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Abstract 
Background: Chemotherapy, a central cancer treatment, employs antineoplastic drugs to hinder cancer 
cell replication by disrupting DNA synthesis or mitosis. Chemotherapies follow complex protocols 
composed of cycles of treatment where antineoplastic and adjuvant drugs prescribed at different doses 
and times. Various protocols exist, with either small or large and numerous variations to others, making 
it hard to compare chemotherapies to each other, comparing their differential outcomes, and in the end 
choosing the most adapted one for a particular patient. Method: We propose ChemoKG, a knowledge 
graph for chemotherapy protocols that encompasses first administration programs such as drugs, 
dosages, treatment durations, and second drug properties and classes imported from ChEBI, DrugBank 
and the ATC classification. Three resources on drugs provide complementary hierarchies and chemical 
properties that help to better identify similar chemotherapy protocols. To this aim, we tested on 
ChemoKG a novel graph embedding method employing graph neural networks (GNNs) to compare 
nodes in the graph that represent protocols. Unlike previous approaches that focus on triple-based 
embeddings, the proposed method captures subgraph structures inherited from the aggregation 
scheme in GNNs. Results: The resulting knowledge graph encompasses 329,164 triples with 99,901 
entities and 75 predicates including 1,358 chemotherapy protocols and 226 anti-cancer drugs. We 
performed a cluster analysis of protocol embeddings learned on ChemoKG, to propose groups of similar 
protocols. This will contribute in facilitating the comparison of chemotherapy themselves, and by 
extension to their potential effectiveness. Additionally, it should aid in analyzing gaps between 
commonly accepted protocols and their real-world implementation.  
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1. Introduction 

Chemotherapy is a cancer treatment which employs antineoplastic drugs to hinder cancer cell 
replication for instance by disrupting DNA synthesis or mitosis. Chemotherapy remains a 
cornerstone in cancer treatment, administering cytotoxic drugs to limit tumor growth. This 
involves a nuanced balancing between reducing tumor size and minimizing side effects. 
Combining various drugs in a timely manner, adapted to patient profile and response is a common 
strategy to achieve this tradeoff [1]. Indeed, each chemotherapy treatment follows a complex, but 
precisely defined protocol (also named regimen) composed of repeated cycles where a set of 
antineoplastic and adjuvant drugs are prescribed for administration with various dose, mode 
(continuous vs. bolus infusion) and timing. This cyclic approach is not arbitrary, it aligns with the 
life cycle of cancer cells and ensures optimal drug efficacy [2]. Many different protocols have been 
described with either small or large variations, to adapt to individual factors such as age, health 
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conditions, and genetic profiles [3]. As a result, a large number of protocols co-exist in clinical 
information systems and expert databases, but they are suffering from unequal evaluation and 
consequently make more complicated for the clinician the choice of a protocol versus another.  

The subtlety of variations in term for instance of timing (e.g., time lapse between two 
administrations), mode of administration (e.g., bolus vs. continuous) motivates the need for a low 
grain knowledge representation of protocols, especially for future studies aiming at evaluating 
the comparative effectiveness of treatment strategies [4]. In addition, such representation would 
enable the definition of distances between protocols, in regard to their multidimensional 
definition, composed of the drugs they leverage, their dose, timing, mode, classes, etc.  

We introduce ChemoKG, a knowledge graph that represents chemotherapy protocols, their 
various dimensions, and links their constitutive drugs to various properties from ChEBI, 
DrugBank and the anatomical therapeutic chemical (ATC) classification. As a first illustration of 
the interest of ChemoKG, we propose here a clustering that group similar protocols in regard to 
their description in ChemoKG. The clustering relies on a novel embedding framework named 
RAGE, which leverages graph neural networks (GNNs) to learn a representation of protocols that 
considers the properties of the drug administrations present in the neighborhood of protocols in 
ChemoKG. Unlike other approaches that focus on triple-based embeddings, RAGE captures 
subgraph structures inherited from the aggregation scheme in GNNs. The clustering analysis 
provides a classification of protocols that we compare with two reference classifications: the first 
is based on cancer locations associated with protocols, the second on pharmacological groups of 
drugs. We evaluated RAGE embedding approach on a link prediction task; and RAGE outperforms 
or shows competitive performance against the selected baselines. The cluster analysis we 
performed with classical algorithms shows that RAGE allows for a reasonably good grouping of 
protocols by cancer locations, despite the fact that the graph does not contain this information. 
For ATC as a reference, RAGE showed the best result, in comparison to a classical method (not 
based on machine learning) named cumulative dose intensity (CDI).  

To our knowledge, this is the first attempt to classify chemotherapy protocols on the basis of 
several of their features. We believe that our effort to compare chemotherapies will find 
applications first in the management of protocols in hospitals that historically recorded every 
small variation in protocols, resulting in large collections in need of structuration and cleaning; 
second in the definition of standard protocols as institutions have adopted different, but 
sometimes similar ones; and in the identification of concurrent protocols. Indirectly, we hope that 
comparing chemotherapy protocols will help in their relative evaluation and in the guidance for 
the choice for one among a set of similar ones.  

The remainder of the paper is organized as follows. First, previous works on chemotherapy 
representation, graph embeddings and clustering from graph embeddings are presented in 
Section 2. Section 3 introduces ChemoKG. Section 4 describes the methodology of both the 
proposed graph embedding framework and its use for a clustering task. Section 5 presents our 
experimental results and is followed by elements of discussion and a conclusion in Section 6.  

2. Related works 

Chemotherapy databases The growing variety of chemotherapy protocols has led to a recent 
interest first in naming protocols in non-ambiguous ways [5], and second in proposing 
repositories of the various protocols. The larger available one is HemOnc, which includes >4,000 
regimens [3]. It is a collaborative database that includes regimens description and general 
information about them. It started in 2011 through a collaboration of oncologists from several US 
University hospitals with an initial focus on the field of hematology cancers. HemOnc proposes a 
data schema to represent and share protocols in Owl. However, this schema does not include 
detailed properties of administrations and drugs. Another initiative developed in the UK is SACT 
[6] that contains both adult and pediatric oncology protocols. SACT has the particularity to store 
data not only about protocols, but also about patients, their diagnoses and outcomes. For this 



reason, SACT is not shared in open access. Worth to note, a seminal work is DIOS [7], that 
consisted of 260 protocols at the time of publication (2013) and is not accessible anymore.  
 
Knowledge graph embeddings The aim of knowledge graph embeddings is to project entities 
and relations into some continuous vector space while preserving the relation between entities 
[8]. Those entity and relation embeddings can further be used in downstream tasks, such as link 
prediction [9], triple classification [10] and entity clustering [11]. TransE [12] is a representative 
approach based on a translational distance model. Given a triple (𝑠, 𝑟, 𝑜) , the relation is 
interpreted as a translation vector r so that the embedded entities s and o can be connected by r 
with low error having 𝑠 + 𝑟 ≈ 𝑜. TransE has the advantage of being simple, but has difficulty in 
learning 1-to-many and many-to-many relations [13]. DistMult [14] exploits a similarity-based 
scoring function to match the latent semantics of entities. It represents pairwise relations 
between entities in the vector space along the same dimension of relations. However, since 
relations between entities are over-simplified, the model consider all relations symmetric. 
ComplEx [15] is an extension of DistMult that uses complex-valued embeddings so as to better 
model asymmetric relations. MuRE [16] employs hyperbolic embedding instead of Euclidean 
analogues to represent hierarchical structures. RDF2Vec [17] uses random walks on the RDF 
graph to create sequences of entities, which are then used as input for the model. However, it is 
focused on embedding entities without considering the semantics of relations. CompGCN [35] 
represents relationships between entities using Graph Convolutional Networks (GCNs), which 
focuses on local neighborhood entities. It utilizes relation-type specific parameters to learn 
embeddings. More embedding techniques can be found in the following surveys [18, 19]. 
 
Clustering with graph embeddings Embeddings provide a representation of objects in the form 
of numeric vectors that is convenient for computing distances between them and consequently 
driving clustering analyses. To cite only few works from the biomedical domain, Monnin et al. 
[20] clustered embeddings of pharmacogenomic relationships, Mohamed et al. [21] clustered 
polypharmacy side-effects and Fernández-Torras  et al. [22] clustered drugs, diseases and genes 
to predict drug responses. 

3. ChemoKG 

ChemoKG is an original knowledge graph in RDF (Resource Description Framework) of 
chemotherapy protocols. It encompasses 1,358 protocols by instantiating the ontology 
ChemoOnto [23, 24], which provides the necessary classes and relations to represent the various 
dimensions of protocols. As illustrated by Figure 1, this includes the administration program of a 
chemotherapy composed of its drugs, their dosages, the duration of their administration (bolus 
vs. continuous infusion), drug properties (such as their half-life) imported from ChEBI [25], 
DrugBank and their classification in the ATC classification. The protocols themselves have been 
extracted from a local database of the Pharmacy Service of the European Georges Pompidou 
Hospital of the AP-HP, Paris. The resulting knowledge graph encompasses 329,164 triples with 
99,901 entities and 75 relations including 1,358 chemotherapy protocols and 226 anti-cancer 
drugs. ChemoKG includes both protocols used in standard treatments and in clinical studies. 
Because protocols evaluated by clinical studies are confidential, we defined a subset of our 
knowledge graph named ChemoKG-open that excludes them and that is consequently sharable. 
ChemoKG-open includes 513 protocols and is available on Zenodo at   
https://zenodo.org/records/10263831. 1  The statistics of the main classes of ChemoKG and 
ChemoKG-open are presented in Table 1. 

 
1 A SPARQL endpoint will be made available upon publication at https://chemokg.inria.fr. 
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Figure 1: Sample from ChemoKG. The central entity is a protocol (in red), with two drug 
administrations (in green), each associated with its drug (in grey). Arrows describe a relation 
type from one entity to another. ‘Dose’, ‘half life’, ‘bolus’ are literals.  
 
Table 1 
Statistics of entities in ChemoKG and ChemoKG-open 

Class 
# entities 

(ChemoKG) 
# entities 

(ChemoKG-open) 
Source 

Protocol  1,358 513 ChemoOnto 
Anti-cancer drug 226 82 ChemoOnto 
Bolus (True/False) 2 2 ChemoOnto 
Dose 119 71 ChemoOnto 
ATC 6,691 6,691 ATC 
Biological role 13,286 13,286 ChEBI 
Half-life 81 81 DrugBank 

4. Method 

In order to compare chemotherapy protocols, we propose first to learn embedding for protocols 
represented in ChemoKG, second to cluster similar protocols and third to compare the resulting 
clustering to two reference classifications: (i) protocols classified by cancer location, and (ii) by 
pharmacological and therapeutic subgroups. 
 
Protocol embeddings  We propose an original approach named RAGE, standing for Relation-
Aware knowledge Graph Embedding, to compute node embeddings. Inspired from relation 
learning in [26, 27], RAGE builds on the GNN model to aggregate information from each entity’s 
neighborhood, plus relations to characterize the type of links that connect the entity to its 
neighbors. An overview and naming of main variables involved in RAGE is depicted in Figure 2.  

Let 𝒢 be a knowledge graph such as 𝒢 = {(𝑠, 𝑟, 𝑣)|𝑠, 𝑣 ∈ 𝒱, 𝑟 ∈ ℛ}, where 𝒱 is a set of nodes, 
here named entities, ℛ a set of labeled and oriented edges named relations or predicates and the 
triple (𝑠, 𝑟, 𝑣)  denotes that the entity 𝑠  is related to the entity 𝑣  through the relation 𝑟 . For 



example, the triple (𝑐𝑖𝑠𝑝𝑙𝑎𝑡𝑖𝑛, ℎ𝑎𝑠𝐵𝑖𝑜𝑅𝑜𝑙𝑒, 𝑔𝑒𝑛𝑜𝑡𝑜𝑥𝑖𝑛)  indicates that “𝑐𝑖𝑠𝑝𝑙𝑎𝑡𝑖𝑛  ℎ𝑎𝑠  𝑎 
𝑏𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑟𝑜𝑙𝑒 𝑔𝑒𝑛𝑜𝑡𝑜𝑥𝑖𝑛”. The 𝑙-th layer embedding of a given entity 𝑠 is formulated as: 

𝑒𝑠
𝑙 =

1

|𝒩𝑠|
∑ 𝑒𝑟

𝑙−1 ∘ 𝑒𝑣
𝑙−1

(𝑟,𝑣)∈𝒩𝑠

, (1) 

where  𝒩𝑠 = {(𝑟, 𝑣)|(𝑠, 𝑟, 𝑣) ∈ 𝒢} is the neighborhood of the entity 𝑠, 𝑙 = {1… 𝐿} is the number of 
layers and ∘  is the element-wise product. For 𝐿  layers, the final embedding of an entity 𝑠  is 
defined as the sum of each layer embedding: 

𝑒𝑠
∗ = 𝑒𝑠

0 +⋯+ 𝑒𝑠
𝐿 . (2) 

Accordingly, the final embedding is the sum of embeddings from each layer including the input 
𝑒𝑑
0. In this way, we gather all the information of the target entity 𝑠 and its “𝐿-hop” neighbors. 

Because our task is to perform a clustering of protocols, it is important to consider drug property 
in the representation of protocols. For instance, ‘ATC classes’ or ‘biological roles’ can be captured 
within 3-hop neighbors (Figure 1). 

Given a set of protocols 𝒫 ⊂ 𝒱, the evaluation of how the relation between the protocol and a 
drug administration is likely is defined as follows: 

�̂�𝑝𝑎 = 𝑒𝑝
∗𝑇𝑒𝑎

∗ . (3) 

If the final embeddings of protocol 𝑝 and administration 𝑎 derived from (2) are close (connected) 
to each other the evaluation value �̂�𝑝𝑎 is high. i.e., if the drug administration 𝑎 is part of a protocol 

𝑝,  �̂� should be high and inversely low if the drug administration is not. We define the objective 
function using the Bayesian personalized ranking loss [30]: 

ℒ = ∑ −ln𝜎(�̂�𝑝𝑎 − �̂�𝑝𝑎′)

(𝑝,𝑎,𝑎′)∈𝒮

, (4) 

where 𝒮 = {(𝑝, 𝑎, 𝑎′)|(𝑝, 𝑎) ∈ 𝒮+, (𝑝, 𝑎′) ∈ 𝒮−}  and 𝜎  is the sigmoid function.  𝒮+  is the set of 
protocol and administered drug pair and  𝒮− is the set of protocol and non-administered drug 
pair. The loss is minimized when the likely score of the administered drug increases and the likely 
score of the non-administered drug decreases. 
 

 

Figure 2: Overview of the relation-aware aggregation scheme in RAGE. 𝑝 is the node we learn 
final embedding for, here a protocol. 𝑎  and 𝑎’  are nodes related and not related to 𝑝 , 
respectively; here drug administrations. 𝑣𝑖 are other nodes of the graph. 𝑟𝑖 are predicates relating 
nodes. Plus signs represent the aggregative sum of embeddings. �̂�𝑝𝑎  is an evaluation of the 

probability for nodes 𝑝 and 𝑎 to be linked.  
 
Evaluation of embeddings on a link prediction task The task of link prediction aims at 
predicting potentially missing links between entities within a knowledge graph, on the basis of 
what is already stated in the graph. To compare RAGE with other graph embedding approaches, 
we evaluate their different capabilities in predicting “5as Administration” predicate between 



protocols and drug administrations in ChemoKG. We particularly consider TransE [12], DistMult 
[14], MuRE [16], ComplEx [15] and CompGCN [35]. TransE and MuRE are translational distance 
models that aim at finding a vector representation of entities with relation to the translation of 
the entities based on distance measures. DistMult and ComplEx are semantic matching models 
that use similarity-based scoring functions. CompGCN is a GCN-based model which considers 
aggregating the neighborhood information for the entity relation embeddings. The models 
consider the relations between entities, but require adaptation to capture similarity between 
strings and numerical values that compose literals or distant relations in a graph. To compare the 
performances of these different models, we use the Mean Reciprocal Rank (MRR) and Hits@N 
(H@N). MRR evaluates models that return a ranked list of answers to queries by weighting results 
proportionally of their place in the ranking. H@N is the count of how many positive triples are 
ranked in the top-N positions against a set of negative triples. 
  
Cluster computations and evaluation We cluster a subset of nodes 𝒫 ⊂ 𝒱 of a knowledge graph 
on the basis of the Euclidean distance between their embeddings computed with a selection of 
two embedding approaches (RAGE included). In this exploratory study we compare 
performances of several classical clustering algorithms, namely k-means, Single and OPTICS [28, 
29]. Both k-means and Single take as an input parameter the number of desired clusters. Single 
differs from k-means in that it is a hierarchical clustering algorithm that successively merges 
clusters whose distance between their closest observations is minimal. OPTICS is fundamentally 
different as it finds zones of high density and expands clusters from them. It takes as a main input 
parameter the minimal size of a cluster. 

We evaluate our clusters in comparison to two referential classification of protocols. The first 
reference classification groups protocols by their primary indication i.e., the cancer localization 
they primarily target according to our pharmacology experts. The second classification is based 
on the sets of 3rd level ATC classes of drugs involved in protocols. These classifications are 
available at https://chemokg.inria.fr, for protocols of ChemoKG-open. 

 Clustering analyses are evaluated with Adjusted Rand Index (ARI), Normalized Mutual 
Information (NMI) and Fowlkes-Mallows Index (FMI). ARI measures the overlapping between 
two clustering (or between one and a reference classification in our case). ARI equals 0 for a 
random labeling and 1 for an exactly similar labeling and is adjusted to limit the effect of chance. 
NMI measures the mutual information between two clustering, normalized by the entropy of each 
clustering. NMI is equal to 1 for an exactly similar labeling. FMI is the geometric mean of precision 
and recall. FMI ranges from 0 to 1 and a high value indicates a high similarity between the 
clustering and the reference classification. In addition, we compare our method based on graph 
embeddings to a state-of-the-art mean to compare chemotherapies, named the Cumulative Dose 
Intensity (CDI) [31]. The CDI is defined as a vector of normalized cumulative doses of 
administered drugs. It is used to compare the course of chemotherapies, as well as protocols. 

5. Experimental results 

The experiment was conducted within two steps. First, to perceive the effectiveness of the 
chemotherapy protocol representation we compared RAGE with other graph embedding 
methods on a link prediction task on ChemoKG. Second, to seek the features and patterns within 
the group of chemotherapy protocols clustering was performed with the embeddings of protocols 
obtained from the first step. This work is implemented with PyTorch [32], PyKeen [33] for graph 
embeddings and scikit-learn [34] for clustering. 

5.1.  Graph embeddings on ChemoKG 

We compared the performance of RAGE and state-of-the-art approaches on a link prediction task. 
10-fold cross validation was conducted on the triples in ChemoKG. The initialization of 
parameters was done using Xavier uniform initialization [36]. For RAGE, pre-trained vectors of 

https://chemokg.inria.fr/


entities were initialized using TransE. Next, the learning of entity embeddings is continued using 
the RAGE model with three layers (𝐿 = 3). The number of layers used in CompGCN was also 3. All 
the baseline models were optimized using Adam [37], the learning rate was 0.01 with exponential 
decay and the output dimension of entities was 100.  

The performance of RAGE and baseline methods on the link prediction are reported in Table 
2. Overall, we observed that RAGE outperformed four baselines and was competitive to MuRE on 
all metrics. MuRE showed the best performance for all metrics in average. We observed that 
translational distance models (i.e., MuRE) performed well in regard to semantic matching models 
(i.e., DistMult, ComplEx) and CompGCN. The performance of RAGE is relatively lower than MuRE 
probably because it learns relations between protocols and administrations only rather than 
between all the entities and relations. This observation seems to also impact clustering results 
reported in Section 5.2. 
 
Table 2 
Performance of various considered models for the task of link prediction on ChemoKG. 

Model MRR H@1 H@3 H@10 

TransE [12] 0.1445±0.1340 0.0866±0.0610 0.2263±0.1152 0.3247±0.1759 
DistMult [14] 0.2187±0.2182 0.1874±0.1874 0.2430±0.1333 0.2662±0.1239 
ComplEx [15] 0.1064±0.0876 0.0730±0.0163 0.1013±0.0632 0.1402±0.0966 
MuRE [16] 0.3771±0.1632 0.3402±0.1307 0.4688±0.1221 0.5345±0.1424 
CompGCN [35] 0.3018±0.1485 0.1546±0.1542 0.4083±0.1918 0.4958±0.1625 
RAGE [proposed method] 0.3538±0.1899 0.3307±0.1618 0.4538±0.2065 0.5116±0.1876 

5.2. Chemotherapy protocol clustering 

Clustering was performed on the embeddings of protocols obtained using RAGE and MuRE. 
Protocols assigned to the same cluster are expected to be similar in regard to their definition in 
ChemoKG. Results of our comparative study of three clustering algorithms and their ability to 
reflect our two reference classifications are shown in Table 3 and 4. For cancer locations, RAGE 
and the combination of CDI and RAGE showed better performance than CDI alone and MuRE. For 
ATC, RAGE still showed better performance than CDI and MuRE. We deduce that drug properties 
such as biological roles and half-lifes were beneficial for grouping protocols into cancer locations, 
which are absent from the graph. The ATC level information present in ChemoKG should be 
considered by RAGE what should explain the good grouping of protocols according to ATC classes. 
 
Table 3 
Performance of protocol clustering in comparison with a reference classification based on their 
primary indication (i.e., cancer locations). Parameter K is the number of clusters and S the minimum 
size of clusters. 

 CDI  MuRE   RAGE  CDI+RAGE 

 ARI NMI FMI  ARI NMI FMI   ARI NMI FMI  ARI NMI FMI 

K-means (K=32) 0.1045 0.4127 0.1553  0.0581 0.3484 0.1074   0.4266 0.7150 0.4783  0.3508 0.7135 0.4059 
Single (K=32) 0.0429 0.3538 0.1924  0.0021 0.1730 0.2384   0.6153 0.7706 0.6433  0.7628 0.8106 0.7862 
OPTICS (S=20) 0.0183 0.2198 0.1467  0.0046 0.1723 0.1138   0.4946 0.7314 0.5706  0.4402 0.6896 0.5444 

 
Table 4 
Performance of protocol clustering in comparison with a reference classification based on the 
pharmaceutical class of their drugs. Parameter K is the number of clusters and S the minimum size 
of clusters. 

 CDI  MuRE  RAGE  CDI+RAGE  

 ARI NMI FMI  ARI NMI FMI  ARI NMI FMI  ARI NMI FMI 

K-means (K=10) 0.1204 0.2156 0.2326  0.0741 0.1939 0.1891  0.8420 0.9336 0.8651  0.8281 0.9311 0.8542 

Single (K=10) 0.0872 0.2419 0.3007  0.0059 0.0751 0.3717  0.9509 0.9687 0.9591  0.8071 0.9355 0.8503 

OPTICS (S=20) 0.0436 0.1811 0.2466  0.0167 0.0438 0.3441  0.7157 0.8662 0.7557  0.5885 0.8126 0.6546 



6. Discussion and conclusion 

This paper is an initial attempt to evaluate the suitability of learning graph embeddings to classify 
and identify similar chemotherapy protocols, in a setting where many protocols are offered to 
clinicians, with potentially unequal levels of evaluation, consequently generating a clinical 
decision-making challenge.  

From a knowledge representation and open resource point of view our knowledge graph is 
aligned with standard ontologies, but we would win in providing mapping to other initiatives, in 
particular HemOnc. This task is indeed not trivial as the HemOnc schema is different and less 
precise than ours. However, the graph embedding approach we described can spotlight highly 
similar protocols from HemOnc and ChemoKG, and in this sense has the potential of guiding the 
mapping between the two resources.  

We acknowledge that the work presented here would gain from additional experiments. First, 
our graph of protocols encompasses some numerical values, such as drug dose and half-life. All 
graph embedding approaches we considered do not enable arithmetic comparisons of numerical 
values. This lets us think that approaches that enable such comparison, such as KEN [38] would 
lead to improvements. Also, we experimented recursive approaches (RAGE and CompGCN) only 
with 𝐿 = 3 (i.e., size of the considered neighborhood), and without including inferable links in the 
graph. Increasing L would enable embeddings to consider more of the graph, potentially leading 
to improvements. The inclusion of inferable links would add direct links between drugs and 
higher ATC or ChEBI ontology classes, what could help in identifying similar protocols. However, 
this extension is associated with a risk of flooding embeddings with general classes and is 
consequently to test with caution. Regarding the evaluation of the clustering, we only provided 
external evaluation metrics, i.e., metrics that compare one clustering with a reference 
classification. This could be enriched with internal evaluation metrics such as the DUNN index or 
silhouette score that evaluate how many instances assigned to one cluster are both close to each 
other and distant from instances assigned to other clusters. Indeed, the two reference 
classifications are not a ground truth, but references one may want to compare to. In this setting, 
the internal quality of the clustering is a pertinent metrics, which could also enable the 
comparison of various clustering strategies.  

Nonetheless, our experiments illustrate the level of performance of various graph embedding 
approaches on ChemoKG and their usability for learning meaningful clusters. We will pursue our 
efforts to facilitate the data and knowledge management associated with chemotherapy protocols 
and would like to expand our work from protocols to patient data, and study how protocols are 
respected, or modified to adapt to individuals and what is the impact on patient outcomes. 
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