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Abstract 
A approach for intelligently classifying the state of chicken eggs based on deep associative neural networks 
is proposed. This method aims to automate the recognition and interpretation of chicken egg ovoscopy 
visualization results during incubation. The model of the associative autoencoder offers several advantages 
over traditional methods. For instance, the input image is pre-sized, and the pairs count "convolutional - 
pooling/upsampling layer" is defined practically, depending on the image size, which improves the accuracy 
of classification. Additionally, the planes count is determined as the dividing quotient the cells count in the 
layer of input by two to the power of the doubled pairs count "convolutional - pooling/upsampling layer" 
to retain the total cells count in the layer after pooling/upsampling. This process halves the layer planes 
size in width and height, automating the structure definition of the model layers. The deep Boltzmann 
machine model offers several advantages over the traditional deep Boltzmann machine. These include pre-
resizing the input image, determining the number of limited Boltzmann machines empirically to increase 
classification accuracy, and setting the neurons count in the hidden layers as double the neurons count in 
the visible layer to satisfy the Kolmogorov theorem on the representation of multidimensional continuous 
functions by a superposition of one-dimensional continuous functions. This model automates the definition 
of the model layer's architecture. The intelligent classification method of chicken eggs developmental state, 
based on deep associative neural networks, can be applied in intelligent systems for classifying the results 
of chicken eggs candling visualization during incubation in industrial poultry production. 
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1. Introduction 

When incubating eggs, it is crucial to consider several factors, such as maintaining the appropriate 
temperature and humidity, monitoring the composition of the ventilated air, and using high-quality, 
fresh, and fertilized eggs to ensure the production of healthy offspring. Before placing the eggs in 
the incubator, it is important to conduct ovoscopy to check for egg integrity and the possibility of 
development. Ovoscopy involves transilluminating the eggs to select high-quality ones without 
structural damage, which is essential for obtaining a healthy brood. 

The ovoscopy process is the first stage before using the incubator. This process is usually repeated 
2-3 times during the incubation period to check for defects in the shell and inside the eggs, the 
absence of an air chamber, and the presence of any embryo abnormalities. This helps in identifying 
and rejecting eggs with pathologies or other developmental disorders [1]. 

The cause of non-developing offspring may be due to abnormal egg shape, thinned or damaged 
shell (pits, protrusions, roughness, dark spots), calcareous growths on the shell, the presence of 
foreign objects or clots, the presence of two yolks at once, the yolk location not in the center or its 
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displacement, the yolk remains in place when the egg is turned, displacement of the air chamber, or 
the absence of the embryo [2]. These signs indicate the need to exclude such eggs from the incubation 
process to avoid wasting resources on non-viable specimens (sterile or dead). Timely removal of 
these eggs from the incubator will reduce the other eggs risk being contaminated with harmful 
microorganisms, avoid excessive water evaporation, and eliminate the source of pollution. 

To reduce the number of unsuitable eggs for incubation, the following conditions must be 
observed from the very beginning: collect eggs 3-4 times a day; do not incubate eggs laid after 18 
hours; ensure hygiene monitoring and check for the absence of mechanical damage to the protective 
egg film when collecting with appropriate machines, automated lines, or by workers: to replace the 
litter as needed. Chicken eggs should be stored for no more than 5 days, while duck and turkey eggs 
should not be stored for more than 8 days, and goose eggs for no more than 10 days. Maintain the 
air temperature within the range of 10-15 degrees Celsius and the relative humidity between 70-80% 
during storage. Ensure that the temperature does not exceed +27 degrees Celsius, as this can lead to 
the development of the embryo, resulting in unsuccessful incubation. Similarly, the temperature 
should not fall below +8 degrees Celsius, as this could cause irreversible chemical changes in the 
eggs [3]. 

Throughout the entire development cycle, the embryo changes color and condition. As a result, 
ovoscopy is used to monitor the proper development of the fetus. Ovoscoping is conducted in a 
warm, darkened room while observing fire safety regulations. It is crucial that the eggs are exposed 
to heat rays for no more than 15-20 seconds during ovoscopy to prevent overheating, which can 
render them unsuitable for incubation. 

A fresh egg, when examined with an ovoscope, should display the following characteristics: a 
consistent shell; a small air pocket at the rounded end of the egg; the yolk positioned centrally or 
slightly closer to the rounded end, with indistinct boundaries; when the egg is rotated, the yolk 
should rotate with some resistance; and there should be no foreign objects inside the egg. 

The following defects should be observed during conducting ovoscopy on non-viable egg 
specimens [1-3]: 

⦁ light stripes on the shell indicate possible damage in the oviduct, with the crack sealed with 
additives; 

⦁ a marbled shell may indicate an uneven distribution of calcium, resulting in spots on the 
shell; 

⦁ the air chamber may be located on the side or at the sharp end of the egg, indicating 
delamination of the subshell membranes; 

⦁ a large air chamber suggests an old egg; 
⦁ if the yolk is not visible and the egg color is orange-red, it may indicate that the yolk has 

broken and mixed with the protein; 
⦁ movement of the yolk along and across the egg may indicate hailstones are torn off; 
⦁ if the yolk is stuck in one place, it could be due to improper storage, causing it to stick to the 

shell; 
⦁ two yolks may indicate a genetic failure; 
⦁ blood clots inside the egg may suggest hemorrhage in the oviduct; 
⦁ the presence of foreign objects inside the egg, such as grains of sand, feathers, or worm eggs, 

may be due to their entry into the oviduct; 
⦁ dark spots under the shell or a completely dark egg may indicate the development of a mold 

colony, known as “punches”. 

Not all eggs selected based on external signs during candling will necessarily hatch, as only 
fertilized eggs will do so during the early stages of ovoscopy. Fertilized eggs can be identified after 
5-7 days of incubation during the next stage of ovoscopy. There will be no signs of embryo 
development during candling. 



Monitoring egg development allows for the assessment of the progress of the incubation process 
and the identification of eggs with frozen fetuses due to hypothermia, overheating, or sticking to the 
film for the timely removal of such specimens from the incubator. This will prevent the spread of 
infection and reduce energy losses for incubating non-viable specimens, as well as adjust the 
microclimate parameters in the incubator in order to increase the percentage of offspring 
hatchability [4]. 

Today, to increase the efficiency of monitoring the state of development of the embryo of poultry 
eggs during otoscopy, various methods of visualizing the incubation process are used: tomography, 
magnetic resonance and infrared visualization, microscopy, ultrasound, thermal difference, digital 
signal processing, etc. [3, 4]. 

Intelligent identification methods are used to conduct a qualitative assessment of the results of 
otoscopy of poultry eggs. This allows for high classification accuracy, improved quality of 
monitoring of the incubation process, and reduced costs in industrial poultry production. 

Currently, deep neural networks [5,6] using parallel and distributed computing [7] have become 
widespread for intelligent image classification, surpassing pseudo-two-dimensional hidden Markov 
models in popularity. 

The first class of deep non-associative neural networks are convolutional networks such as: 

1. LeNet-5 [8], AlexNet [9], and VGG (Visual Geometry Group) [10] neural networks are based 
on convolutional pairs and pooling layers, as well as dense layers. 

2. The ResNet family of neural networks [10] are built on the Residual block. 
3. The DenseNet (Dense Convolutional Network) [11] neural network is based on a dense block, 

which comprises a Residual blocks. 
4. The GoogLeNet (Inception V1) neural network [12] is based on the Inception block. 
5. Inception V3 [13] is based on Inception and Reduction blocks. 
6. Inception-ResNet-v2 [14] is based on Inception and Reduction blocks. 
7. Xception [15] is based on the Depthwise separable convolution block. 
8. The MobileNet neural network [16] is based on the Depthwise separable convolution block. 
9. MobileNet2 neural network [17] is based on the Inverse Residual block. 
10. The SR-CNN neural network [18] is based on the Squeeze-and-Excitation – Residual block. 

The second class of deep non-associative neural networks are convolutional networks such as: 

1. ViT (Visual Transformer) [19] uses normalization layers, Multi-Head Attention, and a two-
layer MLP. 

2. DeiT [20] utilizes distillation token, normalization layers, Multi-Head Attention, and a two-
layer MLP. 

3. DeepViT (Deep Visual Transformer) [21] is based on normalization layers, Re-Attention 
(replaces Multi-Head Attention), and a two-layer perceptron.  

4. CaiT [22] relies on normalization layers, Multi-Head Attention or Class-Attention, and a two-
layer MLP. 

5. CrossViT [23] is based on normalization layers, Cross-Attention (replaces Multi-Head 
Attention), and a two-layer perceptron. 

6. Compact Convolutional Transformer (CCT) [24] is based on convolutional and 
downsampling layers, normalization layers, Multi-Head Attention and a two-layer 
perceptron, and a pooling sequence layer. 

7. Pooling-based Vision Transformer (PiT) [25] is based on depthwise convolutional and 
downsampling layers, normalization layers, Multi-Head Attention and a two-layer 
perceptron. 

8. LeViT [26] is based on distillation token, convolutional and downsampling layers, 
normalization layers, LeViT Attention (replaces Multi-Head Attention) and a two-layer 
perceptron. 



9. Convolutional vision Transformer (CvT) [27] is based on convolutional and downsampling 
layers, normalization layers, Multi-Head Attention and a two-layer perceptron. 

10. MobileViT [28] is based on Inverse Residual blocks, convolutional layers, normalization 
layers, Multi-Head Attention and a two-layer perceptron. 

Deep non-associative networks have the following drawbacks [29]: 

⦁ Difficulty in determining the parameters of the architecture of a deep associative neural 
network (patch size, size and count of layers, etc.); 

⦁ Insufficiently high training speed; 
⦁ Insufficiently high recognition accuracy. 

Consequently, the issue of creating an effective deep associative neural network that addresses 
these concerns is relevant. 

The first class of such networks are autoencoders such as: 

⦁ Convolutional autoencoder [30, 31] uses convolutional layers, upsampling/downsampling 
layers; 

⦁ Variational autoencoder [32, 33] considers the influence of Gaussian noise. 

The second class of such networks is the deep Boltzmann machine [34]. In order to achieve our 
goal, we need to accomplish the following tasks: 

1. To create a model to classify the state of chicken eggs using a convolutional autoencoder. 
2. To develop a model to classify the state of chicken eggs using a deep Boltzmann machine. 
3. To choose the quality criteria for the egg state classification method. 
4. To determine the structure of the egg state classification method. 
5. To perform a numerical research of the offered egg state classification approach. 

The aim of the work is to improve the quality of classification of the state of chicken eggs by 
using deep associative neural networks. 

2. Creating an ovoscopy model based on a convolutional autoencoder 

Figure 1 shows a convolutional autoencoder for sample recovery, a dynamic non-recurrent 
network with a hierarchical architecture. 

The input image in this type of convolutional autoencoder is pre-resized, and the “convolutional 
- pooling layer” pairs count is defined practically, based on the image size. Additionally, the planes 
count is determined automatically as the quotient of dividing the cells count in the layer of input by 
a power of two. This power is equal to twice the “convolutional - pooling/upsampling layer” pair 
count. This method allows for the preservation of the total cells count in the layer after 
pooling/upsampling, which effectively reduces/increases the layer planes size by two times in width 
and height. 

In contrast to MLP, the input layer and output layer have the same neurons count and receive the 
same data. The hidden layers count is always odd, and the number of neurons in the hidden layers 
is fewer than the neurons count in the input/output layer. This decreases as we approach the central 
(code) hidden layer. Every autoencoder consists of an encoder and a decoder. When there's only one 
hidden layer and a linear activation function, the autoencoder becomes similar to PCANN. 

The autoencoder implements an auto-associative memory (a pair of samples (𝐦𝑥 ,𝐦𝑦), 
𝐦𝑦 = 𝐦𝑥, representing its element (cell)) and restores (extracts) the stored sample 𝐦𝑦  by the key 
sample 𝐦𝑥   corresponding to the input vector 𝐱. The most important property of a convolutional 



autoencoder is that the same network with the same connection weights can store and reproduce 
several stored samples. 

 

Figure 1: Convolutional autoencoder neural network 
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The convolutional autoencoder utilizes error correction learning (supervised learning), with the 
most common method being gradient descent, which forms the basis of the backpropagation (BP) 
technique for feedforward ANNs. 

The model for the convolutional autoencoder is presented below. 
Let 𝜈 is the position, 𝜈 = (𝜈𝑥 , 𝜈𝑦), 𝑆𝑒 is the pooling (or upsampling) layer, 𝐶𝑙 is the convolutional 

layer,  𝐾𝑠𝑒and 𝐾𝑐𝑙  are the cell planes count, 𝐴𝑙 is the connection area of the layer plane 𝑆𝑒 and 𝐶𝑙 , �̑� 
are the convolutional layers count. 

1. 𝑙 = 1. 
2. The output signal for the convolutional layer is being calculated. 

𝑢𝑐𝑙(𝑚, 𝑖) = 𝑅𝑒𝐿𝑈( ℎ𝑐𝑙(𝑚, 𝑖)), 

𝑚 ∈ {1, . . . , 𝑁𝑐𝑙}
2, 𝑖 ∈ 1, 𝐾𝑐𝑙 , 

𝐾𝑐𝑙 = {
22𝑙 , 𝑙 ≤ �̑�/2,

22(�̑�−𝑙+1), 𝑙 > �̑�/2,
 

(1) 

  

ℎ𝑐𝑙(𝑚, 𝑖) =

{
 
 

 
 𝑏𝑐1(𝑖) + ∑ 𝑤𝑐1(𝜈, 1, 𝑖)𝑥(𝑚 + 𝜈),

𝑣∈𝐴1

𝑙 = 1,

𝑏𝑐𝑙(𝑖) + ∑ ∑ 𝑤𝑐𝑙(𝜈, 𝑘, 𝑖)𝑢𝑠𝑙−1(𝑚 + 𝜈, 𝑘),

𝑣∈𝐴𝑙−1

𝐾𝑠𝑙−1

𝑘=1

𝑙 > 1,

  (2) 

where 𝑤𝑐1(𝜈, 1, 𝑖), 𝑤𝑐𝑙(𝜈, 𝑘, 𝑖) is the connection weight, 𝑢𝑐𝑙(𝑚, 𝑖) is the cell output. 

If 𝑙 ≤ �̑�/2, then to calculate the output signal for the downsampling layer (downsample by a 
factor of 2) 

𝑢𝑠𝑒(𝑚, 𝑘) = max
𝜐∈{0,1}2

{𝑢𝑐𝑙(2𝑚 + 𝜐, 𝑘)}, 

𝑚 ∈ {1, . . . , 𝑁𝑠𝑙}
2, 𝑘 ∈ 1, 𝐾𝑠𝑙 , 𝐾𝑠𝑙 = 2

2𝑙 , 
(3) 

where 𝑤𝑠𝑙(𝑘, 𝑘)is the connection weight, 𝑢𝑠𝑙(𝑚, 𝑘) is the cell output. 

If 𝑙 ≥ �̑�/2, then to calculate the output signal. 

𝑢𝑠𝑙(2𝑚 + 𝜐, 𝑘) = {
𝑢𝑠𝑙(𝑚, 𝑘), 𝑙 =

�̑�

2
,

𝑢𝑐𝑙(𝑚, 𝑘) 𝑙 >
�̑�

2
,
  (4) 

  
𝜐 ∈ {0,1}2, 𝑚 ∈ {1, . . . , 𝑁𝑠𝑙}

2, 

𝑘 ∈ 1, 𝐾𝑠𝑙 , 𝐾𝑠𝑙 = 2
2(�̑�−𝑙) 

(5) 

where 𝑢𝑠𝑙(𝑚, 𝑘) is the cell output. 

If 𝑙 ≤ �̑�, then increment 𝑙, go to 2. 
The output signal for the output convolutional layer is being calculated. 

𝑢𝑜(𝑚, 1) = sigm( ℎ𝑜(𝑚, 1)), 

𝑚 ∈ {1, . . . , 𝑁𝑜}
2, 

ℎ𝑜(𝑚, 1) = 𝑏𝑜(1) + ∑ ∑ 𝑤𝑜(𝜈, 𝑘, 1)𝑢𝑠𝐿(𝑚 + 𝜈, 𝑘)𝑣∈�̑�𝐿

𝐾𝑠𝐿
𝑘=1

, 

(6) 



where 𝑤𝑜(𝜈, 𝑘, 1) is the connection weight, 𝑢𝑜(𝑚, 1) is the cell output. 

Note: an example of upsampling: the matrix [1 2
3 4

] is transformed to the matrix [

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

]. 

Note: An example of pooling: the matrix [

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

] is transformed to the matrix [1 2
3 4

]. 

3. Creating an ovoscopy model based on the deep Boltzmann machine 

Figure 2 shows a generative Bernoulli-Bernoulli deep Boltzmann machine, also known as a deep 
Boltzmann machine (DBM). This is a type of recurrent neural network that comprises of one visible 
and multiple hidden layers. The input image is pre-resized, unlike traditional DBMs. 

 

Figure 2: The deep Boltzmann machine (DBM) 
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𝑥𝑗 = {
1, with 𝑃𝑗 ,

0, with 1 − 𝑃𝑗 ,
 (7) 

  

𝑃𝑗 =
1

1 + exp(−𝛥𝐸𝑗)
 (8) 

where 𝑃𝑗 is the probability, 𝛥𝐸𝑗 is the neural network energy increment. 
The Deep Boltzmann Machine model is presented as follows. 
During the bottom-up pass (recognition phase), the following steps are executed: 1-6. 

Bottom-up pass (recognition phase) (steps 1-6) 

1. Initialization of binary vectors of hidden neurons states 𝐱1
(𝑙)
= (𝑥1

(𝑙)
, . . . , 𝑥

𝑁(𝑙)
(𝑙)
), 𝑙 ∈ 1, 𝐿. 

2. 𝑙 = 1, 𝐱(0) = 𝐱𝑖𝑛. 

Positive phase (step 3) 

3. The state of hidden neurons of the 𝑙 layer 𝑗 ∈ 1, 𝑁(𝑙) is being calculated. 

𝑃𝑗 =

{
 
 

 
 

1

1 + exp (−𝑏𝑗
(𝑙)
(𝑛) − ∑ 𝑤𝑖𝑗

(𝑙)
𝑥𝑖
(𝑙−1)𝑁(𝑙−1)

𝑖=1 − ∑ 𝑤𝑖𝑗
(𝑙+1)

𝑥𝑖
(𝑙+1)𝑁(𝑙)

𝑖=1 )
, 𝑙 < 𝐿,

1

1 + exp (−𝑏𝑗
(𝑙)
(𝑛) − ∑ 𝑤𝑖𝑗

(𝑙)
𝑥𝑖
(𝑙−1)𝑁(𝑙−1)

𝑖=1 )
, 𝑙 = 𝐿.

 (9) 

  

𝑥𝑗
(𝑙)
= {

1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (10) 

Negative phase (steps 4-6) 

4. The state of visible or hidden neurons of the 𝑙 − 1 layer 𝑗 ∈ 1, 𝑁(𝑙−1)is being calculated. 

𝑃𝑗 =

{
 
 

 
 

1

1 + exp (−𝑏𝑗
(𝑙−1)

(𝑛) − ∑ 𝑤𝑖𝑗
(𝑙)
(𝑛)𝑥𝑖

(𝑙)𝑁(𝑙)
𝑖=1 )

, 𝑙 = 1,

1

1 + exp (−𝑏𝑗
(𝑙−1)

(𝑛) − ∑ 𝑤𝑖𝑗
(𝑙)
(𝑛)𝑥𝑖

(𝑙)𝑁(𝑙)
𝑖=1 − ∑ 𝑤𝑖𝑗

(𝑙−2)
(𝑛)𝑥𝑖

(𝑙−2)𝑁(𝑙−2)
𝑖=1 )

, 1 < 𝑙 ≤ 𝐿.

 (11) 

  

𝑥𝑗
(𝑙−1)

= {
1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (12) 

5. If 𝑙 < 𝐿, then 𝑙 = 𝑙 + 1, go to step 3. 

6. The state of hidden neurons of the 𝐿 layer 𝑗 ∈ 1, 𝑁(𝐿) is being calculated. 

𝑃𝑗 =
1

1 + exp (−𝑏𝑗
(𝐿)
(𝑛) − ∑ 𝑤𝑖𝑗

(𝐿−1)
(𝑛)𝑥𝑖

(𝐿−1)𝑁(𝐿−1)
𝑖=1 )

, (13) 

  

𝑥𝑗
(𝐿)
= {

1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (14) 



Top-down traversal (spawning phase) (steps 7-11) 
7. 𝑙 = 𝐿 − 1. 

Positive phase (step 8) 

8. The state of hidden or visible neurons of the 𝑙 layer 𝑗 ∈ 1, 𝑁(𝑙) is being calculated. 

𝑃𝑗 =

{
 
 

 
 

1

1 + exp (−𝑏𝑗
(𝑙)
(𝑛) − ∑ 𝑤𝑖𝑗

(𝑙)
𝑥𝑖
(𝑙−1)𝑁(𝑙−1)

𝑖=1 − ∑ 𝑤𝑖𝑗
(𝑙+1)

𝑥𝑖
(𝑙+1)𝑁(𝑙+1)

𝑖=1 )
, 𝑙 > 0,

1

1 + exp (−𝑏𝑗
(𝑙)
(𝑛) − ∑ 𝑤𝑖𝑗

(𝑙+1)
𝑥𝑖
(𝑙+1)𝑁(𝑙+1)

𝑖=1 )
, 𝑙 = 0.

 (15) 

  

𝑥𝑗
(𝑙)
= {

1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (16) 

Negative phase (steps 9-11) 

9. The state of hidden neurons of the 𝑙 + 1 layer 𝑗 ∈ 1, 𝑁(𝑙+1)is being calculated. 

𝑃𝑗 =

{
 
 

 
 

1

1 + exp (−𝑏𝑗
(𝑙+1)

(𝑛) − ∑ 𝑤𝑖𝑗
(𝑙+1)

𝑥𝑖
(𝑙)𝑁(𝑙)

𝑖=1 )
, 𝑙 = 𝐿 − 1,

1

1 + exp (−𝑏𝑗
(𝑙+1)

(𝑛) − ∑ 𝑤𝑖𝑗
(𝑙+1)

𝑥𝑖
(𝑙)𝑁(𝑙)

𝑖=1 − ∑ 𝑤𝑖𝑗
(𝑙+2)

𝑥𝑖
(𝑙+2)𝑁(𝑙+2)

𝑖=1 )
, 0 < 𝑙 ≤ 𝐿 − 1.

 (17) 

  

𝑥𝑗
(𝑙+1)

= {
1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (18) 

10. If 𝑙 > 0, then go to step 8. 

11. The state of visible neurons of zero layer 𝑗 ∈ 1, 𝑁(0) is being calculated. 

𝑃𝑗 =
1

1 + exp (−𝑏𝑗
(0)
(𝑛) − ∑ 𝑤𝑖𝑗

(1)
𝑥𝑖
(1)𝑁(1)

𝑖=1 )
, (19) 

  

𝑥𝑗
(0)
= {

1, 𝑃𝑗 ≥ 𝑈(0,1),

0, 𝑃𝑗 < 𝑈(0,1).
 (20) 

The result is a pattern 𝐦𝑦 = (𝑥1
(0)
, . . . , 𝑥

𝑁(0)
(0)

). 

4. Selection of quality criteria for classifying the state of chicken eggs. 

The next criteria were elected to evaluate the training of the suggested mathematical models of deep 
associative neural networks: 

Accuracy criterion: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝐼
∑ [𝐝𝑖 = �̑�𝒊]
𝐼
𝑖=1 → max

𝑊
, 

�̑�𝑖𝑗 = {
1, 𝑗 = argmax

𝑧
𝑦𝑖𝑧 ,

0, 𝑗 ≠ argmax
𝑧
𝑦𝑖𝑧 .

 

(21) 



Categorical cross-entropy criterion: 

𝐶𝐶𝐸 = −
1

𝐼
∑∑𝑑𝑖𝑗 𝑙𝑛 𝑦𝑖𝑗

𝐾

𝑗=1

𝐼

𝑖=1

→ 𝑚𝑖𝑛
𝑊
, (22) 

where 𝑦𝑖 – is 𝑖 -th model output vector, 𝑦𝑖𝑗 ∈ [0,1], 𝑑𝑖 – is 𝑖 -th test vector, 𝑑𝑖𝑗 ∈ {0,1}, 𝐼 – is the 
learning set power, 𝐾 – is the classes count, W – is weights vector. 

5. Determination of the structure of the method for classifying the 
condition of chicken eggs 

Figure 3 shows the structural diagram of the method for classifying the state of chicken eggs for the 
proposed deep associative neural networks. The convolutional autoencoder is proposed to be trained 
based on stochastic metaheuristics to improve the quality of classification [35]. 

 

Figure 3: Block diagram of the method for classifying the state of chicken eggs 

6. Numerical research 

Numerical research was carried out using the Chicken benchmark [37], which consisted of RGB 
images sized 1080x800. Out of the total 380 photos, 80% were randomly chosen for the learning set, 
while the remaining 20% were used for the test and validation sets. Since the proposed deep 
associative neural networks do not employ recurrent connections, their parameters were determined 
using a GPU. The “Keras” module was utilized to realise the suggested deep associative neural 
networks, and “Google Colab” was selected as the environment of software. 

Table 1 shows the structure of the convolutional autoencoder model, with a resizing layer added 
to the beginning of the neural network. 

Development of a Training, Validation and Test Dataset

Development of a Deep Association Neural Network Model

Training a Deep Association Neural Network Model

Recognition by Deep Associative Neural Network Model

Accuracy>ε˄CCE<δ

W

+

–



Table 1 
Convolutional Autoencoder Model Structure 

Layer Type  Filters Filter Size / Stride Output 

Resize - - 256x256 

Convolutional 4 3x3 / 1 256x256 

Downsampling 4 2x2 / 2 128x128 

Convolutional 16 3x3 / 1 128x128 

Downsampling 16 2x2 / 2 64x64 

Upsampling 16 2x2 / 2 128x128 

Convolutional 16 2x2 / 1 128x128 

Upsampling 4 2x2 / 2 256x256 

Convolutional (output) 4 2x2 / 1 256x256 

Table 2 shows the structure of the deep Boltzmann machine model, with a resizing layer added 
to the beginning of the neural network. 

Table 2 
Deep Boltzmann Machine Model Structure 

Layer Type Output 

Resize 256x256 

Hidden 512x512 

Hidden 512x512 

Hidden 512x512 

Figure 4 shows how the loss (measured by categorical entropy) changes with the iterations count 
for the convolutional autoencoder. 

 
Figure 4: Dependence of categorical entropy on the iterations count for a convolutional autoencoder 



Figure 5 shows the relationship between the categorical entropy and the “convolutional - 
pooling/upsampling layer” pairs count for the convolutional autoencoder. 

 

Figure 5: Dependence of categorical entropy on the convolutional – pooling/upsampling layer pairs 
count for the convolutional autoencoder 

Figure 6 shows the impact of the iterations count on the loss (measured by categorical entropy) 
for the deep Boltzmann machine model. 

 

Figure 6: Dependence of categorical entropy on the iterations count for a deep Boltzmann machine 
model 

Figure 7 shows the effect of the RBM count on the loss (measured by categorical entropy) for the 
deep Boltzmann machine model. 



 

Figure 7: Dependence of categorical entropy on the RBM count for a deep Boltzmann machine model 

According to the numerical research results, the following recommendations can be made: 

⦁ The minimum number of iterations for a convolutional autoencoder is 11 (Fig. 4). 
⦁ The optimal “convolutional – pooling/upsampling layer” pairs count for a convolutional 

autoencoder are 2 (Fig. 5). 
⦁ The minimum iterations count for a deep Boltzmann machine is 17 (Fig. 6, Fig. 7). 
⦁ The best RBM count for a deep Boltzmann machine is 3 (Fig. 7). 

The proposed method improves the speed and accuracy of classifying the state of chicken eggs, 
thereby enhancing the quality of egg inspection during incubation (ovoscopy). 

7. Conclusions 

1. Different image classification methods were explored to enhance the accuracy of identifying 
the condition of chicken eggs; deep associative neural networks are the most effective 
method currently available. 

2. The model of associative autoencoder offers several advantages compared to the traditional 
version. It pre-resizes the input image, determines the "convolutional - pooling/upsampling 
layer" pairs count empirically based on the image size to improve classification accuracy, and 
calculates the planes count by dividing the cells count in the layer of input by two to the 
power of the double the number of pairs, ensuring the total cells count in the layer remains 
constant after pooling/upsampling. This reduces the layer planes size by half in width and 
height, automating the process of determining the model's layer architecture. 

3. The modified deep Boltzmann machine model offers several advantages over the traditional 
model. First, the input image is pre-resized, which is beneficial for processing. Second, the 
number of limited Boltzmann machines is determined empirically, leading to improved 
classification accuracy. Third, the neurons count in the hidden layers is set to double the 
neurons count in the visible layer, in accordance with the Kolmogorov theorem. This 
automated approach simplifies the determination of the model's layer structure. 

4. The developed method uses deep associative neural networks for intelligent classification of 
the state of chicken eggs. This method can be applied in intelligent systems to classify the 
state of eggs. 



The proposed method improves the speed and accuracy of classifying the state of chicken eggs, 
thereby enhancing the quality of egg inspection during incubation (ovoscopy). 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 
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