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Abstract

This article presents mathematical models for investigating the impact of chemotherapy on the state of a
cancerous tumour based on various fractional-order derivatives. Finite difference approximations for the
fractal operators of Caputo, Atangana-Baleanu, and Caputo-Fabrizio are provided and derived. The
Atangana-Toufik method was employed to develop numerical algorithms for models with such fractional
derivatives. Using the developed software, the dynamics of stem cell and effector cell concentrations over
time in a fractal environment were studied and described, depending on the fractional order of the
differential operators. This approach allows for consideration of memory effects and self-organization
within the investigated fractal environment, as well as the specific features of the fractional-order
operators used.
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1. Introduction

Cancerous tumours exhibit complex, nonlinear behaviour, including changes in growth rate,
spread, and metastasis. They operate in complex environments with varying tissue densities and
blood supply. In the case of cancerous tumours, cellular processes often depend not only on the
current state but also on all previous states. Traditional mathematical models may not always
effectively simulate these processes. Fractional calculus allows for such features to be taken into
account through fractional derivatives, which reflect the dependence of the process on the previous
states of the system and enable the modelling of systems with memory effects. Furthermore, fractal
analysis methods allow the construction of models that more accurately approximate real
observations, such as non-stationary cell growth, the dynamics of interactions between cells, and
the tumour micro-environment.

In cancer therapy, fractional calculus can be used to model various treatment approaches (e.g.,
chemotherapy or radiotherapy), considering how the body responds to treatment over time. This
can help optimize therapeutic regimens and predict their effectiveness. Thus, fractal methods enable
more precise modelling of the complex and nonlinear processes that occur in the body during
tumour development. Their unique mathematical properties allow for a more accurate
representation of complex biological processes and cancer cell growth dynamics. This enhances our
understanding of how tumours grow, spread, and respond to therapy, which, in turn, can contribute
to the development of new treatment methods and predict their efficacy.

Models based on fractional derivatives can account for delays in tumour responses to
environmental changes, such as the influence of the immune system or oxygen deficiency. Various
researchers have investigated mathematical models of tumour growth and treatment, and the
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results of these studies are presented in works [1, 2, 3, 4], among others. In particular, in [4],
additional review articles are analyzed. These models provide an important role in enhancing the
understanding of cancer progression. Additionally, they can be used to improve effective
approaches to cancer study, treatment and prevention.

Mathematical models based on fractional differential equations can play an important role in
investigating nonlocal processes in tumours and their micro-environments. In studies [5, 6, 7, 8, 9],
fractional calculus was used to model diffusion and other tumour-related processes. For instance, in
[5], radiobiological factors were explored to understand the complex mechanisms associated with
cancer using the apparatus of fractional derivatives. In [6], a mathematical model of breast cancer
was introduced using the Caputo-Fabrizio fractional derivative. The findings enable the analysis of
how different treatment strategies impact the progression of breast cancer. In [7], the authors
proposed a model to examine the interaction between the immune system and malignant tumors.
The study [8] is notable for analyzing a fractional-order cancer model that considers the interaction
between stem cells and chemotherapy. The model was investigated using the Sumudu transform
and the Atangana-Toufik numerical method. In [9], a tumour-immune model was qualitatively and
quantitatively studied using the Atangana-Baleanu fractional operator. Numerical results were
obtained using Lagrange piecewise interpolation for various fractional-fractional operators.

Due to their importance, mathematical models based on fractional derivatives are useful for
investigating dynamic processes in various fields, such as engineering, biology [10, 11, 12, 13, 14, 15,
16], and especially epidemiology [17, 18, 19, 23]. The studies [20, 21] are dedicated to the
investigation of deformation-relaxation anisotropic processes and taking into account the fractal
structure in heat transfer processes in media. The algorithmic aspects of implementing such
mathematical models, particularly the use of parallelization in the computational process, are
presented in the research [21, 22]. These scientific publications present different studies of
mathematical models for the qualitative and quantitative mathematical description of infectious
diseases, taking into account fractional and fractional-fractal operators. Fractional mathematical
models are also used to analyze therapy efficacy, particularly when addressing agent resistance and
the body's response to treatment over time [24].

In this article, mathematical models based on Atangana-Baleanu derivatives, Caputo-Fabrizio
derivatives, Liouville-Caputo derivatives were synthesized using fractal analysis methods, and
software-algorithmic tools were developed to assess the impact of chemotherapy on the state of a
cancerous tumour, considering the long-term memory effect. The Atangana-Toufik numerical
scheme was used to implement the mathematical models numerically. Difference approximations of
fractal operators have been constructed within mathematical models. One of the distinguishing
aspects of our research was the analysis of the impact of the fractional differentiation parameter for
these fractional derivatives within the studied mathematical models.

2. Formulation of the Mathematical Model and Basic Principles of
Fractal Operators

We present the mathematical model for the growth dynamics of stem cells [2], which takes into
account three populations: tumor cells T(t), immune system effector cells E(t), stem cells S(t), and
the concentration of the chemotherapeutic substance M(t).

The dynamics of cancerous tumours during chemotherapy treatment are represented in [25] by
the following system of equations:
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with initial conditions:
So(t) =S(0), Eo(t) =E(0),T(t) =T(0), My(t) = M(0).

In this model, the first equation describes the relationship between stem cells and the
concentration of the chemotherapeutic agent. Stem cells can transform into specific cultured cells
and lose their concentration over time at a rate of y_1, k denotes the fraction of stem cells killed by
chemotherapy. The second equation pertains to effector cells, which have a constant value
o=0_1+c_2. Value o 1 is the natural baseline level of effector cells, and o_2 is the amount of
effector cells produced from the transformation of stem cells. The parameter p is defined as the
natural death rate of effector cells. It is optimal for these cells when they are in a state of maturity,
as this is when they produce effector cells [26]. The second term represents the mortality rate,
which is proportional to the population of effector cells through pE. The third term represents the
proliferation term p_1, which describes the process by which effector cells are stimulated by stem
cells. In the equation, the terms p_2 ET_ and p_2 EM_ represent the interaction of effector cells
with tumour cells and the chemotherapeutic drug at a rate of p_2. The first term, in the third
equation (1), is the rate of production of tumour cells, and the second term represents the decay of
tumour cells due to interaction with effector cells and the chemotherapeutic drug at rates p_3 and
k_T, respectively. In conclusion, the final equation depicts the rate of change in the concentration of
the chemotherapeutic drug.

2.1. Caputo Kernel, Riemann-Liouville Operator

The Caputo kernel [27] is used to define fractional derivatives of the first-order Caputo derivatives.
The Caputo kernel reflects the contribution of previous values of the function and its derivative in
computation of the fractional derivative. A Caputo derivative is a modification of a Riemann-
Liouville derivative, which allows the use of standard initial conditions.

The Caputo kernel is defined as follows for a function f(x) and derivative order o (0 < ot < 1):
t/r(i—a), 0<sa <1

6(t), a=1

where T'(-) denotes the gamma-function, and 8(-) is Dirac delta distribution.

The Caputo kernel K (t, &) is used in the formula for calculating the Caputo derivative:

(CD?q/) (t) = k(T, Q) * l[./(T) = I; K(t—T1,a)y(T)dT, (2)

K(T,a) ={

where \y(T) is the ordinary derivative of the function {( T), and for T > 0 differentiable on
y: [0, T] — C.

The Caputo kernel reflects the weight of preliminary values of function and its derivative in
process of fractional differentiation. It considers both the prior values of this function and values of
its derivative by integrating them with the corresponding weight. The fractional integral operator
of Riemann-Liouville [27] is used to define fractional integrals, which are a generalization of
ordinary (integer-order) integrals to fractional orders.

The Riemann-Liouville fractional integral operator has the form for T > 0 and an integrable
function V: [0, T] - C:
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where T'(-) denotes the gamma function, and « is the fractional order of integration (0< o < 1).

2.2. Caputo-Fabrizio Derivative, Liouville-Caputo Derivative, Atangana-Baleanu
Derivative

The main formulas for determining fractional derivatives and their fractional integrals are

presented here [28]. The derivative of N (T) with respect to Liouville-Caputo operator of order r
according to the formula:
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whereq — 1<r<gq,q € N.
For N:R* - R, r € (0,1), the definition of the Riemann-Liouville fractional integration is
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Let N € H'(a,b),a > b, 0 <1 < 1, then the CF (Caputo-Fabrizio) fractional derivative has
the following definition:
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where P(r) is a normalization function P(0) = P(7) = 1.
The Caputo-Fabrizio (CF) fractional integral of the order " of the function N (T):
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where M (1) =zTZr'0 <rs

CFITN (1) = N(1)

Let N € H'(a,b),a > b and 0 < r < 1, then the fractional derivative of Atangana-Baleanu in
the sense of Liouville-Caputo (ABC) is given by the formula:
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where AB(r) has the same properties as P(r), that is, AB(r) =71—r +% represents the

function as normalization, and AB(0) = AB(7) = 1. E_(.) is the one-parameter Mittag-Leffler
function [32].

We proceed to the ABC fractional integral of order 1 using the inverse Laplace transform [28]
and the convolution theorem:

ABIT N (T) = A;(rr) N (7) +mﬁ N (6)(t — 6)"~1d6. 9)

3. Main Material Presentation

In order to improve the accuracy of the modelling of the effect of chemotherapy on the state of a
cancerous tumour, we replace the integer order model (1) with a fractional order model. This is
achieved using three of the most common fractional operators: Caputo, Caputo-Fabrizio and
Atangana-Baleanu in the sense of Liouville-Caputo, which allow to analyse memory effects in



arbitrary order systems within the fractional calculus framework. For the numerical implementation
of the fractional model of the effect of chemotherapy (1), the numerical scheme of Tufekeci-
Atangana [29, 30] is used.

3.1. Fractal Mathematical Model with Liouville-Caputo Derivative

We write the mathematical model (1) in a form of the Liouville and Caputo fractional derivative as:
CDIS(T) = p1S(T) — kg M(T)S(T)

ngE(T) =a—puE(T) +M— p2 (T () + M (1)) E(T)
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0 D;T (1) =1 (1= bT (1) T(1V) = (PsE(T) + kp M (1)) T (1)

SDIM (1) == p, M (1) + V(1)
with initial conditions:
So(t) =5(0), Ey(t) =E(0), T y(t) =T(0), My(t) = M(0).

The numerical solution of the fractional model (10) was obtained using the Atangana-Toufik
numerical scheme [29, 30] and two-stage Lagrange polynomial interpolation [28, 31].
For differentiation with the Liouville-Caputo derivative, consider the initial value problem:

CD%g(1) = f (1, g(T)), (11)
g(0) = go.

By applying the fundamental theorem of fractional calculus at the given point T =T 1 j=
0,1,2,..., equation (11) can be transformed into a fractional integral equation [32]. A two-step

Lagrange polynomial interpolation was employed [28, 31], the approximate solution of (11) takes
the form:

J
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3.2. Discretization of the Fractal Model with the Liouville and Caputo Derivative

Using the proposed numerical scheme (12), we obtain the implementation algorithm for model (10).
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3.3. Fractal Mathematical Model with the Caputo-Fabrizio Derivative. The
Atangana-Toufik Method

We rewrite the model given by equation (1) in the form of the Caputo-Fabrizio fractional derivative
based on equation (7). We obtain:

SFCDgS(T) =y;5(1) —=kgM(1)S(1)
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with initial conditions:
So(t) =5(0), Ey(t) =E(0), T y(t) =T(0), My(T) = M(0).

In order to ascertain the numerical solution of the fractional model (19), the Atangana-Toufik
numerical scheme, as outlined in references 29 and 30, is employed.

3.4. Finite Difference Approximations of Fractal Operators

The initial value problem associated with the Caputo-Fabrizio operator (7) can be expressed as
follows:
CFCD?Q(T) =f(1,g(1),0<t=<T,0<a=<1,
y(0) = yo

The aforementioned equation can be transformed into a fractional integral equation at the

(20)

specified point T =T 1 j =0,1,2, ..., by applying the fundamental theorem of fractional calculus:

g(t;) —g(0) =M( Zf 11.9(11))+ I f(tg(t (21)



A general numerical algorithm for implementing the Caputo-Fabrizio fractional derivative model
is defined herein using the two-step Lagrange polynomial interpolation [28, 31].
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3.5. Discretization of the Fractal Model

In order to obtain the numerical solution of (19) in the sense of Caputo-Fabrizio-Caputo, the
numerical scheme (22) is applied. The algorithm proposed by [26] is employed to obtain the
numerical solution of (19) in the sense of Caputo-Fabrizio-Caputo.
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3.6. Fractal Mathematical Model with Atangana and Baleanu Derivative in the
Sense of Liouville-Caputo

The model presented in equation (1) is rewritten in the form of the Atangana-Baleanu fractional
derivative in the sense of Liouville-Caputo (ABC), based on equation (9). The result is as follows:

2PEDIS(T) =y,S(1) — kgM(DS(D)

p/E(DS(1)
(S(V) +7)

2 DT (V) =r (1= bT (1) T(V) = (p5sE (1) +ky M (D) T (1)

2 CDSE(T) =a-pE(t) + = p(T (1) + M (1)) E(T)

, (27)

2 DIM (1) = y,M (1) +V (1)
with initial conditions:
So(t) =S(0), Ep(t) = E(0), T (1) =T(0), My(T) =M(0).
In order to obtain a numerical solution to the fractional model (27), the Atangana-Toufik [29, 30]
numerical scheme is employed.



3.7. Finite Difference Approximations of Fractal Operators

The initial value problem associated with the Atangana-Baleanu operator in the sense of Liouville-
Caputo (9) can be expressed as follows:
ABCDly(t) = Q(r,y(1)),0<t=<T,0<as<1,
y(0) = yo.

The aforementioned equation can be transformed into a fractional integral equation [32] by

(28)

applying the fundamental theorem of fractional calculus [32] at the specified point T = T 1 Jj=

0,1,2,... . By employing the two-step Lagrange polynomial interpolation of the function
Q(@6,y (6)), we arrive at the following equation:
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3.8. Discretization of the Fractal Model

The proposed numerical scheme (29) allows us to derive the algorithm for the numerical
implementation of model (27).
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4. Results and Discussion
4.1. Software Implementation

Using the procedure described above, a software implementation of the discrete model with
Liouville-Caputo fractional derivatives (10-13) has been carried out. The fundamental concept

underlying the algorithm is the iterative calculation of values T (T), E(T), S(T), M(T) at
specified time intervals. The execution of an algorithm involves the following steps:

1. Initialization of parameter values: y1, y2, a, 11, p1, p2, p3, 1, b, k, k,, V(7).

2. Initialization of the Treatment Period and Partitioning the Interval: Divide the treatment

period into finite segments with a certain step size.

3. Determination of Initial Conditions: The initial conditions of the system of non-linear

equations must be established.

4. Iterative Computation: Iteratively calculate the values of T(t), E(t), S(t), M(t) at each step of

the interval.

In order to implement the algorithm, the corresponding coefficients of the model (27) are utilised,
as outlined in the analysis of the article [26]: SO = 1, E0 = 1, TO = 1, y1 = -0.02825, & - 0.17, p = 0.03,
b=10-9, k, = 1,pl =0.1245,r = 0.18,p2 = 1, k_= 0.9, p3 = 0.9, 2 = 6.4, V(T) = 1.

Figure 1 presents the UML diagram of the software application. Let's describe each of the classes.

Base Algorithm: This is the base class that represents the general algorithm for computing the
mathematical model. When this class is created, the parameter values and the initial conditions of
the system are initialized. The equations of the mathematical model are also presented in this class
as methods.

GUI: This class is responsible for interaction with the user interface. It receives as input the
initial values T(0), E(0), S(0) , and M(0), as well as a number of parameters such as y1, y2, ¢, H , pl,
p2, p3,1,b, k o k . V(t). Upon clicking the "Run Simulation" button, it initiates the computation of
the selected algorithms of the corresponding classes. This class is also responsible for displaying the
results in a graphical representation.

Riemann Liouville Algorithm: This class, like the previous one, solves the fractional-order
Liouville-Caputo problem based on the Atangana-Toufik method.

Runge Kutta Algorithm: This class is responsible for computing the integer-order results of the
mathematical model using the Runge-Kutta method. This algorithm is applied in the software
implementation of the mathematical model to compare the integer-order and fractional-order
results.
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Figure 1: Schematic diagram of the software application

4.2. Numerical Results

Numerical experiments on the effect of chemotherapy on the state of a cancer tumour were carried
out, taking into account long-term memory in the context of comparing the use of fractional Caputo,
Riemann-Liouville, Caputo-Fabrizio, Atangana-Baleana, using the above algorithms and developed
software for their implementation. The functions of tumour cells T(T), stem cells S(T), effector cells
of the immune system E(T), and the concentration of the chemotherapeutic agent M(T) were
studied as functions of time and the fractional differentiation parameter . The graphical results for
the Atangana and Baleanu model in the sense of ABC (Liouville-Caputo) (32 — 35) are presented in
Figures 2-5 for various values of &« = 7,098, 0.96, 0.92, while the results for the Caputo-
Fabrizio model (23 — 26) are shown in figure 2 for different values of @ = 7, 0.98, 0.96, 0.92.
Figure 2 presents an enlarged time scale for a more detailed understanding of the differences in the
behaviour of functions under different fractional orders.
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Figure 2: Enlarged graphs for comparing various values of the fractional parameter
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In order to obtain an approximate solution for the integer-order model, the Runge-Kutta
method was employed.

Figures 7-10 provide a comparative analysis based on the fractional parameter @ = 0.94 for the
studied variables: the concentration of tumour cells T(T) (yellow line), effector cells of the immune
system E(T) (red line), stem cells S(T) (blue line), and the chemotherapeutic agent M(T) (purple
line). These results are presented for models using the Caputo, Riemann-Liouville, Atangana-
Baleanu, and Caputo-Fabrizio fractional derivatives.

It is noteworthy that the graphical dependencies of the Liouville-Caputo fractional model and the
Atangana-Baleanu model closely approximate one another in the sense of Liouville-Caputo.

The analysis of the obtained data indicates that the concentration of cancer cells declines over time,
approaching zero at a gradual rate. The cell death rate under the specified initial conditions is
p3=0.9. Rate of growth of tumor cells was found to be lower than the rate of their interaction with
effector cells, with the help of stem cells and chemotherapy drugs. This constitutes a principal
outcome of the study, indicating that the immune system undergoes modifications. Therefore, the
combination of stem cell therapy with chemotherapy offers promising prospects for optimizing

cancer treatment and improving the quality of life for patients.
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5. Conclusion

In this work, mathematical models of the effects of chemotherapy on the state of a cancerous
tumour were synthesized using fractal analysis methods, taking into account the long-term memory
effect based on Liouville-Caputo derivatives, Atangana-Baleanu derivatives, Caputo-Fabrizio
derivatives. Difference approximations of the aforementioned fractal operators in mathematical
models were presented and constructed. The numerical algorithms for implementing fractional
mathematical models of chemotherapy effects were developed based on the Atangana-Toufik
scheme and an adaptation of two-step Lagrange polynomial interpolation. One of the key stages of
the work was the software implementation of the model, the development of the interface, and the
visualization of the results. The numerical results are presented in the form of graphical illustrations
and were obtained using software.

This study investigated the influence of the fractional differentiation parameter on the time
dynamics of tumour cells, immune system effector cells, stem cells, and the chemotherapeutic agent
concentration in models based on Liouville-Caputo, Atangana-Baleanu derivatives and Caputo-
Fabrizio.

A comparative analysis was conducted on the dependency of the fractional parameter on the
investigated quantities, including tumour cells, immune system effector cells, stem cells, and the
concentration of chemotherapeutic agents, for models utilizing Riemann-Liouville, Caputo,
Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Additionally, an analysis was
conducted to ascertain the degree of correlation between the results of the fractal models and those
of the classical integer-order model.

The results obtained from fractional modelling demonstrate a significant influence of historical
factors on the temporal evolution of tumour cell, immune system effector cell and stem cell
concentrations. To predict the effect of chemotherapy on the state of a cancerous tumour, the
presence of a fractional time derivative in the models as a parameter of the time derivative is
important.

6. Declaration on Generative Al

During the preparation of this paper, the authors utilized Grammarly to verify spelling and
grammar accuracy. After using this tool, the authors reviewed and edited the content as needed and
take full responsibility for the publication’s content.
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