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Abstract
This paper presents insights gained utilizing semantic technologies as a FAIR implementation profile
for clinical metadata standards at Roche Pharma Product Development Data Sciences. It highlights
the journey undertaken to democratize FAIR data authoring and achieve higher-order FAIRification all
while addressing the associated challenges. The paper includes a specific use case from the clinical data
collection standards domain, illustrating the automation potential of semantic model-driven development
for implementing FAIR user-centric applications. The authors aim to share valuable lessons learned and
challenges faced, providing insights for organizations seeking to advance FAIR practices and transform
their data landscapes in similar endeavors.
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1. Introduction

Semantic Web Technologies, with their approach to linked metadata, offer substantial potential
as a fit-for-purpose FAIR implementation profile [1] in large life sciences organizations commit-
ted to a FAIR data transformation [2]. Yet, in our experience to date, most of the semantic-based
approaches to FAIRification are either retrospective, where data traverses a few systems before
receiving proper contextual metadata or permanent unique identifiers, or they lack scalability as
more often than not, the necessary know-how to create the data FAIR from the start is confined
to circles of semantic practitioners. In both cases, semantic FAIRification is perceived as a
labor-intensive afterthought, creating a barrier to widespread adoption.

Breaking that barrier and unlocking the potential of semantic technologies as a FAIR imple-
mentation profile was an objective we have set for ourselves over the last couple of years as
we embarked on a journey of building a semantic-model-driven development framework for
clinical metadata standards at Roche Pharma Product Development Data Sciences. We recognize
that successful FAIR adoption commences with the leadership mindset embracing the FAIR
principles and culminates in a corresponding technological shift. Advocating for the pivotal
role of semantic technologies in catalyzing that shift, our focus was on:
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• Democratizing the FAIR data authoring process by embedding semantic applications in
user-centric operational contexts.

• Aiming for higher-order FAIRification; not merely retrofitting metadata but leveraging
semantic inference and automation to proactively incorporate FAIR considerations into
the design and development of data systems and applications.

In this paper, we discuss our experience developing authoring applications based on ontolo-
gies. These applications are smoothly incorporated into the everyday workflows of clinical
standards subject matter experts with limited or no background in semantics. We provide an
overview of what we denote by semantic model-driven development, highlighting challenges
and specificities. Additionally, using a use case from the clinical data collection standards do-
main, we demonstrate how the automation capabilities brought by semantic inference facilitate
higher-order FAIRification by accelerating the creation of FAIR user-centric applications.

2. The Starting Point: Roche’s Metadata Repository

Our starting point was an existing metadata repository known at Roche as the Global Data
Standards Repository (GDSR). GDSR is Roche’s homegrown multi-tenant metadata repository
for clinical data standards, be it the industry-wide standards such as the standards from the
Clinical Data Interchange Standards Consortium (CDISC) or any Roche-specific data standards.
The metadata standards in GDSR are expressed as RDF knowledge graphs, stored in a triple
store, cataloged, versioned and then served to users via a web browser and to applications
downstream via a ReST API.

The GDSR system architecture inherently adhered to the FAIR principles in its metadata
content [3]. With this as our starting point, achieving FAIRification for our clinical data standards
appeared to be a solved problem — or almost so. The end-to-end FAIRification setup was still
sub-optimal because the data standards owners were unable to independently maintain the
metadata content. They needed an information architect or a knowledge engineer to create and
update the underlying knowledge graph representation. With increased adoption and emerging
use cases for semantified standard models, the dependency on having semantic expertise to
maintain GDSR content evolved into a bottleneck and a dual inefficiency. On the data owners’
side, the data standards experts were not empowered to take full control over the data life cycle,
and on the semantic expert side, instead of working on more impactful modeling work, a good
portion of their time was spent processing change request tickets.

At this point, It was clear that reaping the full FAIRification benefits GDSR offered was
predicated on having the right native RDF authoring and governance tools in the hands of its
content owners. This is how a key component in the GDSR ecosystem, the GDSR Workbench,
was born.

3. Semantic Model-driven Development

Our decision to pursue a model-driven approach stemmed from the need for a systematic
and efficient development process for the envisioned GDSR Workbench. One that leverages



automation not only to cover existing data standards models but also to accommodate future
ones, ensuring adaptability and scalability.

Similarly to model-driven development in an object-oriented paradigm [4], semantic model-
driven development can be seen as the approach to software development that starts with an
ontology as a formal domain representation and builds on top of it with a series of semantic
artifacts configuration steps to populate, link, manage and expose data as instances of the
concepts defined in the ontology and adhering to its constraints. Having adopted this as a
methodology when building the GDSR Workbench, we ended up building a framework that we
could reuse every time a new FAIRification use case emerged.

The development process (Figure 1) for a typical FAIR authoring application using the GDSR
Workbench framework consists of:

1. If the underlying ontology is not in place already, an ontology creation phase where an
ontologist works closely with a domain expert on a set of competency-based questions to
define the ontology as a formal machine-understandable representation of the domain of
interest.

2. An artifact configuration phase that covers:

• Writing SPARQL queries as a catalog of parameterized named queries. The queries,
with metadata annotations, are then used for populating the various user interface
views, for quality control and report generation or for downstream consumption.

• Writing SHACL shapes on top of the ontology classes exposed to the end users. The
shapes are used for validating the graph data mutations according to the ontology
definitions and for automatically generating user interface views.

• Adding the necessary URI redirect rules in Roche’s identifiers service for domain
registry and resource dereferenceability.

Figure 1: The GDSRWorkbench model-driven
artifact development process

From here on, no further development is
needed. The remaining parts are left to the
GDSR system to put all the pieces together
and generate the final authoring and gover-
nance tools that correspond to the ontology.
We equipped GDSR with the orthogonal sys-
tem components and inference rules that un-
derstood the underlying semantics of the above
artifacts and acted as mini language interpreters
generating the user interface forms and trans-
actional validation behaviour that mirrored the
SHACL shapes.

Under the hood, SHACL shapes are translated
into another GDSR data structure, the GDSR
Facets, which are used by the ReST API as the
actual vehicle between the SHACL-driven front
end and the triple store. Facets are some of the
earliest foundational pieces of the GDSR system



built at a time when the more standard GraphQL mutations did not exist yet [5]. While facets
are still needed by the GDSR core component for executing CRUD operations 1, they have faded
into the background and are now automatically inferred from the SHACL layer.

4. Challenges and Proposed Solutions

While adopting a semantic model-driven approach for developing FAIR authoring applications
introduced numerous automation possibilities and a systematic means to standardize editing
interfaces, it also came with its own set of hurdles and challenges. In the following sections, we
highlight some of the noteworthy ones and the solution approach we have taken to tackle them.

4.1. Bridging an expressiveness gap

SHACL shapes provided us with a very good base to describe the different authoring forms
and editing constraints an object is subject to but we still encountered some expressiveness
limitations when exclusively relying on SHACL constraints semantics [6]. In our case, the
SHACL shapes missed the semantics to express some of the user-interface aspects relevant
to our application’s operational context. For example, how to control the visual layout of the
related resources in the current resource view? How to express what properties of the resource
are mutable and under which assumptions? Which properties are relevant for validation but
should be hidden from the user in the user interface?

To fully automate the user interface generation process starting from the SHACL shapes,
more expressive power was needed to complement the shape definition with the additional
constraints to dictate aspects such as these in the aforementioned questions. It was for that
reason that we defined our own Roche extension to SHACL namespace. An example SHACL
shape with some Roche-specific extensions is shown in Listing 1.

1 @prefix schema: <https://id.roche.com/example-domain/schema/> .
2 @prefix gsh: <https://id.roche.com/gdsr-shacl/> .
3 # Other standard prefixes are omitted
4

5 :ExampleShape
6 a sh:NodeShape ;
7 sh:targetClass schema:ExampleClass ;
8 # a gsh extension to determine if resources of the target class are mutable
9 gsh:editable true ;

10 # a gsh extension to specifiy the graph in which permutations will be saved
11 gsh:targetGraph <https://id.roche.com/example-domain/example-graph> ;
12 # a gsh extension prob. to determine if resources should be indexed for full text

search
13 gsh:searchable true;
14 # a gsh extension to calculate user-friendly dynamic label expressions
15 gsh:labelExpression [gsh:concat([sh:path schema:propA] [sh:path schema:propB])] ;

1CRUD is a commonly used acronym in software development that stands for Create, Read, Update, Delete.
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17 rdfs:label "Running label to be used in the UI" ;
18 rdfs:comment "A longer description of the resource type to be shown in the UI" ;
19

20 sh:property [
21 a sh:PropertyShape ;
22 sh:name "Property A" ;
23 sh:order 1 ;
24 sh:path schema:propA ;
25 # some properties are hidden from the user in the UI
26 gsh:hidden true ;
27 sh:datatype xsd:string ;
28 ] ;
29 sh:property [
30 a sh:PropertyShape ;
31 sh:name "Property B" ;
32 sh:order 2 ;
33 sh:path schema:propB ;
34 #editibility can be set in a cascading style (property then class)
35 # it can also be resolved dynamically from blank node expressions
36 gsh:editable [ gsh:coalesce ( [ sh:path schema:isExtensible ; ] false ) ; ] ;
37 sh:datatype xsd:string ;
38 #cardinality constraints are applicable in the UI form validation (e.g.

mandatory fields)
39 sh:minCount 1 ;
40 ] ;
41 sh:property [
42 a sh:PropertyShape ;
43 sh:name "Child property A" ;
44 sh:order 3 ;
45 # collecting children of the current resource via the inverse path
46 sh:path [sh:inversePath schema:childProbA ;] ;
47 sh:node :ChildNodeShape ;
48 #the relationship type dictates the applicable cascade CRUD validations
49 gsh:relation gsh:Aggregation ;
50 #the display mode for childer resources. E.g: tabular details or chip labels
51 gsh:displayMode gsh:DisplayMode.Detaila ;
52 ] ;
53 .

Listing 1: An example of a SHACL shape definition with additional Roche-specific extensions

In some cases, the expressiveness gap manifested when the standard SHACL shape defini-
tion resulted in a non-deterministic translation of the user transaction into a graph mutation.
An example we can give here is the standard sh:alternativePath used in SHACL complex
property paths. To avoid such non-deterministic scenarios, we equipped the GDSR Workbench
engine with the necessary shape validation rules to report faulty shape configurations (in the
example here, an alternative path used in a mutable property definition).



4.2. Bridging a procedural gap

Like other languages in the Semantic Web sphere, SHACL is inherently declarative, emphasizing
the ’what’ over the ’how’. This serves the purpose of knowledge representation and validation
perfectly: declaratively describe the problem domain, its entities, their relationships and what
constraints apply to a given solution. The systematic procedural logic of how the solution is
found is left to OWL reasoners, SPARQL query execution engines, SHACL inference engines,
etc. In our case, however, adopting a pure declarative approach would have fallen short of
the expectation. In many cases, we were faced with situations where a user action in the
interface should trigger a series of mutations to be handled in a transaction where synchronous
system-to-system communication was involved. In these scenarios, and many similar ones, we
needed to have more imperative control over the how, and when, not just the what.

For that purpose, we introduced the concept of an action shape, a subclass of the standard
SHACL shape but with the additional semantics of having an action component attached to it.
The procedural logic behind the action component itself can be written using any programming
language of choice as long as it is encapsulated and reachable via an HTTP(s) endpoint. A
simplified example of action shape to notify a remote system of an event (e.g.: a certain
mutation to a resource) is shown in Listing 2 below.

1 @prefix schema: <https://id.roche.com/example-domain/schema/> .
2 @prefix pec: <https://id.roche.com/gdsr/procedural-extensions-components/> .
3 @prefix gsh: <https://id.roche.com/gdsr-shacl/> .
4 # other standard prefixes are omitted
5

6 :ExampleShape
7 a sh:NodeShape ;
8 sh:targetClass schema:Class ;
9 gsh:action :NotifyAction;

10 # remaining parts of the shape definition are ommitted
11 .
12 :NotifyAction
13 a gsh:Action ;
14 gsh:component pec:APIEndpoint ;
15 pec:httpVerb "GET" ;
16 pec:param [
17 pec:name "event" ;
18 pec:value "event x" ;
19 ] ;
20 pec:param [
21 pec:name "resourceURI" ;
22 pec:value sh:this ;
23 ] ;
24 pec:remoteURL "https://remote-system/notify" ;
25 rdfs:comment "The comment here can be used to show additional information to the

user in the UI" ;
26 rdfs:label "Notify the remote system that event x has occurred" ;
27 .



Listing 2: An example of an action shape component

4.3. Validating under a half-open world assumption

When we started configuring the authoring interfaces using SHACL shapes, SHACL’s
closed-world assumption was just what we needed to validate transactions on top of linked
data in an operational context. We relied on it to define custom uniqueness constraints and
rules applicable for cascade deletion. As we covered more and more configuration scenarios,
however, we realized that the closed-world assumption was too restrictive in certain cases
where the related linked resource resided in a different “world” such as a neighboring integrated
system or an archived version of the metadata. After careful analysis of the different false
positives SHACL violations we collected over time, we finally adopted a hybrid approach to
validation. By default, the close-world assumption prevails and in the cases where falling back
to an open-world assumption was needed, we declared it in the object property in question
using a dedicated predicate from Roche’s SHACL extension as shown in Listing 3.

1 @prefix schema: <https://id.roche.com/example-domain/schema/> .
2 @prefix gsh: <https://id.roche.com/gdsr-shacl/> .
3 # other standard prefixes are omitted
4

5 :ShapeWithRemoteLinkedResources
6 a sh:NodeShape ;
7 sh:targetClass schema:Class ;
8 rdfs:label "A shape definition for targets with remote linked resources" ;
9

10 sh:property [
11 a sh:PropertyShape ;
12 sh:name "Remote resource" ;
13 sh:path schema:probA ;
14 sh:datatype rdfs:Resource ;
15 gsh:relation gsh:Association ;
16 gsh:location [gsh:variable :remoteDateset];
17 ] ;
18 # remaining parts of the shape definition are ommited
19 # ...
20 .

Listing 3: An example of a shape definition where the closed-world assumption is amended for
remote properties.

The gsh:location here tells the workbench engine that the linked resource resides in a
remote location. Depending on the relationship type, that remote location can be dynamically
resolved at runtime so that the applicable cascade validation rules are enforced.



5. A Clinical Data Standards Application Use Case

To offer a more tangible perspective on the opportunities explored in this paper, we present a
use case from the clinical data standards domain. The use case scenario presented below, along
with the subsequent solution sections, should illustrate the automation potential of our semantic
model-driven development framework and how it helps achieve higher-order FAIRification by
accelerating the creation of FAIR user-centric applications.

5.1. An introduction to the use case scenario

Like every step in any clinical trial, data collection is a process that lends itself to harmonization.
At Roche, collected data should conform to collection standards that are based on the CDISC-
controlled terminologies or their Roche sponsor extension. This means that every variable’s
permissible value is bound to fall within pre-established enumerated value domains. The
controlled terminologies and the underlying schemas can vary depending on whether the
variables are collected as part of a questionnaire in an electronic Case Report Form (eCRF) or
as one of the multitude of other non-CRF data structures such as lab assays, digital measures,
CT-scans, ophthalmologic grading parameters, etc.

The majority Roche’s metadata standards are largely aligned with the existing CDISC stan-
dards but when it comes to data collection, Roche maintains its own set of global metadata
standards that covers a wide range of therapeutic areas and collected data formats2.

While dictating the permissible values for a given non-CRF variable in isolation from others is
readily achievable using the existing standard models, dictating the permissible combinations of
values for variables collected together poses a more significant challenge. It requires maintaining
Value Level Metadata (VLM) according to schemas that vary dynamically following the different
data collection settings and the applicable version of the standards at a given point in time.

5.2. A lost cause for FAIRification?

Given the current scope of Roche’s non-CRF standards, populating and maintaining dozens
of different VLM schemas seemed infeasible. Before the introduction of the semantic model-
driven framework, and despite the FAIR metadata representation of the underlying collection
variables and controlled terminologies, maintaining combinations for all VLM schemas in
a machine-readable manner required a dedicated solution for each schema. Defining the
schemas themselves in a semantic form was relatively straightforward, but the challenge lay in
maintaining permissible combinations as populated knowledge graphs. We were faced with
the choice of either having to provide the data standards managers with new custom-built
authoring tools for each VLM schema; or having to handle the population of all VLM knowledge
graphs on our end. Neither option justified the resource investment. Consequently, only three
selected VLM schemas were maintained in the metadata repository, while all other schemas
were manually kept in a tabular sheet, disconnected from the FAIR source, posing the risk of
possibly outdated copies circulating freely and non-compliance issues encountered downstream.

2Roche’s eCRF and non-CRF standard models were established before the CDASH collection standards counterparts
from CDISC were publicly released.



Figure 2: A simplified visualization of the meta VLM ontology

5.3. Restoring the lost FAIRness

Leveraging the semantic model-driven framework we have progressively implemented, and
drawing inspiration from concepts in the meta-programming paradigm [7], we felt equipped
with the tools needed to automate the solution for constructing the authoring and governance
tools for the data standards manager to maintain the VLM combination independently and in a
FAIR manner —fully connected to the standard data source. The following subsections outline
the different aspects of the implemented solution.

5.3.1. The different levels of modelling abstractions

Right from the start, we took an abstract perspective on the problem of modeling the different
non-CRF VLM schemas for different therapeutic areas and non-CRF standard models. Instead
of developing a new ontology for different occurrences of the VLM problem, we developed a
more abstract meta-VLM ontology. Similar to how a meta-program possesses knowledge of
itself and can manipulate itself [7], the meta VLM ontology comprises a small number of stem
classes and properties that capture the essence of what constitutes a VLM schema, an ontology
that defines a generic schema for other VLM schemas (see the blue dotted connections in the



simplified ontology visualization in Figure 2). We then configured a small workbench user
interface on top of this stem to allow the standards data manager to provide the input necessary
to automatically create new VLM schemas.

5.3.2. An automated implementation process

Figure 3: The end-to-end automated pipeline to
create VLM authoring interfaces using
the GDSR Workbench framework

Every time the data manager declared a new
VLM schema in the user interface, the VLM
ontology automatically expanded with the
help of semantic inference, creating new
classes and properties. For these classes and
properties just-created, a few more inference
rules automated the artifacts generation pro-
cess including the SPARQL and SHACL re-
quired for creating the GDSR editor user in-
terfaces. The resulting end-to-end automated
pipeline for the artifact development process
is shown in Figure 3.

To address the legacy VLM combinations
maintained in tabular sheets, we implemented
a separate dedicated parser component that
dynamically understood the VLM schemas
created. This component performed a series
of reverse look-up operations to the metadata
repository, translating from free-text values
into the URIs of the linked entities.

5.3.3. Restored metadata lineage and eliminated risks

Having undergone the automated pipeline outlined above, the legacy tabular content is now
fully converted to machine-readable metadata. The resulting knowledge graph is appended to
the overarching clinical standards knowledge graph in GDSR where the semantic link to the
non-CRF standard variables and controlled terminologies is restored. This not only enforces
data integrity and opens new possibilities for standards compliance assessment but also serves
as a significant efficiency booster and time-saver for the data standards manager maintaining
the VLM combinations. It practically eliminates the need to manually propagate changes to the
legacy tabular VLM sheet following an update to the standard source, thereby eliminating the
risk of the VLM not being aligned with the metadata repository.

6. Related Work

The insights presented in this paper were obtained working hands-on in the specific context of
Roche’s metadata repository and its satellite projects. Rather than being research-oriented in
nature, our efforts were geared toward tackling the hurdles and bottlenecks faced scaling our



metadata FAIRification initiatives across the different areas of Roche’s clinical trial development.
That being said, we consider our work to be largely aligned with the viewpoint of the research
community and that of our industry peers; especially those underlining the importance of
adhering to the FAIR principles and the role Semantic Technologies play in there [2] [1] [8].

On a more technical note, a thorough review of the literature is yet to be conducted but to our
knowledge, most of the work on augmenting SHACL shapes with procedural logic is attributed
to Knublauch et al. at TopQuadrant, Inc [9]. The approach they take is based on JavaScript
extensions to the W3C SHACL standards. The full specifications of the proposed extension
mechanism are accessible under the corresponding W3C Working Group notes.

7. Summary

This paper documented our efforts to harness semantic technologies as a FAIR implementation
profile for metadata standards applications in life sciences organizations. We stressed the impor-
tance of proactively incorporating FAIR considerations into the design and development of the
FAIR data systems. Using a real-world use case scenario, we illustrated how we leveraged au-
tomation to build native FAIR authoring tools seamlessly embedded in user-centric contexts. By
sharing the challenges we encountered, we aim to provide some insights for other organizations
pursuing similar efforts to advance FAIR practices and transform their data landscapes.

8. A Note on Reproducibility

We appreciate the lack of open access to the work behind the insights shared in this paper.
Open-sourcing a selection of our standard ontologies and SHACL namespace extension is
potentially possible but pending a feasibility assessment due to known inter-dependencies with
other components of the GDSR ecosystem. Nonetheless, a more elaborate exchange of ideas
and experiences with the community remains a privilege we are always after and we encourage
interested readers to reach out via email with any feedback or questions.
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