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Abstract
This study delves into incorporating static typing into Pharo, a dynamic language derived from Smalltalk.
Utilizing Pharo's pragmas, it introduces type annotations at both method and class levels, drawing from
Strongtalk's approach but without altering Pharo's grammar. A novel experiment detailed here involves
annotating Pharo code using these annotations and runtime type collection, then transpiling it to C#,
highlighting the syntactic and conceptual adaptations required. Despite the complexities, the experiment
successfully translates Pharo code into compilable C# code, underscoring Pharo's potential for optional
static typing. The exploration also suggests future directions, including improved type inference, while
reassessing static typing's role in error detection.
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1. Introduction

Pharo, as a descendant of the Smalltalk programming language, benefits from the flexibility and
expressiveness  provided  by  strong  dynamic  typing.  However,  static  type  checking  offers
advantages  such  as  error  detection,  facilitation  of  code  refactoring  and  documentation.
Additionally, a JIT compiler can utilize it or static typing can be used for transpiling code into other
languages.

In the context of integrating static typing into dynamically typed languages, Strongtalk [1] is a
notable  example,  enhancing  Smalltalk-80  with  optional  static  type  annotations  to  improve
performance and robustness. However, Strongtalk required significant grammar changes. Figure 1
illustrates an example of Strongtalk code. Pharo, unlike Smalltalk-80, has pragmas similar to those
introduced by Strongtalk, allowing for type annotations without modifying its grammar. 

We performed a limited experiment in which we introduced type annotations in the form of
pragmas [2] into Pharo, used runtime type collecting to annotate existing Pharo code, and then
transpiled it into a static programming language.

2. Type Annotations

Type annotations are categorized into two types: method-level and class-level.

2.1. Method-level Type Annotations

Method-level type annotations describe the types of:

• Method return value
• Arguments
• Temporary variables
• Block arguments
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• Block temporary variables

Besides the type information, the method-level annotations include:

• Information on whether the return value of a given block is supposed to be used

Figure 2 shows the alternative to the Strongtalk code written using type annotating pragmas.
Method-level type annotations for block arguments and block temporary variables have one

problem - the names of these entities may be the same in multiple blocks. A typical example is a
method with several blocks where each of them uses the block argument named each. We used two
strategies to solve this problem. The first requires each block argument and temporary variable in
the scope of a method

to have a distinct name, which means that before adding type annotations to the code, every
method that does not pass this rule needs to be refactored. The second strategy involves adding a
block identification into the annotating pragma. We used a prefix that denotes the block order in
the method:

<blockArg: #_1_each type: #Integer>
<blockArg: #_2_each type: #Point>

The  latter  approach  avoids  refactoring  but  complicates  readability  and  further  code
modifications. Therefore, we preferred using unique names within the method’s lexical scope.

2.2. Class-level Type Annotations

Class-level type annotations are used for type descriptions of instance variables (more generally,
slots) and other class elements, and we placed them into special methods named _slotTypes. Like
the method-level type annotations, they include  pragmas.

_slotTypes 
  <slot: #commandContext type: #CommandContext>
  <slot: #labelString type: #String>

Our type annotations allow to describe a single simple type (class) associated with a variable,
multiple  distinct  types,  or  more  complex  types  like  Collections,  Dictionaries,  Associations,  or
Blocks. 

occurrencesOf: o <Object> ^<Int>

| c <Int> |
c := 0.
self do: [ :e <E> | e = o ifTrue:[ c := c + 1 ]].
^c

Figure 1: An example code in Strongtalk with type annotations for a method argument, a 
method return value, a temporary variable and a block argument.

occurrencesOf: o 

<arg: #o type: Object>
<returns: #Integer>
<var: #c type: #Integer>
<blockArg: #e type: #Object generated: true>

| c |
c := 0.
self do: [ :e | e = o ifTrue:[ c := c + 1 ]].
^c

Figure 2: An example Pharo code with type annotations for a method argument, a method 
return value, a temporary variable and a block argument.



Notice that the part of the pragma that describes the type is composed of a symbol or a literal
array of symbols. If the variable can hold only one class, a single symbol with the class name is
used. If it can hold more distinct classes, a literal array describes it. 

<var: #temp type: #Symbol>
<var: #temp type: #(Symbol Number)>
<var: #temp type: #(Symbol UndefinedObject)>

Given the commonality of  UndefinedObject as an alternative type, we offer a shortcut for it
expressed as two colons. Here we would rather have preferred a question mark, but were limited
by Pharo’s symbol parsing.

<var: #temp type: #Symbol::>

Complex types use literal arrays comprising the type class name, additional symbols such as of,
key or  value describing  the  purpose  of  the  subsequent  type  description,  and  embedded  type
descriptions.

#(Array of Symbol)
#(Dictionary of Symbol keys Object)
#(Association key Symbol value Number)
#(Array of (Number String))
#(Array of (Array of String))

Type  descriptions  for  block  closures  are  the  most  complex.  They  describe  the  types  of  all
arguments and the return type of the block. Blocks need not have arguments or return values, so
these parts can be omitted.

#FullBlockClosure
#(FullBlockClosure returning Integer)
#(FullBlockClosure:: returning Integer)
#(FullBlockClosure arguments #(String Object) returning Integer)

These block type annotations are useful when describing argument types or variables holding
the block. However, Pharo code containing block literals does not indicate if the return value (the
result of the last expression) is to be used, as in select:, or ignored, as in do:. Thus, the method with
such a block can contain a pragma specifying this information, which is important in some cases
like code translation.

<block: 1 returnsValue: false>

An example of such a method is described in the following chapter.
We developed a simple system to regenerate type annotations while allowing programmers to

manually  modify  them  without  losing  these  changes.  Each  automatically  generated  type
annotation pragma includes an additional argument named  generated: with  true as the default
value.

<arg: #anObject type: Object generated: true>

When  generating  type  annotations,  the  system  creates  only  new  pragmas  or  those  with
generated: true.

Other popular dynamically typed languages often implement type annotations by extending the
language syntax and standardizing existing language features such as function annotations (Python
3 [3]), using existing grammar constructs like special forms (Common Lisp [4]), or creating a new
language derived from the original one (TypeScript [5] derived from ECMAScript).



3. Runtime Type Collecting

Annotating  existing  Pharo  code  with  types  is  a  laborious  task.  Previous  attempts,  such  as
RoelTyper  [6],  resolved  a  relatively  low  number  of  types.  Thus,  we  explored  an  alternative
approach leveraging advances in Pharo’s reflectivity infrastructure.

We collect  runtime  type  information  automatically  during  program  execution  by  inserting
watchpoints and generate type annotations in post-processing. This method requires most of the
existing code to be executed in a manner providing relevant type information.  Fortunately,  in
Pharo, the test-driven style of development is very popular, so projects with a high test coverage
ratio are not unlikely. Ideally, runtime type collecting requires 100% code coverage with relevant
tests.

Our technical  solution involves installing various Metalinks [7] into each method to resolve
types. Metalinks in Pharo allow developers to attach additional behavior and metadata to methods
dynamically at runtime, enabling fine-grained control and non-intrusive modification of method
execution. For instance, to detect method argument types, a Metalink is installed at the method’s
beginning. For temporary variable types, a Metalink is installed at all assignments to the variable
within the method. Method return types are detected by wrapping the entire method execution
with a Metalink.

Each Metalink has an associated object describing the collected types. Each invocation of the
Metalink updates  this  collection  with  the  current  types of  values  written into  variables.  After
executing all relevant code, the collected type information is post-processed and written as type
pragmas described above.

This  straightforward  process  is  hindered  by  technical  limitations  in  Pharo’s  Metalinks
implementation,  such  as  incorrect  handling  of  some  Metalink  combinations.  For  example,
Metalinks for method return values need to be installed as standalone and require additional code
execution.

Block closure literals require special treatment. Resolving their arguments is not significantly
different  from resolving the method argument types;  however,  handling return values  poses  a
significant challenge. As mentioned above, in Pharo, the return value of a block evaluation is the
result of the last expression. The block itself does not provide any information about whether this
resulting value is actually meaningful and will be used. If the block is not constructed with the
intent to use its return value, the type provided by runtime collecting can produce an arbitrary
value, which does not help in describing the block type information because the actual expected
return type is void.
Consider the following code:

self critical: [ 
  logFileStream ifNotNil: [ 
    logFileStream close.
    logFileStream := nil
  ].
]

For the outermost block closure, the argument of the method critical:, we cannot be sure at
the first glance how the method critical: actually handles the block. We may assume it evaluates
the block, but we do not know if it only evaluates it and throws the result away or processes it
further.  This  information  is  required  when we,  for  example,  try  to  translate  this  code  into  a
different  language  that  must  explicitly  specify  a  return  statement  for  anonymous  functions
replacing the block. Always returning the result type of the last statement is not possible because
the value may sometimes vary significantly. Moreover, in Pharo, the usage of a block return value
is sometimes depending on the actual context.

We addressed this issue by returning a special proxy object instead of the actual block result
value. When we detect during type collecting that the variable or argument type is a block, we
construct a custom block  closure of a custom class inheriting from the standard FullBlockClosure



class, set it up based on the original closure, and swap their identities using standard become:. Thus,
we ensure that we can handle standard evaluation messages of this block like  value,  value: etc.
These custom methods, when called, perform the standard block evaluation and wrap the returned
result in a custom proxy  object. When a message is sent to the proxy or if it  is assigned to a
variable – which needs to be resolved by some installed Metalink – the block is marked as a block
returning a value of the given result type. The proxy is then replaced by the actual result object
(using become:, again), so this mechanism is performed at most once.

The type collecting process can be executed several times on a given code: As the type collector
always starts reading all available type annotations, it will merge the new collected annotations
with the existing ones if they are marked for regeneration.

4. Translation into a Static Language

Our  experiment  aimed  to  explore  the  possibility  of  transpiling  parts  of  an  existing  business
application from Pharo to C# for architectural reasons, leveraging existing C# libraries and code
while benefiting from Pharo’s unique features. C# has several properties that facilitate the transpiling
of  Pharo  code,  notably  being  a  class-based  object-oriented  language  with  automatic  memory
management based on garbage collection. Additionally, C#'s optional named arguments make the
translation of Pharo keywords easier than it would normally be for C-syntax based languages, thus
keeping the output code closer to its original source. Modern versions of C# support anonymous
functions and some other language properties similar to Pharo.

However,  C#  has  significant  lexical,  syntactical,  and  semantic  differences  from  Pharo,
particularly in expressions and control structures. Its class metamodel also differs notably.
The C# grammar, being quite complicated, suggests that the direct transpiling of grammatically
simpler  Pharo  code  to  C#  should  be  straightforward,  at  least  from  a  syntactic  perspective.
Unfortunately, this is only partially true. While in Pharo, practically everything is a message call or
an  assignment,  constructs  that  are  easy  to  transpile,  some  C#  language  features  introduce
difficulties, such as:

• The absence of non-local returns
• A notable difference between statements and expressions
• Different object construction mechanisms
• The absence of metaclasses and cascade
• Missing polymorphism of constructors and static methods
• Only stateless interfaces
• The presence of primitive non-object types
• Limited extension methods
• A wide set of reserved words

Each of  these issues presents its  own challenges and potential  solutions.  In some cases,  we
decided to limit constructs allowed in the transpiled Pharo code, so we must admit that we are able
to transpile only a subset of the Pharo language.

We aimed to generate readable,  maintainable C# code with a direct relation to the original
Pharo code. On the other hand, we wanted the Pharo code to be the main source of information.
The C# code was repeatedly generated from it while the Pharo code was still being modified and
improved.

The transpilation  process  itself  is  not  innovative.  We start  with  Pharo  code  AST.  Using  a
transpiling visitor, we generate a new abstract syntax tree for a C# subset (because we do not need
all C# features) and finally, using another visitor, we generate C# code by visiting these nodes. The
generated C# code uses a small supporting library providing equivalents to Pharo standard library
along with other utility functions.



4.1. Messages

Pharo unary messages are straightforward to translate into C#. They simply follow standard dot
notation and skip the this keyword if possible. All message names are modified to use the regular
C# customary to start with uppercase letter. So 

self next.

becomes

Next;

Binary message sends are interpreted as operators for common  messages like  +,  < and so on.
Some binary messages need to be reinterpreted, such as =  as Equals().

Keyword messages are generally hard to translate into other languages if readability shall be
preserved. Fortunately, with C# optional named arguments, this task is manageable with only small
limitations.

 As an example, let us choose a keyword message chooseFrom:title: with two keyword parts.
The method header with argument names looks like:

chooseFrom: aList title: aString

When transpiling to C#, we can keep the first argument name (aList) unchanged. We rename
every other argument to match the corresponding keyword part name, aString to title in our case.
The original argument name is mentioned as a comment and in the beginning of the method. Then,
we define the new variable with the same name as it was in Pharo and assign it from the the
argument name we created. Thus the original argument name can be used inside of the method
without further change, as shown in the following example:

public long ChooseFrom(object aList, string title /* aString */ )
{
    var aString = title;
    …
}

This  approach proves its  utility  when we  perform a  method call  of  this  message with some
arguments, as it closely  resembles the message calls as done in the original Pharo code:

ChooseFrom(someList, title: actualTitle);

However, this approach has some small limitations. Keyword part names need to be distinct so
it may require renaming of some methods (like with:with:) before transpiling. The reason behind is
that C# uses named arguments primarily to support different order of arguments.  We created a
simple non-GUI tool in form of specialized class-side methods to detect such cases in advance.

4.2. Non-local returns

In Pharo, when a return statement is used inside a block closure, it causes program flow to exit
from the whole method, not only from a given closure. In C#,  anonymous methods, also called
lambda expressions, are the closest corresponding construct to Pharo blocks. The main difference
in behaviour is that a  return statement in C# only exits the execution of the current anonymous
function, not the method where it is defined.

The difference in usage of non-local returns in Pharo and in C# stems from the fact that Pharo
uses combination of  message sends and block closures  for  constructs  that are expressed using
special grammar control structures in C#, like if-statements. 

Well-known Pharo methods such as ifTrue:, ifFalse:, ifNil:, ifEmpty:, whileTrue:, and do: are
translated directly into corresponding C# statements which use regular code blocks {…} instead of
lambdas. So the statement 



aBoolean ifTrue: [ 
    self doSomeAction.
    ^ 0 ]

is translated into

if (aBoolean) 
{ 
    DoSomeAction;
    return 0;
}

Non-local  returns  that  cannot  be  translated into  statements  are  currently  forbidden by our
transpiler. We have a small non-GUI tool to detect such cases in the code. The other alternative,
which generates slower code but is more general and does not require so many code modifications,
is to use exceptions.

4.3. Expressions

Pharo does not have any limits on structure of expressions. So instead of aBoolean in the example
above, another complex expression containing statement-like message can be used. This is not true
for  C#.  Some simple  C# statements  like  if-else statement  or  null checks  have an alternative
expression syntax. For example, the ternary expressions (?:) or the null-coalescing operators (??).
The transpiling visitor marks the AST subtrees that need to be expressions and tries to use these
alternatives. If this is not possible, it reports an error. In that case, the Pharo code needs to be
rewritten.

4.4. Object construction mechanisms

Pharo  usually  instantiates  a  class  by  sending  a  message  to  it.  Such  message  then  directly  or
indirectly  invokes  a  VM  primitive  that  creates  an  object.  C#  does  not  have  the  concept  of
metaclasses. For objects construction, the operator new is used. During building of the object, its
constructors are called. 

When the C# object is created, it sometimes requires generic type information, for example:
 

new Dictionary<string, int>()>;

Pharo does not provide such information; the equivalent expression is simply Dictionary new.
Our transpiler needs this information so it  expects that the created object is assigned to some
variable,  which is usually the correct assumption. If the  new message is on the right side of an
assignment, the transpiler can derive generic types from the type annotations belonging to the
variable the new object is assigned to.

If this mechanism cannot be used, an error is reported. In such case, the solution is to create an
additional temporary variable with type annotation and assign the new object during creation to it.

The base C# class that is used as the root class for classes generated by the transpiler always
calls the Initialize method from its constructor to automatically mimic default Pharo behavior.

4.5. Cascade

Cascade is a heavily used Pharo construct that does not have a corresponding equivalent in C#. To
translate a cascade, we need to first create a temporary variable with a unique name and assign the
base cascade object to it. This variable needs to be typed in C#, but fortunately, automatic type
inference is sufficient in most cases. Because this assignment is a statement in C# but in Pharo, the
cascade is a general expression, there are additional complications in deciding where to and how to
evaluate the generated statement. The resultant code then looks, for example, like this:



var cascade = new Dictionary<string><string>();
cascade.At("uid", put: uid);
cascade.At("label", put: label);
return cascade;

Moreover, cascades may be embedded. We pay special attention to their evaluation order.

4.6. Metaclasses and polymorphism

The metaclasses concept in Pharo is very powerful and heavily used, but does not have a direct
mapping to C#. In Pharo, class-side methods often play a role of object constructing methods, and
they are polymorphic.  We translate them into static methods in C# calling specially generated
constructors.  We  do  not  allow  overrides  because  C#  does  not  support  static  methods
polymorphism. Moreover, C# does not support polymorphism of constructors. 

The only more regular solution that could address this issue and allow to transpile more Pharo
code without need to adopt the code-base in advance, is to create a real object playing the role of
the class. This solution would break the direct relation between original transpiled code and, as a
consequence,  lead  to  new  issues.  However,  we  plan  to  explore  this  approach  in  future
development, as we expect it to be the best way to avoid large refactorings.

4.7. Other complications

While traits in Pharo and interfaces in C# are comparable, traits in Pharo are stateful  [8] such that
they can contain slots. As such slots cannot be translated into C#, we do not support stateful traits
in our transpiler.

A surprising complication stems from the way how C# handles the nullability of primitive value
types  like  int.  For  such  types,  the  nullability  means  that  they  are  wrapped  in  an  additional
structure that keeps information whether the value is set or not. If not, the actual value is set to the
default  value,  not  null.  This  makes  general  implementation  of  some  trivial  Pharo  collection
messages generally impossible (messages of type  Dictionary >> atOrNil:). 

We tried to mimic many Pharo standard library methods using extension methods in C#. When
it was not possible because of C# limitations, like in the case of some Object extensions, we used
static methods in ECMAScript style (PharoObject.IsInteger(anObject)). 

The difference between Pharo and C# in zero array indexing proved to be not a real problem
because it was handled by extension methods we created to follow the Pharo collections API. 

Unlike Pharo, C# has a wide set of reserved keywords that can cause name collisions with the
existing Pharo code. C# has a way how to handle special names (using the @ sign). However, as we
encountered some problems with them, we rather changed the Pharo code in advance manually or
using refactorings to avoid names that are C# keywords, which was trivial.

For Associations, we first tried to use C# pairs, but later switched to an own C# class which was
easier to handle in all use cases we needed.

In relatively rare cases when the generated C# code required type casting, we introduced the
Pharo message castAs: #TypeName which does nothing in Pharo but adds a casting operator to the
C#  code.  In  cases  of  several  messages,  we created  own application  specific  hooks  performing
certain casting operations, mainly for casting to return types of called methods. Thus we could get
around some complications, and even more important, avoid that C# performs unnecessary single
element casts for big collections, resulting in significant runtime overhead. 

5. Results and Further Development

In  our  limited  experiment,  we  were  able  to  convert  several  packages  of  a  real-life  business
application into about  20,000 lines  of  compilable and working C# code.  While the Pharo code
required some modifications to make it translatable to the target language, the amount of required
changes was relatively low. Because the automatically generated code was compilable by the C#



compiler, it means that the same task could theoretically be done without any translation to C#.
This proves that Pharo can easily play the role of a language with optional static typing.

Our experiences during this experiment suggested several directions for further improvements.
Combining runtime type collecting with type inference in the style of RoelTyper [6] would be a
significant advantage for transpiling code with low code coverage. It showed us that, at least in the
case of C#, it would make sense not to maintain such a tight correspondence between the input and
output code and to handle constructs like metaclasses and non-local returns in more a verbose and
less readable but more general way. We would like to try translation into other languages, such as
TypeScript, as well.

One interesting outcome of this experiment was our curiosity about whether static annotation
would reveal any serious type errors in the existing code. At least  in this case,  the result was
negative. We have encountered, of course, many reported type errors during compilation, but all of
them were related to the C# narrow interpretation of  types,  even if  the Pharo code had valid
semantics.

Even though we did not detect bugs in the Pharo code, runtime errors were still common even
for  the  code  that  was  successfully  compiled.  Most  of  them,  however,  were  related  to  some
limitations of the translation process or to bugs therein.  This suggests that while static typing
brings  some  advantages,  its  role  in  error  detection  for  well-designed  dynamically  typed  code
should not be overestimated.

The transpiler is  publicly available at  https://github.com/pavel-krivanek/Pharo-CSharp under
MIT lincense.
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