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Abstract 
The method of patients’ data protection on the instance of chemotherapy dosing data calculation process for 
Ewing's sarcoma treatment which improves the protection of personal data of cancer patients is proposed in 
this article. While performing this work, the types of homomorphic encryption, their features and examples 
of applications for this subject area were analyzed. After analyzing the known solutions, it was decided to 
develop  method  which  combines  homomorphic  encryption  with  a  distributed  data  storage  such  as 
blockchain. The instance of proposed method’s implementation is presented. At the end of the work, we 
draw conclusions and set tasks for the future research in this area.  
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1. Introduction

The need for personal data protection of patients is relevant everywhere. In Ukraine, the Law on 
Personal  Data  Protection  [1]  establishes  key  principles  for  safeguarding  personal  information, 
including  healthcare-related  data.  This  law  requires  that  healthcare  organizations  ensure  the 
integrity, availability, and confidentiality of patient data.

Compliance with laws and regulations, such as the General Data Protection Regulation (GDPR) [2] 
in the European Union and the Health Insurance Portability and Accountability Act (HIPAA) [3] in 
the United States, is essential. These regulations establish high standards for the data protection, 
requiring healthcare organizations to implement measures to safeguard patient confidentiality.

Nowadays, the number of cancer patients is increasing, and each patient requires an individual 
approach to treatment. Nowadays, patients often move, which can lead to the risk of losing critical 
health data. For instance, the war in Ukraine has resulted in a significant number of internal refugees. 
These individuals may face challenges in maintaining consistent medical records, which can affect 
their treatment.

To solve these problems, it is important to implement data protection, including encryption of 
patients’  personal  data.  Encrypting patient  data ensures that  even if  records are transferred or 
accessed from different locations, the information remains secure and protected from unauthorized 
access. However the usage of encryption making it more difficult to process data, because it is needed 
to be decrypted before making an alterations and re-encrypted afterwards for the storing at the media. 
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Known approaches for data storing uses databases, clouds and blockchain. However each of these 
approaches has drawbacks in comparison to others:  databases lacking availability  and integrity 
protection of the stored data; clouds needs secure connection and complete trust to the cloud provider, 
thus creating problems for information security compliance; blockchains aren’t designed for storing 
big data arrays and are open for all the peers for reading stored data, thus creating additional tasks for 
data privacy protection. The latter creates tasks of data protection improvement for the mediums.

The  goal  of  this  study  is  to  improve  the  protection  of  patients'  personal  data  by  using 
homomorphic encryption. 

To achieve the goal of this study, one should solve the following tasks:

1. Known approaches analysis.
2. Task formalization.
3. Data protection method development.
4. Software development.
5. Implementation results analysis.
6. Conclusion drawing.

The main contribution of the research is method of homomorphic encryption utilization for the 
blockchain  as  a  storage  medium for  patients’  data,  which  allow to  avoid  additional  read/write 
operations in case of data updating.

The structure of the paper is the following: section 2 contains preliminaries in order to cover the 
background of the research, section 3 is devoted to the state of the art analysis followed be task 
formalization presented in the section 4, the main results are presented at section 5, where proposed 
method is presented, and section 6, where its software implementation and use-case are shown, 
section 7 contains further discussion and conclusions of the research.

2. Preliminaries

2.1 Homomorphic encryption

Homomorphic encryption is a form of encryption that allows computations to be performed on 
encrypted data without need to decrypting it beforehand. This is particularly valuable when sensitive 
data needs to remain confidential  but still  requires processing.  In homomorphic encryption,  an 
encrypted input produces an encrypted output that,  when decrypted,  matches the result  of  the 
operation as if it had been performed on the plaintext data [4].

There are two primary types of homomorphic encryption systems:
1. Partially homomorphic encryption [4]: these schemes allow only specific operations (either 

addition or multiplication) to be performed on the encrypted data. For example, Paillier encryption [5] 
supports  additive  homomorphism,  meaning  that  we  can  perform additions  on  ciphertexts  that 
correspond to the addition of plaintext values once decrypted, but for the multiplication one of the 
operands should be in the open form.

2.  Fully  homomorphic  encryption  [4]:  extends  the  capabilities  of  partially  homomorphic 
encryption  by  supporting  arbitrary  operations,  including  both  addition  and  multiplication  in 
encrypted form. Fully homomorphic encryption schemes can perform any kind of computations on 
encrypted  data,  making  them extremely  powerful  but  also  computationally  expensive  and  less 
practical for large-scale or time-sensitive tasks.



2.2 Paillier cryptosystem

The example of partially homomorphic encryption is Paillier cryptosystem [6]. One of the advantages 
of the Paillier cryptosystem is its homomorphic property in combination with non-deterministic 
encryption due to the random number usage.

The basic public key encryption scheme has three steps:
Step 1. Generate a public key pair (n , g).  To achieve this one needs to generate large prime 

numbers p and q of equal bit length. 
Then compute:

n=p⋅q (1)

Then one need to randomly generate g such as g∈ Zn2
¿

.

Step 2. The private decryption key is (λ, μ). To achieve this one needs to compute λ as:     

λ=lcm ( p−1 , q−1),  (2)

where lcm (.) means least common multiple.
Then is used to calculate the modular multiplicative inverse:

μ=(L (gλ mod n2))−1mod n ,  (3)

where the function L (x )=
(x−1)

n
 (quotient of integer division).   

Pick a random number r  in the range 0<r<n∧ gcd (r ,n )=1.
Step 3. To encrypt the message (m), where 0≤ m<n , should need to compute c as:

c=gm ∙ rn ,  (4)

where c – ciphertext.  
Step 4. To decrypt the m should need to do the next computation:

m=L (c λ mod n2)∗μ mod n ,  (5)

where c – ciphertext to decrypt and c∈ Zn2
¿

.

Among  the  operations  supported  by  Paillier's  scheme  are  homomorphic  addition  (6)  and 
multiplication (7), but it should be noted that without knowledge of the private key there is no way to 
calculate the product of encrypted messages.

When two ciphertexts are multiplied, the result decrypts to the sum of their plaintexts:

D (E pub (m1)∗E pub (m2)mod n2)=m1+m2mod n ,      (
6)

where D is the multiplication need to decrypt. 
When a ciphertext is raised to the power of a plaintext, the result decrypts to the product of the two 

plaintexts:

D mod n2 = m1∗m2mod n    (7)

Paillier is computationally less expensive than fully homomorphic encryption schemes like BFV 
[7],  CKKS  [8]  or  more  recently  proposed  method  [9].  Therefore  it  is  more  preferable  for  the 
implementation  at  the  research  due  to  lesser  computational  difficulty  resulting  in  quicker  and 
computationally less demanding data updating.



2.3 Chemotherapy dosing calculation methodology

For the chemotherapy calculations the main factor is body surface area (BSA) [10]. BSA based dosing 
is used to calculate prescribed dose of drug meeting the balance between cancer treatment efficiency 
and drug toxicity [11]. The main uses of BSA is – it determines the dose of chemotherapy for a patient.
Formula for BSA calculation:

BSA=√ h∗w
3600

(8)

Mosteller formula for BSA dosing [12]:

Dose=BSA∗ct , (9)

where ct  is the doseCoefficient,
h – height  of the patient,
w – weight  of the patient.
The above preliminaries became the basis for known approaches analysis for this field.

3. Known approaches analysis

Homomorphic  encryption  is  used  in  the  medical  field  to  enhance  data  privacy  while  enabling 
computations on encrypted datasets. One notable example is the Swiss project MedCo [13], which is a 
part  of  the  Data  Protection  and  Personalized  Health  initiative.  MedCo leverages  homomorphic 
encryption  to  facilitate  secure  and  privacy-preserving  data  discovery  across  multiple  hospitals, 
allowing for analytics on both genetic and non-genetic patient data without revealing raw data. 

HE facilitates secure analysis of cardiovascular data, enabling encrypted computations to pinpoint 
high-risk individuals and forecast disease progression without compromising patient privacy [14]. 

On the other hand, homomorphic encryption usage in this case possess some disadvantages: high 
computational overhead, which can reduce performance and scalability, especially when processing 
large datasets.

Another important usage of homomorphic encryption is collaborative cancer research, where 
encrypted data from multiple hospitals is examined to identify the most efficient chemotherapy 
protocols  based  on  different  cancer  types  and  patient  characteristics  [15].  The  need  for  more 
computational resources, bandwidth, and storage for encrypted data across multiple hospitals can 
significantly increase operational costs.

There is known an innovative system for lung cancer diagnosis which is based on homomorphic 
encryption [16, 17]. This system firstly performs textual extraction from computer tomography scans 
and then applies deep learning techniques for the classification [16, 17].  Applying homomorphic 
encryption on computer tomography scan textual extraction and then running deep learning models 
introduces additional latency, which may delay diagnoses.

In the work [18], the author proposes a method for predicting the likelihood of a heart attack based 
on a few body measurements. This approach employs a client application that gathers health data and 
transmits it in the encrypted format using Microsoft Azure cloud services [17]. Relying on cloud-based 
homomorphic encryption (via Microsoft Azure) introduces security concerns around trust in third-
party providers and may not comply with stringent healthcare regulations.

Another work proposed a fully homomorphic encryption algorithm for encrypting and decrypting 
images in healthcare is  the research [19].  As the size  of  medical  images increases (e.g.,  higher 
resolution scans),  the encryption and decryption processes become less scalable requiring more 
memory and processing power.



These methods suffer from significant computational overhead, especially when processing large 
datasets or high-resolution medical images, leading to delays and increased operational costs. We 
address these issues by using the homomorphic encryption scheme that focuses on practical use cases, 
such as  calculating personalized drug doses based on encrypted patient  data,  without  exposing 
sensitive information.

4. Task formalization

Let’s denote by D the patients’ data, which is operated by the doctors and is needed for proper 
calculations of chemotherapy dosage for Ewing's sarcoma treatment. Let M to be the set of data 
storage mediums those are used to store D and S to be a set of data already stored using mediums M. 
Therefore it is possible that due to inaccessibility or a destruction of the mediums certain data is 
missing. The process of storing given amount of data d∈ D on the medium m∈ M  is formalized as 
the following:

store :D × M → S or sm=store (d ,m ). (10)

In the formula (10) we used subscript in order to mark the fact, that sm is stored at the medium m. 
The reverse process of stored data retrieving is the following:

retrieve :S × M → D or d=retrieve (sm ,m). (11)

Due to the criticality of correct dosage and number of sessions the stored data should be updated 
over time. Consequently there should be updating process:

update :S → S or śm=update (sm). (12)

The mathematical description of the research field is the following:

MathematicalDescription={D , S , M , {store (d ,m ) ,update (sm) , retrieve (sm ,m)}}. (13)

Thus the task of the research is to develop such method of data protection with the following 
conditions:

1. M should be robust to the denial of service attacks.
2. Destruction of given medium m∈ M  shouldn’t lead to losses of S.
3. Only authorized persons (the respective patient and doctors, whom the patient granted access) 

can yield D from S, i.e. there should be limitations to the persons, who is able to perform data 
retrieving process retrieve().

4. S must be updated without a disclosure of D, update() can be performed arbitrary from store() 
and retrieve() processes.

These conditions are to be met by the patient's data protection method.

5. Data protection method

In order to meet above-mentioned conditions sets, stated at the mathematical description (13) are to be 
identified for the case of data, which is used for chemotherapy dosing calculations in case of Ewing's 
sarcoma treatment. According to the methodology of the dosage calculations [8] the set D is a set of 
vectors, where each vector is associated with a given patient, and the chemotherapy methodology-
related constant. Thus D is defined in the following form:



D={{height ,weight , chemotherapySessions } , ct }, (14)

where height – a given patient’s height, which is used for the BSA computation;

weight – a given patient’s weight, which is used for the BSA computation;
chemotherapySessions – a number of already passed chemotherapy sessions;
ct – the scalability coefficient used by the methodology [9, 11].
The chemotherapySessions parameter is needed in order to allow doctors to assign proper number 

of sessions. This parameter is essential for the considered case of warfare refugees, whom shouldn’t be 
expected to maintain proper medical records or correctly remembering the exect number, because of 
experienced extreme stress. Moreover the parameter is to be updated after each session, while height 
and weight might change as well between sessions. Therefore used mediums are to be open for data 
updates.

In order to meet conditions 1 and 2 defined in the previous section we choose Ethereum-like 
blockchain [19] as a medium. Usage of multiple nodes at the blockchain any of each can be used for  
stored data accessing provides robustness to the denial of service attacks thus meeting the condition 1. 
The very property allows to meet the condition 2, because any node’s destruction doesn’t lead to data 
losses. Moreover, the data loss in case of blockchain utilizing as a medium is possible only in case of all 
nodes destruction, which can be omitted by organizational means such as running several nodes 
outside warfare territory (abroad in partner countries, for instance) or minimizing the risk by placing 
nodes in different missile/drone protected areas.

The choice of this type of blockchain is motivated by the scalability of these types of blockchains 
due to smart contracts as a data structure. Consequently, in case of either chemotherapy dosage 
calculations methodology alterations, or proposed method usage in similar areas programmability of 
smart contracts allows to adapt this medium’s data structure as well. 

Therefore, the set of mediums is:

M=BlockchainNodes, (15)

where BlockchainNodes is a set of all blockchain’s nodes.
Due to data openness caused by chosen medium and the need of meeting condition 3 stored data S 

should be presented in the encrypted form. Therefore, S is defined in the following form:

S={{height e ,weight e , chemotherapySessionse}, ct e}, (16)

where heighte – an encrypted value of given patient’s height;
weighte – an encrypted value of weight;
chemotherapySessionse – an encrypted value of number of already passed chemotherapy sessions 
by given patient;
cte – an encrypted value of ct.
 The latter parameter is to be encrypted, because its value can help determine what kind of 

treatment is performed. This will be helpful for scalability reasons as well in case the proposed method 
and tool would be used for other cases of chemotherapy treatment.

After all data had been defined, the implementation of the processes should be performed. We 
propose to conduct store() process by the following steps:

1. Gather patients identification data  patientID (such as number of medical record, eHealth 
account etc) and relevant parameters such as height and weight.



2. Perform hashing of the  patientID in order to protect them from the exposure. In case of 
Ethereum-like blockchain usage it would be natural to use Keccak-256 hash function:

path=keccak ( patientID ). (17)

3. Using homomorphic encryption, Paillier scheme in particular, encrypt with a patient’s public 
key height and weight parameters in order to obtain heighte and weighte respectively.

4. Access patient’s profile or create one at the smart contract ran in blockchain by using mapping 
of the following kind path → { heighte,  weighte,  chemotherapySessionse}. In case of profile 
creation encrypt 0 using patient's public key in order to get chemotherapySessionse.

5. Set obtained at step 3 values of heighte, weighte parameters.

Stored  encrypted  parameters  can  be  read  directly  from  blockchain  in  case  of  correct  path 
parameter computation. Therefore retrieve() process is easy to implement for this case. However it 
doesn’t have sense in the research, because the main goal of the  retrieve() process is to provide 
respective chemotherapy dose value. Therefore we propose to perform retrieve() by the following 
steps:

1. Gather patients identification data patientID.
2. Obtain path value using (17).
3. Call  smart-contract’s  method,  which  computes  in  encrypted  form value  of  a  respective 

chemotherapy dose using homomorphic transformations and receive dosee.
4. Using patient’s private key decrypt dosee and obtain proper dose value.

After administrating chemotherapy the stored value of chemotherapySessionse is to be updated. To 
do so we propose the following update() process implementation:

1. Gather patients identification data patientID.
2. Obtain path value using (17).
3. Encrypt 1 using patient's public key:

encryptedOne=g⋅rn mod n2. (18)

4. Retrieve stored value of chemotherapySessionse.
5. Using homomorphic transformation add encrypted 1 to the value of chemotherapySessionse.

chemotherapySessionse=chemotherapySessionse⋅encryptedOne mod n2. (19)

6. Store new value of chemotherapySessionse.

It should be noted, that we used Paillier’s method for the homomorhpic encryption, but the method 
with a small adjustment can be adapted for other homomorphic encryption method usage.

6. Developed Software Tool

Whether during the visiting doctor occurs the situation when the patient does not remember the 
necessary  data  for  calculating  the  dose  of  chemotherapy  drug  and  the  number  of  received 
chemotherapy  sessions,  the  doctor  performs  receive() process  and  gains  the  necessary  data  for 
treatment prescribing.



The smart contract was developed that allows to structure the information needed during the 
process of prescribing further treatment.

PatientChemotherapy smart contract, is designed to manage patient data related to chemotherapy 
treatments, including tracking a patient's height, weight, and number of chemotherapy sessions. 
Patients mapping – this is a mapping that associates a hashed patientID (using keccak256) to a patient's 
details stored in the Patient struct. The hashedID ensures that the actual patientID is not stored in a 
plain form, providing confidentiality.

An  Ethereum-like  blockchain  [20]  and  Ganache  [21]  test  environment,  which  is  free  and 
convenient for testing, were chosen to interact with the smart contract. The results of the successful 
recording by calling PatientUpdated() function of the some arbitrary patient's personal data and the 
dose of chemotherapy drug encrypted using the Paillier scheme are shown in the Figure 1.

Figure 1: The example of the successful recording of the patient's personal data.
As it can be seen from the Figure 1 the initial data (height, weight, chemotherapy sessions number) 

for the patient was successfully recorded by the smart contract stored in blockchain. The next step is 
to calculate the dose of the chemotherapy, using the data retrieved from the smart contract according 
to the respective methodology (see subsection 2.3). The result of the successful calculating the dose of 
the chemotherapy drug is shown in the Figure 2.

Figure 2: The example of the successful calculating the dose of chemotherapy drug.
After  the  chemotherapy  session  the  chemotherapy  sessions  number  must  be  updated,  i.  e. 

incremented. In order to perform so due to utilization of homomorphic encryption scheme there is no 
need in decrypting the current number of sessions. Instead the software encrypt the value "1" and adds 
it to the encrypted value of currently stored number of sessions (3 for the instance). Thus without 
decryption and even without disclosing to the nurse or IT department staff the current value of 
chemotherapy sessions their value had been updated. The other parameters can be updated in the 
similar way. 

Thus the method is implemented. The feature of programmable smart contract of the Ethereum-
like blockchains allowed to develop along side of the data structures algorithms of processing the data 
on the side of blockchain such as data updating in the homomorphically encrypted form.



7. Discussion

Patients’ data protection has the strict regulation from the governments and increased attention from 
the society [1, 2, 3]. This is explained by both criticality of the medical infrastructure and huge amount 
of personal data being processed at this area. While the need of data privacy protection in this area is 
obvious,  needs  of  its  integrity,  availability  and  traceability  are  important  as  well.  The  latter 
parameters are important due to lethal consequences of improper data processing and the data can be 
used at the legal area such as court proceedings. The research is performed for the instance of cancer 
patients’ data who are internal refugees in Ukraine at the warfare circumstances, when documents 
along with a server running database containing patients’ data might be destroyed causing data loss, 
which is crucial for the treatment process. The latter proves the need of patients’ data protection 
improvement.

Known works on the topic of the homomorphic encryption usage for the medical data protection 
utilize it for the large data arrays [14, 17], that impact productivity due to computationally demanding 
transformations used by the encryption process. This negatively impact data availability and capacity 
of servers used for the data storing to handle simultaneously several user requests. Moreover data 
presented in encrypted form for such algorithms are several times larger than the original before the 
encryption one. 

These homomorphic encryption properties create constrains for its application at the healthcare 
field, which are not properly addressed. Firstly, only data that is supposed to be used at computations 
should be protected by this type of encryption. Secondly, designated storage medium should possess 
enhanced availability properties in order to compensate the above-mentioned drawback. To meet the 
former constraint the implementation area is to be analyzed and the data is to be determined. The 
latter constraint leads to the utilization of the distributed storage such as clouds and blockchains. Due 
to security compliance considerations clouds seem to be less desirable due to the cloud provider trust 
legal regulations. Therefore a blockchain was chosen as a data storage medium that allowed to meet 
the  requirement  and  additionally  provide  increased  integrity  and  traceability  protection 
comparatively with known approaches based on the server file storages, databases or clouds [15, 16, 
18, 19].

Performed analysis of the Ewing's sarcoma treatment methodology allowed us to determine, that 
partially homomorphic encryption, which is computationally less demanding and have less impact on 
data size increasing after the encryption, is enough for the case, because data updating needs can be 
satisfied  only  be  the  additive  operations.  That’s  why  Paillier  scheme,  which  provides  fully 
homomorphic addition, but partially homomorphic multiplication, was chosen for the research. 

Presented  task  formalization  allowed us  to  identify  the  task  parameters  and  restrictions,  in 
particular the data set, that is to be protected by the homomorphic encryption. The latter allowed to 
develop a method on the basis of them. Mathematical description of the task can be used in the further 
research in the area of medical data protection.

We  proposed  a  method  for  data  protection  on  the  basis  of  homomorphic  encryption  and 
distributed  storage,  namely  Ethereum-like  blockchain.  Due  to  homomorphism  property  of  the 
encryption the data can be processed and updated in the encrypted form, which allowed to negate the 
drawback of blockchain’s openness and a lack of mechanisms for data privacy protection. The very 
blockchain’s openness and data distribution via multiple nodes provides increased protection of 
integrity,  availability  and  traceability  to  the  method.  Proposed  method  and  its  processed  were 
formalized. In order to reach proof-of-concept we presented results of software, which implements 
the  method,  those  allowed  to  prove  its  efficiency.  However  due  to  the  utilization  of  partially 
homomorphic encryption scheme proposed method have limitations for the possible data processing 
operations, those can be performed in encrypted form without compromising patients’ personal data. 



That’s why in order to scale the method for other patients data protection instances it should be 
prior adapted to new case’s data processing requirements. The latter may lead to the necessity of 
encryption method substitution by other partially homomorphic or by fully homomorphic ones.

However, several tasks are yet to be solved before the method could be integrated to the medical 
practice. In particular the task of key sharing, their certification and distribution. We anticipate 
utilizing of electronic systems of healthcare such as eHealth system in Ukraine [22] and integration of 
key sharing protocols to the system. The task is to be addressed in our future research. Nevertheless, 
proposed method reaches its goals and meets restrictions of the task.
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