize and conclude, we have presented in this paper the second version of our Kepler-aSI
approach. Our system is participating in the challenge for the second time, it is approaching maturity
and achieving very encouraging performance. We have succeeded in combining several strategies and
treatment techniques, which is also the strength of our system. We boosted the preprocessing and
spellchecking steps that got the system up and running.

In addition, despite the data size, which is quite large, we managed to get around this problem by
using a kind of local dictionary, which allows us to reuse already existing matches. Thus, we realized
a considerable saving of time, which allowed us to adjust and rectify after each execution. We also
participated in all the tasks without exception, which allowed us to test our system on all facets, i.e., to
identify its strengths and weaknesses.

We tackled the several proposed tasks. Our solution is based on a generic SPARQL query using the
cell contents as a description of a given item. In each round, despite the time allocated by the organizers
running out, we continued the work and the improvements, having the conviction that each effort
counts and brings us closer to the good control of the studied field.
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