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Abstract
The medical context for a drug indication provides crucial information on how the drug can be used in
practice. However, the extraction of medical context from drug indications remains poorly explored,
as most research concentrates on the recognition of medications and associated diseases. Indeed, most
databases cataloging drug indications do not contain their medical context in a machine-readable format.
This paper proposes the use of a large language model for constructing DIAMOND-KG, a knowledge
graph of drug indications and their medical context. The study 1) examines the change in accuracy
and precision in providing additional instruction to the language model, 2) estimates the prevalence of
medical context in drug indications, and 3) assesses the quality of DIAMOND-KG against NeuroDKG, a
small manually curated knowledge graph. The results reveal that more elaborated prompts improve the
quality of extraction of medical context; 71% of indications had at least one medical context; 63.52% of
extracted medical contexts correspond to those identified in NeuroDKG. This paper demonstrates the
utility of using large language models for specialized knowledge extraction, with a particular focus on
extracting drug indications and their medical context. We provide DIAMOND-KG as a FAIR RDF graph
supported with an ontology. Openly accessible, DIAMOND-KG may be useful for downstream tasks
such as semantic query answering, recommendation engines, and drug repositioning research.
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1. Introduction

Drug indications are regulatory-approved uses for a medicine. The indication of a drug, along
with its medical context better defines its therapeutic intent and provides additional prescribing
guidance for physicians. Valid medical contexts include the underlying medical illness for
the target condition (“Quetiapine tablets are indicated for the acute treatment of manic
episodes associated with bipolar I disorder”), the age group (“EMGALITY is indicated
for the treatment of episodic cluster headache in adults”), and co-therapies, i.e. drugs that
should be administered in combination, (“Clonidine hydrochloride injection is indicated in
combination with opiates for the treatment of severe pain in cancer patients”). The drug
indication and its medical context are contained within drug product labels whose contents are
subject to approval by regulatory agencies such as the U.S. Food and Drug Administration (FDA)
or the European Medicines Agency (EMA).
Machine-readable representations of drug indications are key in computational drug dis-

covery [1] and clinical decision-making [2]. However, while databases have been created to
store drug indications in a machine-readable manner (e.g. DrugCentral [1]), these either do not
contain their medical context and as such do not correctly cover the therapeutic intent, or the
medical context is available in some form of natural language and is not available for computa-
tion. The lack of a computable medical context will necessarily limit the development of accurate
methods to predict new drug uses [2] or make treatment recommendations. As a case example,
the Oncology Expert Advisor system derived from IBM Watson was pulled from the market
after making unsafe suggestions relating to cancer treatment.1 Thus, medical context should be
taken into account while creating accurate, precise, and compute-accessible representations
of drug indications. Knowledge Graphs (KGs) serve as a natural and intuitive way to store,
query, and explore structured knowledge. However, building high-quality knowledge graphs
requires substantial manual effort. Thus, automated Knowledge Graph Construction (KGC)
methods have emerged to alleviate the burden of manual data curation [3]. To this end, Large
Language Models (LLMs) are promising technologies for natural language understanding, and in
particular, for constructing knowledge graphs. Recent unpublished work suggests that carefully
engineered prompts have the potential to extract entities and their relations in a structured
manner [4, 5]. To the best of our knowledge, there is no method that correctly extracts the
medical context for drug indications.

Contributions In this work, we propose a novel approach to use a LLM that extracts drugs,
their indications, and the associated medical context to a target Knowledge Graph. We aim
to answer the following research questions: ”RQ1: To what extent does the addition of more
instruction to the LLM yield a more accurate/complete extraction of the context?”, ”RQ2: How
many drug indications include a medical context?” and ”RQ3: What is the quality of the generated
knowledge graph?”. The main contributions of the research are as follows: (i) the development
of a LLM-based framework to extract triples and their context, perform entity recognition, and
produce a valid RDF graph (ii) the use of the framework to extract drug indications and their
medical context from sentences in natural language (iii) an evaluation of prompts that vary in

1https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/
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their specificity (iv) an estimate of the scale of the problem of recognising and representing
medical context

The rest of the paper is structured as follows: Section 2 reports previous efforts in this task and
useful resources. Section 3 defines the proposed framework and all its components. Section 4
analyzes the results and provides an empirical evaluation of our method. Finally, Section 5
concludes the paper with some final remarks.

2. Related work

DailyMed2 is a repository of drug labels approved by the FDA and hosted by the National
Institute of Health (NIH). It contains a wide range of information about drug indications and
contradictions, and is available as XML files available through an API. The task of synthesizing
information about the therapeutic intent has been addressed in several works. Drugbank [6]
is a curated resource for detailed drug (i.e. chemical) data along with their drug targets (i.e.
protein), but the indication, if present, is solely expressed in natural language. DrugCentral [1]
provides drug information along with indications extracted from product labels, however, not
all indications are coded and there is no additional medical context available. Névéol and Lu [7]
focus on automatically extracting and integrating drug indication information from multiple
health resources such as DailyMed and MeSH Scope notes. MEDI [8] applies NLP and ontology
relationships to extract indications for single-ingredient medications. Prompt-based methods
using LLMs are being explored for clinical concept extraction [9] and Drug-Drug interaction
triplets extraction [10]. To the best of our knowledge, none of the automated methods extracting
drug indications take into account the medical context.
Several efforts have been directed towards semi-automated curation of drug indications.

LabeledIn [11] is a human-reviewed, machine-readable, and source-linked catalogue of 7805
indications for 250 human drugs. However, it does not curate medical context. InContext [12]
is a curated set of indications and their medical context for 150 drugs. The dataset was curated
by annotating Dailymed HTML pages using Hypothesis.is [13] and the National Center for
Biomedical Ontologies (NCBO) BioPortal annotator [14] for concept recognition. InContext
defines five medical contexts: (i) Co-prescribed medication - drugs commonly prescribed together;
(ii) Co-therapies - procedures or therapies (not drug-related, i.e. radiotherapy) that should be
applied in combination with the drug; (iii) Co-morbidities - diseases or conditions that commonly
occur together (with a target condition) in the same patients; (iv) Genetics - genetic variants
for a given disease; (v) Temporal aspects - information that explains at what life stage, disease
stage, or treatment phase a drug should be administered. NeuroDKG [15] is a Knowledge
Graph containing drug indications and their medical context for 101 drugs (from a total of 174
sentences) that target neurological disorders.

3. Proposed approach

We propose a framework to transform a textual description of drug indications with medical
context into a knowledge graph using LLM-powered entity recognition along with identifier
2https://dailymed.nlm.nih.gov/dailymed/
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Figure 1: The DIAMOND-KG framework, which includes LLM-based entity recognition, the Identifier
Resolver, and the final output presented as a KG.

resolution (see Figure 1).

3.1. LLM-based entity recognition

We designed a set of prompts to guide a LLM to identify and extract entities of interest. In
particular, we focus on extracting contextual information from sentences to enrich drug-disease
interaction triples. The prompts contain a Paragraphs section and a Instructions section. Each
prompt is extended with additional specification to return a defined JSON-formatted object.
The prompts’ instructions range from general instructions (prompt 1) to specific (prompt 3).
The first prompt, called ““Triple Prompt” extracts subject-verb-object triples from a given text.
Subsequently we developed the “Context Prompt”, which identifies the context from a given
text and enriches the original triples with such information. Finally, the “Medical Context
Prompt” identifies specific medical context types. This prompt contains a Definition of context
types section within the Instructions section. All prompts and the complete list of predicates
describing the medical context for drug indications are available in the DIAMOND-KG GitHub
repository in the “Supplemental Material” directory3.

3.2. Identifier Resolver

The values for each context type are then grounded to database/ontology identifiers using the
NIH NCATS Translator SRI Name Resolution API 4. The name resolution service takes lexical
strings and attempts to map them to identifiers (CURIES; composed of a prefix for the source
followed by a delimiter followed by the resource identifier) from a vocabulary or ontology. The
lookup is not exact but includes partial matches. For each entity mention, we obtain a list of 5
results representing possible conceptual matches, of which the first is the preferred choice, and
the remainder are ranked by the next preferred resource.

3https://github.com/semantisch/diamond-kg/tree/main/Supplementary%20Material
4https://name-resolution-sri.renci.org/docs
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3.3. RDF Graph Generation

The last component of the framework is the generation of an RDF graph from the JSON result
containing the extracted and named entities and relations. We define the DKG namespace5

and iteratively process the sentences from the JSON results, constructing a graph that follows
a lightweight Diamond-KG ontology described below to represent the sentences and their
semantic components. For each sentence (a dkg:sentence) and each identified component of a
sentence (a dkg:part), we mint a unique IRI in the DKG namespace, using a hashing algorithm
for collision resistance, resuting in dkg:[HASH] and dkg:part/[HASH] minted IRIs respectively,
and assign them corresponding label values via rdfs:label. Next, we relate the components to
their sentence of origin via a dkg:hasPart relation. In the case of prompt 1, the components
form asserted triples. For prompt 2 and prompt 3, we classify the components according to their
context type. Namely, utilizing the IRIs dkg:freecontext/[LABEL] for the prompt 2 contexts and
dkg:definedcontext/[LABEL] for the prompt 3 contexts respectively. Finally, the components are
grounded to the database/ontology identifiers (from the NCATS Translator SRI Name Resolution
service) via a skos:closeMatch relation. The resulting graph is made publicly available in Turtle
format6 and documented following the FAIR (Findable, Accessible, Interoperable, Reusable) Data
Guidelines [16]. Specifically, each entity is identified using a unique Uniform Resource Identifier
(URI) for each semantic component within the graph. To ensure data is both interoperable
and reusable, the graph is enriched with comprehensive metadata that adheres to a set of
standard vocabularies. The resulting DIAMOND-KG comprises 12,363 triples, 1,186 entities,
435 predicates, and 148 classes. While the underlying DIAMOND-KG ontology totals 15 classes
(namely, dkg:Sentence, dkg:Context, dkg:Free_context, dkg:Defined_context as well as the 11
defined contexts) and 1 predicate (dkg:hasPart), the majority of DIAMOND-KG classes (133)
stem from the free contexts generated in prompt 2 and the majority of predicates (430) from the
asserted triples generated in prompt 1.
The implementation is in Python 3.6 and published as a GitHub repository7 under the MIT

license8. We use OpenAI gpt-4 model API as the LLM. The number of maximum requested
tokens (with 1 token approximately corresponding to 4 chars of English text9) is set to 6,144
(current maximum value for the gpt-4 model) to allow batch prompts containing many para-
graphs as input. The paragraphs are processed individually (1 paragraph per prompt) as batch
processing for this prompt has been found to lead to complex interactions in the prompt results
due to context categories being conceptualised for the batch of sentences together. We use
RDFLib 6.3.2 to generate the RDF graph.

5Full IRI: http://purl.org/dkg/v1/
6https://huggingface.co/datasets/um-ids/diamond-kg
7Available at https://github.com/semantisch/diamond-kg
8Refer to https://opensource.org/licenses/MIT
9For detailed token calculation refer to: https://help.openai.com/en/articles/
4936856-what-are-tokens-and-how-to-count-them
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Table 1
Results statistics. For each prompt, we provide the total number of extracted triples directly related to
context (column ”Tot. Triples”), the average number of triples for each sentence (column ”Avg. T/S”), and
the percentage of sentences that contain context information (column ”Context Freq.”). The first row
reports the same statistics for the NeuroDKG dataset. The symbol ”—” represents data not available.

Prompt Tot. Triples Avg. T/S Context Freq.

NeuroDKG 510 3.0 64.11%
Prompt 1 442 2.11 —
Prompt 2 911 4.82 —
Prompt 3 621 3.32 71.12%

4. Results and Discussion

4.1. Experimental Setup

We compare our results to the NeuroDKG dataset [15], which contains 174 sentences concerning
indications of neurological drugs. The manually-annotated triples are subsequently used to
build a KG about drug indications with medical context which comprises 2,397 triples, 460
entities, 13 properties, and 10 classes10. To provide a comparable ground truth, we restricted
NeuroDKG to consider only triples of interest, i.e. those in common with DIAMOND-KG. This
step resulted in a dataset of 510 triples, with an average of 3.0 triples for each sentence. The
complete list of selected context-related predicates from NeuroDKG that can be mapped to the
medical context extracted by the DIAMOND-KG prototype is available in our GitHub repository
in the “Supplemental Material” directory11. In addition, we map NeuroDKG’s “disease” predicate
to “target” in DIAMOND-KG, since they both represent the medical condition that is targeted
by the considered drug. As far as context is concerned, 64.11% of sentences from NeuroDKG
contain at least one triple representing medical context.

4.2. Prompts Analysis

For each prompt, Table 1 shows the number of triples relating to context that can be successfully
extracted from sentences, the average number of triples per sentence, and the percentage of
sentences that contain medical context information. The latter column is applicable only to the
third prompt, as we provide a predefined set of predicates to extract. We also report the same
information for the NeuroDKG dataset as a comparison. For comparability, we only include
triples directly relating to context and do not include those triples that arise from our modelling
choices in the construction of DIAMOND-KG (i.e., triples relating semantic components to
sentences, labelling, entity typing and rdfs:subClassOf assertions).
The first prompt generates triples from a given text in a JSON format, without providing

any domain-specific information. With this approach, we are able to extract 442 triples, with
an average of 2.11 triples per sentence which is the lowest among the different prompts. This
result can be attributed to the general nature of the instruction which may affect the system’s

10The NeuroDKG Knowledge Base is available in zenodo at https://doi.org/10.5281/zenodo.5541440
11https://github.com/semantisch/diamond-kg/tree/main/Supplementary%20Material
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Figure 2: Context information distribution from prompt 3 results. For each context entity, we report
the number of sentences for which such information has been extracted by the prompt.

performance. The second prompt tests the power of generative AI to extract context information
from text, without providing any specific types of context. As reported in Table 1, prompt 2 is
able to extract 911 triples, with an average of 4.82 triples per sentence. The LLM-based Entity
Recognition module identifies 140 different context types ranging from domain-specific entities
such as “medication”, “treatment”, and “symptom” to more general entities like “demographics”
or “Publication”. We discover that most predicates are synonyms, e.g. “treatment” and “Medical
treatment”, or they are written in different ways, like “Medical Treatment” and “Medical_treat-
ment” are considered two distinct contexts. This situation can lead to inconsistency among the
KG’s predicates and increases the possibility of duplicate information. To mitigate this issue,
additional post-processing steps will be needed between the output of the LLM-based Entity
Recognition module and the construction of the KG. The third prompt includes domain-specific
information and the set of context entities we plan to extract. With this approach, we are able
to extract 621 triples, with an average of 3.32 extracted triples for each sentence. Limiting the
list of possible predicates results in a decrease in the number of extracted triples, which may
also lead to lost information. Section 4.3 shows that we only lose little information with this
approach. The third prompt identifies 71.12% sentences containing medical context, which
means that we are able to extract context information for more sentences than the NeuroDKG
dataset.

Figure 2 reports the distribution of the different predicates across the dataset, compared to the
NeuroDKG output. Due to its nature, the NeuroDKG dataset extracts context information for
the first seven context types. Overall, DIAMOND-KG extracts more context information than
NeuroDKG in most cases. We have a similar number of context information extracted for types
“co-morbidity” and “co-therapy”. The main difference between the two refers to the “target”
and “symptom” context types. In the former case, NeuroDKG extracts such information for 176
sentences, compared to the 126 identified by DIAMOND-KG. This behaviour can be attributed
to the variety of context types available to the DIAMOND-KG system. To this end, we analyzed
the difference in values for the “target” context type and discovered that some triples labelled
as “target” in NeuroDKG are identified by DIAMOND-KG with some other context types, such
as “symptom” or “co-morbidity”. Take the sentence “Xyrem is indicated for the treatment of



cataplexy or excessive daytime sleepiness (EDS) in patients 7 years of age and older with narcolepsy”
as an example. NeuroDKG identifies as target “narcolepsy” and as symptom “cataplexy”. On
the other hand, DIAMOND-KG correctly classifies “cataplexy” as a symptom but “narcolepsy”
is recognized as a co-morbidity. This classification is not entirely incorrect, indeed “narcolepsy”
is not the disease targeted by the drug, which treats “cataplexy”. In general, DIAMOND-KG
assigns different context types for 120 medical contexts compared to NeuroDKG. Additionally,
given the same type assigned, in 82 cases the identified medical context by DIAMOND-KG is
broader and more informative than the one provided in NeuroDKG.

Most sentences were associated with the following context entities: ’co-prescribed medica-
tion’ (144 sentences), ’target’ (126 sentences), ’conditional’ (69 sentences) and ’age group’ (69
sentences). The least amount of sentences were associated with ’past therapies’, ’temporal
aspects’, and ’genetics’, which are present in 6, 4, and 0 sentences respectively. We analyzed
the sentences and confirmed that this trend represents the real distribution of the dataset.
Indeed, fewer indications present information related to past therapies or at what life stage or
disease stage a drug should be administered (i.e. temporal aspects). About genetics, we found
no information related to such context type in any sentence. This could be due to the nature of
the dataset, i.e. neurological drugs.

4.3. Emprical Evaluation of the Third Prompt

As we discussed above, NeuroDKG is not sufficient to evaluate the results of DIAMOND-KG as it
contains fewer context types, and in most cases, our system seems to provide more informative
triples than NeuroDKG. To evaluate the quality of the information extracted by prompt 3, we
manually annotated all sentences in NeuroDKG considering all context types in DIAMOND-KG,
and compared our ground truth with the output of our system. For each (context value, context
type) pair, we are interested in whether our system is able to extract meaningful information
and classify them with the correct context type. Overall, DIAMOND-KG achieved an accuracy
of 63.52% throughout all context types, with a hamming loss of 4.20%. We identified three
common errors: “wrong pairs” (18.24%) are those that are not present in the ground truth,
“misclassified pairs” (9.77%) are those present in the ground truth but with a different context
type, and “missing pairs” (8.47%) are pairs that are present in the ground truth but not in the
DIAMOND-KG’s output. Table 2 reports the performance metrics for each context type, which
varies in terms of their value as well as their occurrence. Context types with scores about
70% also exhibit reasonable support, e.g. “target”, “age group”, and “symptom”. The method
performs well on identifying the “age group” suited for a given drug, with precision, recall,
and F1-score above 90%. The lowest results are registered on the context types with the lowest
support, where few wrong pairs have a higher impact on performance. These findings may
indicate that some context types are underrepresented in the dataset. Recall is above 70% in
most cases, except for “temporal aspect” (67%), ‘‘co-morbidity” (28%), and “past therapies”
(17%) which all exhibit low support. A high recall confirms that the method is able to return
most of the relevant pairs, meaning that providing a predefined set of context types does not
hinder the system or cause loss of information.



Table 2
Third prompt evaluation. We report the Precision (Prec), Recall (Rec), and F1-score for each context type
and for the average results. “Support” (Sup) represents the number of pairs considered. We omitted the
“genetics” context type, as it has support equal to zero.

(a) Precision, Recall, and for each context type.

Prec Rec F1-Score Sup

Target 0.81 0.79 0.80 214
Symptom 0.67 0.70 0.68 66
Age Group 0.91 0.96 0.93 71
Adj. Therapy 0.39 1.00 0.84 8
Co-morb. 0.58 0.28 0.38 25
Treat. Duration 0.59 0.76 0.67 17
Co-therapy 0.73 1.00 0.84 8
Co-presc. Med. 0.43 0.83 0.57 12
Conditional 0.56 0.77 0.65 65
Past Therapies 0.14 0.17 0.15 6
Temp. Aspects 0.40 0.67 0.50 3

(b) Precision, Recall, and for the average results.

Prec Rec F1-Score Sup

Micro Avg. 0.69 0.78 0.73 502
Macro Avg. 0.56 0.72 0.61 502
Weight. Avg. 0.72 0.78 0.74 502
Samples Avg. 0.64 0.64 0.64 502

5. Conclusion and Future Work

We explore a novel approach that leverages LLMs to extract relevant information and the associ-
ated medical context from drug indications. To the best of our knowledge, this is the first effort
to extract such information by means of LLMs. The prototype system called DIAMOND-KG uses
a LLM to recognize entities, which are subsequently passed to a service to perform identifier
mapping, and the final step creates a FAIR RDF knowledge graph that complies. In relation to
RQ1, we find that the refinement of the contexts produces higher quality outcomes to manually
curated datasets. Moreover, it identifies a broader set of contexts and more informative results.
While this framework offers a promising approach to automatically extract drug indications
and their medical context, it also raises the possibility for this framework to accurately and
systematically extract a wide variety of contextual information for other context-dependent
settings. In relation to RQ2, based on the set of sentences annotated in NeuroDKG, we find that
at least 71.12% of sentences have at least one context, which is greater than the 64.11% reported
in the manually annotated NeuroDKG. This result indicates that a significant proportion of
drug indications do contain a medical context, and the framework is able to identify these to a
greater extent than manual curation. In relation to RQ3, the quality of the extraction varies
based on the context type, but we mainly attribute such oscillation to the difference in the
support. DIAMOND-KG achieved a high recall, demonstrating that the system extracts a high
portion of relevant information and experiences little information loss.
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