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Abstract 
This article discusses the development of the algorithm and software for detecting the anomalies in MRI  
images. The main goal of the research is to increase the efficiency and the rate of disease diagnosis by 
creating a user-friendly and functional application for automatic anomaly detection. Anomaly detection 
algorithms were researched and software efficiency was tested. .NET platform, HD-BET tool, and ResNet 
model were chosen for the software development.
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1. Introduction

Magnetic resonance imaging (MRI) is a modern examination method that uses magnetic fields and 
radio waves to create detailed images of internal organs and tissues.  The strong magnetic field 
created by an MRI scanner causes the atoms in the body to align in one direction. Radio waves are 
then sent from the MRI machine and move these atoms from their original position. When the radio 
waves are turned off,  the atoms return to their  original  position and send radio signals.  These 
signals are received by the computer and converted into an image of the examined body part, and 
the image appears on the monitor [1].

The main advantage of MRI compared to other methods, such as computed tomography or X-ray 
examination,  is  that  it  does  not  require  the  use  of  ionizing radiation,  which makes  it  safe  for 
patients. Also, MRI better defines the difference between types of soft tissues, and between normal 
and abnormal soft tissues [1].

Today, the development of IT technologies allows the use of artificial intelligence and machine 
learning to automate the analysis of medical images, including MRI images. In general, there are 
three  main  areas  for  the  use  of  artificial  intelligence  in  radiology:  image  reconstruction  and 
enhancement, image classification and segmentation, and diagnostic support. The first direction is 
the most developed, while the other two are less studied, as they have more requirements for the 
accuracy of the results [2].

In terms of  the  classification of MRI images, with the help of machine learning, most studies 
focus on the detection of specific diseases or certain pathologies. For example, the detection of brain 
tumors. Such studies are more narrowly focused and more precise, but they require a large set of  
specific training data. Typically, these data studies use supervised learning, which requires labels on 
the data. Another direction is the detection of pathologies in general, comparing an unhealthy case 
with the norm. Such studies have a wider application, since they do not focus on specific cases, and 
can use different approaches.

However, there are some drawbacks to the current state of things. First of all, there is a small 
number of studies and their limited use. It is also important to take into account such disadvantages 
as the limited accuracy of some algorithms, the instability of the software and the high cost of some 
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solutions. To improve the situation, it is worth introducing a light and open solution that would 
ensure reliability and have a low cost of implementation and maintenance.

That is why this study is dedicated to the development of software for detecting pathologies on 
MRI  images  with  a  convenient  user  interface  and  the  use of  unsupervised  machine  learning 
methods for anomaly detection. The development of the software aligns with the United Nations' 
Sustainable  Development  Goals,  particularly  the  third  goal:  Good  Health  and  Well-being.  By 
enhancing  early  diagnosis  and  improving  healthcare  efficiency,  this  technology  leads  to  better 
health outcomes, reducing mortality rates and enabling more equitable access to quality healthcare. 

1.1. Related Work

While supervised DL learns to explicitly distinguish between what is normal and what is abnormal, 
unsupervised  anomaly  detection  makes  no  assumptions  about  the  concept  of  anomalies. 
Unsupervised  methods  either  make  no  assumptions  about  the  data  at  all  and  determine  the 
probability  of  samples  containing abnormal  specimens,  or  have  no knowledge  of  what  exactly 
represents the abnormality, but clearly can determine the normal distribution of healthy anatomy 
[3].

The detection of anomalies can be attributed to the problem of clustering. One of the most used 
algorithms is K-Means clustering. This is a very simple algorithm that groups data into clusters 
based on similar features. It is also worth noting that K-Means is an algorithm that is based on 
distance and requires careful selection of parameters, in particular, the selection of features that 
should be taken into account when grouping. Although the K-Means algorithm is widely used for 
data  clustering,  it  also  has  its  drawbacks,  especially  when applied  to  the  problem of  anomaly 
detection. Primarily, K-Means assumes that all points in the data set belong to some cluster, making 
it unable to effectively recognize anomalous clusters that may be separated or misrepresented. Also, 
the algorithm is very sensitive to the presence of outliers in the input data. Large outliers can affect 
the location of the centroids and lead to incorrect clustering [4].

Another approach is to use an autoencoder (AE), another type of unsupervised learning. They 
consist of a so-called encoder, which maps a high-dimensional input signal to a low-dimensional 
hidden (latent) space, and a decoder, which has the task of restoring or reconstructing the input [3]. 
AEs can be different, but convolutional ones are the most common.

Variational  autoencoders  (VAE)  are  one  of  the  variations  of  AE,  which  includes  Bayesian 
variational  methods  in  the  usual  architecture.  The  main  difference  is  how  they  model  the 
distribution of the input data in the latent space. The main disadvantage of AE is that the latent 
space can be extremely irregular. VAEs solve this problem because instead of a single point in the  
latent space, they return a distribution [3, 5].

Another  important  part  of  autoencoder  modeling  is  the  choice  of  the  encoder  and  decoder 
architecture. Some of the most common models for feature extraction are the Convolutional Neural 
Network (CNN),  Residual Neural Network (ResNet),  and Recurrent Neural Network (RNN).  The 
architecture of a regular CNN consists of an input layer that is subsequently convoluted using a 
combination of convolutional filters followed by an output layer. It is very efficient and widespread, 
but  as  the network depth increases and a certain threshold is  reached,  the error  rate  starts  to 
increase  because  of  the  gradient  vanishing and degradation.  Another  type is  RNNs,  which are 
designed to interpret temporal or sequential information. The main difference is that they reuse the 
activations of previous or subsequent nodes in the sequence. However, the problem of gradient 
vanishing remains in this type of networks. ResNet is a modification of CNN that introduces  a 
residual learning function into the architecture. Therefore, unlike CNN, ResNet is able to solve the 
problem  of  accuracy  loss,  because  this  model  additionally  uses  skip  connection,  i.e.  direct 
connection,  between layers.  This  allows it  to  take  activation from one level  and transfer  it  to 
another level, thus preserving parameters at deeper layers [6, 7].



1.2. Research Tasks

Main goals: improving the efficiency and speed of diagnosing diseases by creating a convenient and 
functional application for  the  automatic recognition of anomalies. The following tasks should be 
solved within this research:

 development of software for anomaly detection in MRI images
 development of the anomaly detection algorithm
 researching anomalies algorithm and software efficiency

2. The Software Development

The following describes the steps for the development of software for anomaly detection in MRI 
images.

2.1. Software Architecture 

The  software  uses  a  layered  architecture  and  consists  of  three  projects  (packages):  MRI-
Vision.Python, MRI-Vision.Domain and MRI-Vision.UI. The package diagram is shown in Figure 1.

Figure 1: UML Package Diagram

The MRI-Vision.Python project is small and  handles the model, images, and image analysis.  It 
primarily includes  classes for designing, creating, and using an autoencoder model as well as  its 
training, which includes working with images – reading, preprocessing, and analysis.

The MRI-Vision.Domain project provides the functionality to process the results obtained from 
MRI-Vision.Python. It uses the third-party Python.NET project  in order  to integrate Python code 
into .NET. Additionally, since all methods calling Python code are called asynchronously and due to 
the GIL (Global Interpreter Lock) in Python, there is a separate  module that performs all Python 
tasks in one thread.

The MRI-Vision.UI package contains only pages and additional GUI functionality for presenting 
the processed results obtained from MRI-Vision.Domain.

2.2. IDE and Additional Software Libraries

The most important part of creating a neural network is selecting the language and framework to 
be used in the development. Python is the most widely used programming language in the industry 
with a large selection of frameworks and libraries. The choice of a framework which will be used to 
train the neural network is another part. The most common in the field are Keras, PyTorch, and 
TensorFlow. Keras is a high-level interface that makes it easy to quickly build and train the models.  
TensorFlow offers more flexibility and control, making it popular among experienced researchers. 
PyTorch combines  the  simplicity  of  Keras  with the  flexibility  of  TensorFlow,  offering dynamic 
graph definition  and  GPU computing  acceleration.  Moreover,  PyTorch  provides  a  user-friendly 
interface  for  working  with  dynamic  graphs,  simplifying  the  process  of  changing  the  model 
architecture  during  experiments.  Due  to  the  mentioned  facts,  PyTorch  was  chosen  for  the 
development.



Yet another crucial part of neural network training is data preprocessing. MRI data are usually 
represented as 3D models converted into slices. Many auxiliary libraries are widely used in DL and 
the medical field. One such library is the open-source MONAI platform, which offers a selection of 
optimised implementations of various DL algorithms and utilities specifically designed for medical 
visualisation tasks. It provides tools for flexible preprocessing of multidimensional medical image 
data  [8].  Compared to  NiBabel,  which  simply  offers  read-and-write  access  to  common medical 
image formats like NIfTI and DICOM, MONAI is more feature-rich [9].

When working with MRI brain images, another useful tool for preprocessing is technologies that 
offer functionality for automated brain extraction of consecutive MRI images. Several alternatives 
perform this task using artificial neural networks [10]. A full comparison of known alternatives is 
presented in Table 1.

Table 1
Comparison of Tools for Brain Extraction of Sequential MRI Images

Tool Velocity Accuracy
HD-BET High High
MONSTR Medium High

3DSkullStrip Medium Medium
BEaST Low Medium

BSE Medium Low
BET High Low

For this work, HD-BET was chosen since it is more accurate and faster than other alternatives 
such as MONSTR, 3DSkullStrip, BEaST, etc [10].

Given that the software is aimed at easy use by healthcare professionals, it is essential to develop 
a user-friendly and straightforward graphical interface. Although Python provides a wide range of 
libraries  for  GUI  development,  the  C#  programming  language  was  selected  due  to  its  better 
performance,  especially for applications that  require fast  real-time response.  For this  work,  the 
Windows Presentation Foundation (WPF)  framework was  chosen since  it  uses  a  more  modern 
XAML-based layout approach compared to its WinForms counterpart. There are two versions of 
WPF – on the .NET platform and on the .NET Framework platform. The .NET platform is used in 
this paper considering it has superior performance, availability, reliability, and tools [11]. 

Furthermore,  Visual Studio Code for Python development was selected as an IDE since it  is 
lightweight  and  has  a  large  selection  of  additional  extensions  for  viewing  images,  opening 
TensorBoard in order to view training statistics, etc. For C# development, Visual Studio was chosen, 
which has a user-friendly interface for developing WPF applications. Examples of the user interface 
are shown in Figure 2 and Figure 3.



Figure 2: The View of the MRI Slice with an Anomaly Map

Figure 3: Orientation Change of the MRI Slice with an Anomaly Map

2.3. Choosing and Training of the Neural Network 

Comparing  the  algorithmic  solutions  presented  in  the  Related  Work  section  in  this  paper  the 
decision to design an autoencoder was made considering it has higher accuracy compared to K-
Means. Additionally, since the model only needs to recognise anomalies without generating new 
ones, an autoencoder is a better choice than a variational autoencoder, given it is easier to learn and 
use.  ResNet  was  chosen  as  the  architecture  of  the  autoencoder  because  of  its  advantage  over 
conventional CNNs and RNNs in training deep neural networks for image feature recognition and 
extraction.

The neural network consists of an encoder, a decoder and a latent space between them. The 
encoder is composed of a convolutional input layer and five ResNet units for downsampling, each 
with  three  convolutional  groups:  two  consecutive  convolutional  layers  and  a  feedforward 
connection.  Three consecutive steps make up each convolutional  group – Conv3d convolution, 
ReLU  activation,  and  BatchNorm3d  normalisation.  To  stabilise  the  gradient  and  prevent  the 
exploding gradient problem, normalisation is utilised. The number of channels in each block is 32, 
64, 128, 256, and 512. Thus, the latent space is 1024. The architecture of the decoder is inversely 
symmetric, with upsampling layers used in place of downsampling ones.



The anomaly detection autoencoder is based on the fact that if the AC is trained only on healthy 
samples, the model will be able to reconstruct only them. Therefore, when an anomalous instance is 
received as input, the reconstruction error will be much higher in the anomalous areas, since the 
anomaly will not be reconstructed.

The model should be trained on healthy MRI brain images. Healthy samples were taken from 
the IXI dataset which contains almost 600 MRI brain images of normal, healthy subjects [12]. Two-
thirds of the data are used for training, and the remaining data are used to evaluate the model after 
each epoch. The Adam optimiser with PyTorch was used for optimisation with a learning rate of 10-

3. MSELoss, which measures the mean square error between the input and reconstructed data, was 
used to compute the loss. The training was performed on GPU and CPU by parallelising the data 
using PyTorch's nn.DataParallel class, which significantly reduced the training time.

During training,  400 epochs were performed,  since after 350 epochs the loss almost did not 
decrease. Figure 4 shows a plot of the change in the value of the loss function after each epoch.

Figure 4: Plot of the Changes in the Loss Function

Thus, by the end of training, the loss function value was 0.0003. Moreover, after each epoch, if 
the model was determined to be the best of all the previous ones, it is saved to the file. Thus, the last 
best model was the model from the 388th epoch (Figure 4).  It  is this model that is used in the 
software.

2.4. Data Structure Description

The program accepts an MRI image as an input – a compressed file with the NIfTI (Neuroimaging 
Informatics Technology Initiative) extension.  Therefore, the final extension looks like .nii.gz. This 
extension is widely used for storing MRI brain images. Its particular advantage for this application 
is that, unlike DICOM files, the NIfTI format stores much less metadata that is not needed for model 
training. This makes NIfTI files lighter in size and faster to read [13]. Also, this type of input data is 
set due to the use of HD-BET which only accepts this extension type as input. NIfTI images are 
registered in a local coordinate system, and each file contains metadata and 3D pixels in  seven 
dimensions. Typically, NIfTI files have the extension .nii or .nii.gz and can be split into a binary 
header  (.hdr)  and  image  data  (.img or  .img.gz)  [14].  Figure  5 shows  a  diagram of  the  general 
structure of an NIfTI file.



Figure 5: Data Structure of a NIfTI File

In addition, there are numerous different types of MRI images. By default,  each examination 
includes T1-weighted and T2-weighted images, and other types such as FLAIR (FLuid Attenuation 
Inversion Recovery),  DWI (Diffusion-Weighted  Imaging),  etc.  may be  included as  well.  Liquids 
appear  dark  in  T1-weighted  images,  while  grey  matter  appears  darker  than  white  matter.  In 
contrast, fluids appear light in T2-weighted images, and grey matter appears lighter than white 
matter. Various pathologies, such as inflammation, necrosis, tumours, etc., cause high fluid content 
in these areas, making them prominent on T2-weighted images.

In this work, T2-weighted images were chosen since they are included in the standard set of  
images  created  during examinations  and since  various  pathologies  are  clearly  visible  on them, 
unlike T1-weighted images.

As an output, the user receives analysis results which can be downloaded as PNG images.

2.5. Anomaly Detection Algorithm 

The general steps of the algorithm used to detect anomalies on the selected file are as follows:
1. Upload a file
2. Change the image orientation (if necessary)
3. Resize the image (if necessary)
4. Collapse image data into latent space
5. Reconstruct an image from the latent space
6. Calculate  the  reconstruction  error  value  as  the  absolute  difference  between  the  input  and 
reconstructed images
7. Calculate the anomaly value of each image slice
8. Create images with anomalous areas for each image slice
9. Display the analysis results

Figure 6 shows the anomaly detection algorithm in a diagram form.
In the 6th step, the reconstruction error for each pixel is calculated using the following formula:A ' ijk =|I ijk −R ijk | , (1)

where I ijk  is the pixel value of the input image, R ijk  is the pixel value of the reconstructed image.
In the 7th step, the total anomaly value for each slice is calculated using the following formula:



A i= ∑ A ijkN − n ( A ijk ) , (2)

where  A i  is  the  slice  anomaly  value,  A ijk  is  the  pixel  anomaly,  n (A ijk ) is  the  number  of 
anomalous pixels, N  is the number of pixels in the slice. Thus, slices with a larger anomaly area will 
have a higher anomaly value. The pixel anomaly value is obtained from the reconstruction error 
using the following formula: A ijk ={A ' ijk , if A ' ijk >t0 , if A ' ijk <t , (3)

where  t  is  the  maximum reconstruction error  value  that  is  allowed and is  not  considered  an 
anomaly.

The algorithm produces a list of anomaly values for each slice, which is presented in the form of 
a line chart and an image of the slices with the anomalous areas highlighted.

Figure 6: Anomaly Detection Algorithm

3. The Software and Algorithm Efficiency

The following describes the efficiency of software and the algorithm for anomaly detection in MRI. 
It  is  necessary  to  conduct  a  number  of  experiments  to  study  the  efficiency,  accuracy,  and 
conciseness of the developed computer software:

 evaluating the algorithm’s accuracy, precision, recall and F1 score
 calculating model training speed
 calculating image processing speed 

For research,  the  hardware with the following characteristics was used:  AMD Ryzen 5 5600H 
CPU 3301 Mhz, 16 GB RAM,  NVIDIA Tesla T4 GPU. The experiments were carried out on the 
operating system Windows 11.



3.1. Researching the Accuracy of Anomaly Detection

The BraTS2020 dataset, which consists of a large number of clinically validated glioblastoma and 
glioma brain  MRI  images,  was  used  to  determine  this  metric.  The  dataset  contains  NIfTI  files 
(.nii.gz) of type T1, T1Gd, T2, FLAIR and a file with segmented pathology, which were selected 
manually by specialists [15, 16, 17].

To determine the accuracy of the model, 369 files from the dataset were analyzed and the value 
of  the  reconstruction  error  was  obtained  for  each  of  them.  The  average  reconstruction  error, 
obtained  when  using  the  model  on  fully  healthy  specimens,  was  then  subtracted  from  each 
reconstruction error to obtain an image of the anomaly. Healthy specimens, on which the model 
was also trained, were taken from the IXI dataset [12]. The obtained results were then compared 
with the segmented image for the same image. The use of only IXI and BraTS2020 datasets in the 
study may limit the findings’ general applicability. To improve the results’ generalizability, future 
research should include more datasets that represent a broader range of MRI imaging and clinical 
situations.

The results were recorded as: 
 correctly detected abnormal areas (true positive value)
 incorrectly detected abnormal areas (false positive value)
 correctly detected healthy areas (true negative value)
 incorrectly detected healthy areas (false negative value)

Precision shows the number of correctly selected abnormal areas to all selected abnormal areas, 
so it indicates how many of the abnormal areas it classified correctly. Recall indicates the number of 
correctly selected anomalous areas to all areas that should be selected as anomalous, that is, how 
many anomalous areas were selected and not missed. The F1 score is a harmonic mean between 
precision and recall, and shows how accurate and reliable the result is. Accuracy shows the extent 
to which the abnormality map of the MRI image in general corresponds to the truth. All metrics 
take values between 0 and 1, with higher values implying better results.

Table 2 shows the values of the metrics in percentages.

Table 2
Value of metrics in percentage

Metric Value
Precision 69.45%

Recall 82.01%
F1 score 75.21%

Accuracy 89.07%

Thus, the software identifies 82% of anomalies, and the overall accuracy of detecting anomalies 
in images is 89%.

3.2. Evaluating Software Efficiency

To research software efficiency, two test  runs were performed: model training of 5 epochs and 
processing of 200 MRI images. Additionally, using GPU increases model training speed by more 
than 15 times, but at the same time increases image processing speed only by 22%.



Table 3
Software speedup efficiency

Used decision Model training, s (5 epochs) Image processing speed, s (200 
images)

CPU 6556 472
CPU+GPU 420 385

4. Discussion and Conclusion

The result of this research was the development of the algorithm and the convenient and functional 
application  for  the  automatic  detection  of  anomalies  on  MRI  images.  The  software’s  overall 
accuracy in detecting anomalies in images is 89%, with 82% of anomalies detected. The total time of  
analysis takes less than 7 seconds, proving the software’s efficiency and speed. The software also 
has a user-friendly and intuitive user interface that makes it easy to view MRI images and analysis 
results.

The anomaly detection algorithm is based on the fact that if AE is trained only on healthy 
samples, then the model will be able to reconstruct only them. Therefore, when an instance with an 
anomaly is received at the input, the reconstruction error will be much higher in the anomalous 
areas, since the anomaly will not be reconstructed correctly. Thus, having the reconstruction error 
for each pixel, it is possible to determine how large its abnormality value is for each slice, which is 
then can be presented in the form of a line chart and an image of the slices with the anomalous 
areas highlighted.

The software uses a multi-layered architecture and consists of three projects (packages): MRI-
Vision.Python, MRI-Vision.Domain, and MRI-Vision.UI.

The model was trained on healthy MRI brain images. Healthy samples were taken from the IXI 
dataset which includes almost 600 MRI brain images of normal, healthy subjects. Two-thirds of the 
data are used for training, and the remaining data are used to evaluate the model’s performance 
after each epoch. The training was performed on GPU and CPU by parallelising the data using 
PyTorch’s nn.DataParallel class,  which significantly reduced the training time. The 388th epoch 
model was the last best model. The anomaly detection algorithm consists of nine steps and produces 
a list of anomaly values for each slice, which is presented in the form of a line chart and an image of 
the slices with the anomalous areas highlighted. Using GPU increases model training speed more 
than 15 times, but at the same time, it increases image processing speed by only 22%.

The software’s  further  development  includes  support  for  more  MRI  image file  formats,  for 
example, the support for DICOM files. Extending the neural network library to analyse MRI images 
of other parts, such as images of the spinal cord, various joints, chest, etc., is another promising 
improvement. Support for simultaneously analysing numerous files would be a further addition. A 
useful improvement to enhance the graphical user interface would be the ability to generate a 3D-
projection and view the image in different angles in several windows. It is worth considering the 
possibility of multifactorial analysis using different types of images (T1, T2, FLAIR, etc.) in order to 
increase the software’s accuracy.

To guarantee that  the proposed software is  practical  and clinically  relevant,  extensive user 
testing and validation must be considered. in authentic clinical contexts. To enhance the evidence 
supporting the model’s robustness, it is critical to evaluate its performance across a broader and 
more diverse dataset.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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