
Towards Optimizing with Large Language Model
Pei-Fu Guo1,∗, Ying-Hsuan Chen1,∗, Yun-Da Tsai1 and Shou-De Lin1

1Department of Computer Science and Information Engineering, National Taiwan University

Abstract
In this study, we evaluate the optimization capabilities of Large Language Models (LLMs) across diverse mathematical and
combinatorial optimization tasks, where each task is described in natural language. These tasks require LLM to iteratively
generate and evaluate solutions through interactive prompting, where each optimization step involves generating new
solutions based on past results and then pass to subsequent iterations. We demonstrate that LLMs can perform various
optimization algorithms and act as effective black-box optimizers, capable of intelligently optimizing unknown functions. We
also introduce three simple yet informative metrics to evaluate optimization performance, applicable across diverse tasks and
less sensitive to test sample variations. Our findings reveal that LLMs excel at optimizing small-scale problems with limited
data and their performance is significantly affected by the dimension of problem and values, highlighting the need for further
research in LLM optimization.

Keywords
LLM Reasoning, LLM Optimization

1. Introduction
Large Language Models have demonstrated exceptional
capabilities in reasoning across a variety of natural
language-based tasks [1]. However, their potential
extends beyond multiple-choice questions or single-
question answering. This work explores LLMs’ effective-
ness in optimization across diverse tasks and problem
dimensions. Optimization involves iteratively generat-
ing and evaluating solutions to improve a given objective
function. Our research assesses LLM performance in in-
teractive optimization, where each step generates new
solutions based on previous ones and their values.

We conduct our study with four different types of op-
timization algorithms: Gradient Descent, Hill Climbing,
Grid Search, and Black Box Optimization. To provide a
comprehensive evaluation of LLM performance, we in-
troduce three distinct metrics. These metrics provide a
multifaceted view of task performance and are applicable
across a broad spectrum of optimization tasks, reducing
sensitivity to sample variations.

Our findings suggest that LLMs show impressive opti-
mization capabilities, especially in small-scale problems.
However, their performance is notably affected by factors
like sample size and value range. These observations un-
derscore the need for further research within the domain
of optimization tasks tailored for LLMs. It’s important to
note that our work does not aim to outperform state-of-
the-art optimization algorithms for either mathematical

KiL’24: Workshop on Knowledge-infused Learning co-located with
30th ACM KDD Conference, August 26, 2024, Barcelona, Spain
∗Both authors contributed equally.
Envelope-Open r12922217@csie.ntu.edu.tw (P. Guo); r12922044@csie.ntu.edu.tw
(Y. Chen); f08946007@csie.ntu.edu.tw (Y. Tsai);
sdlin@csie.ntu.edu.tw (S. Lin)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

optimization or combinatorial optimization problems. In-
stead, our goal is to showcase the potential of LLM in
these optimization domains and find out limitations in
these settings.

Our contributions are summarized as follows:

• Exploring the potential of LLMs in mathematical
and combinatorial optimization scenarios.

• Introduce three novel metrics for assessing LLM
performance in optimization tasks.

• Delve into factors that influence LLM perfor-
mance using our metrics, with a particular em-
phasis on the impact of problem dimension and
task type.

The remainder of this paper is structured as follows.
In Section 2, we present preliminary works on LLMs
for addressing optimization challenges. In Section 3, we
defined 4 optimization algorithms in the case studies.
In Section 4, we demonstrate that LLMs with iterative
prompting strategy function as optimizers. In Section 5,
we present three metrics that we have designed to as-
sess the overall performance of LLMs in undertaking
optimization tasks. Section 6, details our experimental
results, showcasing the effectiveness of using LLMs as
optimizers. In Section 7, we consolidated noteworthy ob-
servations and points of discussion from the experiments.
Finally, Section 8 summarizes and concludes the paper.

2. Related Works
In various optimization scenarios, the utilization of Large
Language Models (LLMs) has become indispensable for
the development of optimization algorithms or agent
systems capable of handling complex and informative
text-based feedback. In this section, we summarize three

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:r12922217@csie.ntu.edu.tw
mailto:r12922044@csie.ntu.edu.tw
mailto:f08946007@csie.ntu.edu.tw
mailto:sdlin@csie.ntu.edu.tw
https://creativecommons.org/licenses/by/4.0

significant related works that leverage LLMs to tackle op-
timization and reinforcement learning challenges. These
works showcase the adaptability and effectiveness of
LLMs in addressing optimization and learning challenges
across various domains.
Optimization by PROmpting (OPRO) [2] OPRO

harnesses LLMs as versatile optimizers by describing
optimization tasks in natural language prompts. It it-
eratively generates and evaluates solutions from these
prompts, demonstrating superior performance on tasks
like linear regression and traveling salesman problems.
OPRO outperforms human-designed prompts by up to
50% on challenging tasks.

Reflexion [3] Reflexion introduces a novel framework
for training language agents that rely on linguistic feed-
back rather than traditional reinforcement learning. This
framework delivers outstanding results, boasting a re-
markable 91% pass@1 accuracy on coding tasks—an ex-
ceptional 11% improvement over previous state-of-the-
art models. Reflexion’s success underscores the potential
of linguistic feedback as a powerful training mechanism.
EvoPrompt [4] EvoPrompt automates prompt op-

timization by connecting LLMs with evolutionary al-
gorithms. This automated process surpasses human-
designed prompts by up to 25% and outperforms existing
automatic prompt generation methods by an impressive
14%. EvoPrompt’s success highlights the relationship be-
tween Large LanguageModels and traditional algorithms,
showcasing the potential for enhanced problem-solving
capabilities through this synergistic fusion.

3. Problem setting
We design four optimization tasks that require the model
to algorithmically search for the optimal value of pa-
rameters. These tasks encompass Gradient-Descent,
Hill-Climbing, Grid-Search, and Black-Box Optimiza-
tion, each representing unique optimization domains:
gradient-based, meta-heuristics, decision-theoretic, and
Bayesian. In terms of parameter types, Grid-Search
and Hill-Climbing involve discrete search spaces, while
Gradient-Descent and Black-Box Optimization tackle
continuous search spaces. Following is detailed infor-
mation on each optimization task.
Gradient-Descent assesses the model’s proficiency

in advanced calculations and its grasp of the principles of
gradient descent. We instruct LLMs to undertake a con-
ventional gradient descent optimization process based
on the loss function they have defined. LLMs need to
compute the gradient and update the parameters using
the gradient information and the learning rate given.
Hill-Climbing evaluate the LLM’s capability to ad-

here to custom predefined rules they have not seen be-
fore. LLMs start with an initial solution and iteratively

explore nearby solutions by making small incremental
changes. In our task, neighboring solutions are gener-
ated by selecting a specific element within the solution
and either increasing or decreasing it by one each time.
Subsequently, the neighbor solution with the minimum
loss is chosen as the new solution and passed to the next
iteration.
Grid-Search assesses the LLM’s ability to conduct

exhaustive searches and locate optimal solutions within
a predefined search space. LLMs are tasked with gen-
erating all grid points and systematically searching for
the point that results in the lowest loss according to the
given loss function.

Black-Box Optimization evaluates the LLM’s ability
to make informed decisions and optimize in an abstract
problem-solving context. We treat the LLMs as black
boxes that try to fit an unknown loss function. We pro-
vide the LLM with a limited set of solutions, each paired
with its respective true loss value. The LLM’s objective
is to discover new solutions that have lower losses than
the existing solutions in each iteration by themselves.

4. Methodologies
In this section, we show how LLMs, guided by itera-
tive prompting, can effectively function as optimizers,
akin to various optimization algorithms. To systemati-
cally navigate the search space, we introduce an iterative
prompting framework that enables LLMs to incremen-
tally achieve better solutions within the search space
through iterative processes.

We applied Chain of Thoughts and iterative prompting
as our prompting method. LLMwill accomplish each step
with reasoning thoughts as intermediate outputs. In each
of these tasks (optimization algorithm), LLMs are initially
required to formulate the loss function based on given
samples. Then each optimization iteration is composed of
two steps: (1) Generates new solution based on algorithm
instructions and past search results (2) Calculate loss of
new solution and add the results to the prompt of the
next iteration. We keep repeating the two steps until the
stop criteria are met. Figure 1 shows an overview of how
LLM performs optimization in interactive settings.

To create an interactive environment, we utilize the
chat mode of GPTs, where the entire conversation history
serves as the prompt. This allows LLMs to retain memory
of past search results and reasoning paths. New instruc-
tions are appended to ongoing conversation records with
each iteration. If the dialogue surpasses the token limit,
earlier portions are removed.

Figure 1: Overview of our prompting strategy. (1) LLMs
formulate the loss function based on given samples. (2) Given
algorithm instructions and past results, LLM generates a new
solution. (3) Calculate the loss of the new solution and add
the solution-score pairs to the prompt of the next iteration.
(4) Repeat the second and third steps until stop criteria are
met.

5. Evaluation
We devised three novel metrics for the comprehensive
evaluation of LLM capabilities. In this section, we will
explain the design and objective of each metric. These
metrics offer versatility in assessing LLM performance
across diverse tasks, making concurrent evaluation easier.
Their reliance on ratio measures, rather than differences,
makes them less sensitive to sample variations.

5.1. Goal Metric
Goal metric evaluates how effectively LLMs perform op-
timization. It provides a quantitative measure of the
degree to which the LLM contributes to minimizing the
loss function values. In other words, ensuring that the
ultimate solution loss is lower than the initial solution.
We define the 𝑔𝑜𝑎𝑙 𝑚𝑒𝑡𝑟 𝑖𝑐 of a test sample 𝑗 as :

𝐺𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖𝑛𝑖𝑡 − 𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖

𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖𝑛𝑖𝑡
(1)

where 𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖𝑛𝑖𝑡 is the initial solution loss of sample 𝑗,
𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖 is the LLM output loss of trial 𝑖, and 𝑁 is the
number of trials per sample. The higher the metric value,
the greater the progress in optimization. The goal metric
plays a crucial role in our evaluation framework, particu-
larly in scenarios where ground truth is absent, such as
the Black-Box optimization scenarios.

5.2. Policy Metric
Policy metric assesses the degree of alignment between
the final model output and the ground truth. Beyond

self-improvement, which is measured by 𝑔𝑜𝑎𝑙 𝑚𝑒𝑡𝑟 𝑖𝑐, it is
also crucial to appraise the LLMs’ capability to operate
in a manner consistent with our truth model algorithm.
This metric serves as an indicator of the LLM’s adeptness
in adhering to task-specific instructions. We define the
𝑝𝑜𝑙𝑖𝑐𝑦 𝑚𝑒𝑡𝑟 𝑖𝑐 of a test sample 𝑗 as :

𝑃𝑗 =
1
𝑁

𝑁
∑
𝑖=1

𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖 − 𝑙𝑜𝑠𝑠𝑡𝑟𝑢𝑡ℎ
𝑙𝑜𝑠𝑠𝑡𝑟𝑢𝑡ℎ

(2)

where 𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖 is the LLM output loss of trial 𝑖, 𝑙𝑜𝑠𝑠𝑡𝑟𝑢𝑡ℎ is
the ground truth of sample 𝑗 and 𝑁 is the number of trials.
Since the policy metric measures the disparity between
the ground truth and the LLM’s output, a lower policy
metric value indicates a more effective alignment of the
LLM’s actions with the prescribed guidelines. When
the value is negative, it means that LLM’s performance
surpasses the ground truth.

5.3. Uncertainty Metric
Uncertainty metric quantifies the variability in the LLM’s
solutions under identical conditions. Stability is a crucial
characteristic in optimization tasks. We hope that the
LLMs produce identical results in every trial involving the
same sample, even under conditions with temperatures
greater than zero. We define the 𝑢𝑛𝑐𝑒𝑟 𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑒𝑡𝑟 𝑖𝑐 of a
test sample 𝑗 as :

𝑈𝑗 =
1
𝑁

𝑁
∑
𝑖=1

(𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖 − 𝑙𝑜𝑠𝑠𝐿𝐿𝑀)2 (3)

where 𝑙𝑜𝑠𝑠𝐿𝐿𝑀,𝑖 is the LLM output of the i-th trial, 𝑙𝑜𝑠𝑠𝐿𝐿𝑀
is the mean of the trial outputs and 𝑁 is the number of
trials. A stable LLM can be more trusted for tasks that
demand consistent and reproducible results. In our case,
if the language model truly understands the context of
problems, the final optimal output should be identical in
every trial of the same sample.

6. Experiments
This section provides details of our experimental configu-
rations and highlights the outcomes of experiments. Sub-
section 6.1 outlines the process of generating synthetic
datasets for all optimization tasks, while subsection 6.2
elucidates the detailed settings of our experiment. Lastly,
subsection 6.3 offers a concise summary of the outcomes
derived from our experiment.

6.1. Dataset
In the experiment, we create five datasets with 𝑑 val-
ues chosen from the set {3, 6, 12, 24, 48} and generate in-
stances belonging to [0, 10]𝑑 in each dataset to examine

sensitivity to the number of parameters, representing
the dimension of the optimization problem. For instance,
𝑑 = 3 indicates that there are 3 variables in the loss func-
tion and the dimension of this optimization problem is 3.
We then apply each instance to a loss function and find
the true solution for each parameter search task. These
authenticated solutions, coupled with their associated
losses, not only serve as the ground truth for the tasks
but also act as a pivotal benchmark against which the
solutions derived by LLMs are systematically evaluated
and compared in the ensuing analysis.

6.2. Detailed Settings
In our experiment, We set the LLM temperature to 0.8 and
the reset as default. We performed 5 repetitions of the test
for each instance in the dataset, with the LLM conducting
10 iterations of parameter search in each repetition. We
excluded excessively biased results to prevent our metrics
from being skewed by a minority of poorly performing
test outcomes. All experiments employ the GPT-turbo-
3.5 ’0613’ version as the Language Model.

6.3. Main Results
We summarize the outcomes of our experiment and subse-
quently examine the common trends observed across all
experiments. In every plot, the x-axis displays the dimen-
sion of the optimization problem. In the case of the goal
metric and policy metric plots, the y-axis illustrates the
average metric value for the respective tasks, while the
shaded area in a lighter color delineates the confidence
interval of the metric, denoted as [𝑣𝑎𝑙𝑢𝑒 −𝑠𝑡𝑑, 𝑣𝑎𝑙𝑢𝑒 +𝑠𝑡𝑑].
As for the uncertainty metric plot, the y-axis showcases
the uncertainty metric value, which corresponds to the
standard deviation of the LLM final solution loss. It is
worth noting that the Goal Metric graph excludes the
non-iterative Grid-Search task due to its non-iterative na-
ture, while the Policy Metric graph omits the Black-Box
task due to unattainable ground truth.
LLMs show strong optimization capabilities in

small-scale problems. Our experiments test the com-
prehensive optimization capabilities of LLMs. Observing
figure 2, GPT-turbo-3.5 showcases considerable optimiza-
tion capabilities across various scenarios. Impressively,
in the Gradient-Descent task, GPT-turbo-3.5 even sur-
passes the ground truth, particularly in the case of the
sample dimension equal to six. It’s also surprising that
the model achieves respectable results in the Grid-Search
task, considering it must compute a vast number of grid
points, which increase exponentially as the dimension of
the problem expands. The model faces challenges in the
Hill-Climbing task, evident from a policy metric signifi-
cantly exceeding zero. This suggests that meta-heuristics

may pose greater difficulty for LLMs compared to other
tasks.

Figure 2: Goal Metric and Policy Metric hover from positive
to near zero, signifying substantial optimization capability
and alignment between LLM’s output and ground truth.

LLMs show potential as Black-Box Optimizers.
Favorable performance in Black-Box experiments sug-
gests the use of LLM as an optimizer without giving any
algorithm instructions. From figure 3, we can see that
GPT-turbo-3.5 performs notably when the dimension of
the problem is three, whereas GPT-4 excels when the
dimensions are three and six. Interestingly, as the dimen-
sion increases, the performance of both models gradually
diminishes. Eventually, GPT-4 edged out GPT-turbo-3.5
by a slight margin in optimization and stability.

LLMs exhibit strong performance in Gradient-
Descent. Gradient-Descent experiment tests the model’s
proficiency in advanced calculations and grasp of mathe-
matics principles. Figure 4 underscores this by revealing
a policy metric that consistently hovers near zero, signi-
fying a remarkable alignment between the LLM’s output
and the ground truth. Despite a decline in the goal met-
ric as the sample size increases, the consistently low and

Figure 3: Goal Metric reflects the performance of LLMs as
Black-Box optimizer, showing strong performance with in-
stances of smaller dimensions.

stable value of the policy metric underscores the fact that
GPT’s performance in the gradient-descent task is nearly
on par with the truth model.

7. Analysis and Discussion
In this section, we consolidate several crucial insights
derived from our experimental results and subject them
to analysis.
Pretrained Knowledge dominates the optimiza-

tion capability of LLM. Among all optimization tasks
performed by LLMs, Gradient Descent emerges as the
leading performer, while Hill-Climbing poses greater
challenges. The main difference between the two tasks
is that Hill-Climbing is a heuristic algorithm with more
user-specific parameters, whereas gradient descent is an
optimization algorithm that relies more on mathematical
principles. This suggests that LLM optimization capabil-
ities primarily stem from pretrained knowledge stored
within the model parameters, rather than from context
knowledge provided by users. Our findings align with

Figure 4: Low values in the Policy Metric and high positive
values in the Goal Metric indicate the robust performance of
the LLM in the gradient descent task.

previous research [5, 6, 7] showing that language models
often prioritize their prior knowledge over new context.
Achieving balanced attention to both prior and context
knowledge is essential for further research to improve
the optimization capability of language models.
LLMs are potential hybrid optimizers. The pre-

dominantly positive goal metric values across most tasks
and datasets indicate LLMs’ capability for optimization.
This highlights their versatile capacity to optimize across
different problem spaces, potentially allowing for the
switching between optimization methods within a single
task. Such switching can help LLMs better explore the
solution space and escape local optima where they might
get stuck. This is a significant advantage of LLMs in op-
timization, as they can easily change methods through a
simple natural language prompt during iterations. Fur-
thermore, LLMs can act as agents (world models) that use
different algorithms as tools (actions), switching meth-
ods by evaluating the optimization path from past to
present (state). This adaptability underscores the poten-
tial of LLMs to enhance optimization processes through

dynamic method selection and strategic problem-solving.
LLMs possess richer solution space in small-scale

problems. In our experiments, we observed high uncer-
tainty metric values and significant variations in policy
and goal metrics when samples had smaller dimensions.
Interestingly, LLMs tend to performmore effectively with
smaller dimension instances, suggesting a correlation be-
tween higher uncertainty and better performance. This
consistent pattern across various tasks and models in-
dicates that LLMs have a richer solution space when
tackling small-scale problems. The expanded solution
space leads to higher uncertainty, providing LLMs with a
broader range of solutions to explore. This highlights the
importance of dimension reduction in data preprocessing
for effective optimization by LLMs. Figure 2 and 5 both
highlight the pattern of uncertainty, where the uncer-
tainty initially rises and then gradually decreases.

Figure 5: An initial rise followed by a decline in the Uncer-
tainty Metric with instance dimension growth suggests LLMs
may have a richer sample space for small-scale problems, con-
sistent across tasks and models.

LLMs are sensitive to numerical values. It’s worth
considering that the aforementioned results may be in-
fluenced by the inherent randomness in the generation

of test samples. Previous research has indicated that
LLMs may demonstrate preferences for particular num-
bers, words, and symbols [8], which can introduce a level
of bias in their responses. Given the high sensitivity of
LLMs to the input prompt, the initial starting points and
data provided can exert a significant influence on their
outputs. In essence, the impact of instruction descrip-
tion and data initialization should be carefully considered
when interpreting the results of LLM-based experiments
to ensure a more accurate assessment of their perfor-
mance.

Self-consistency prompting improves stability. In
the Gradient-Descent task, we employ self-consistency
technique [9], where we conduct five repetitions for each
iteration and select the solution that emerges most fre-
quently. From Figure 6, we can see that GPT-4 perfor-
mances increase largely, and the confidence interval for
both the policy-metric and goal-metric narrows, indicat-
ing improved stability and reliability. Nonetheless, this
approach does not yield favorable outcomes when ap-
plied to GPT-turbo-3.5. This suggests the need for further
investigation within the realm of variance reduction.

8. Conclusion and Future
Directions

In this paper, we present our in-depth examination of
assessing Large Language Models within the realm of
optimization, where LLM progressively generates new so-
lutions to optimize an objective function. We investigate
LLMs’ performance across four optimization tasks that
necessitate their comprehension of algorithmic instruc-
tions and their ability to generate new solutions based
on previous solutions and their corresponding values.

Our evaluation shows that LLMs showcase optimiza-
tion prowess across diverse domains. Among the four
tasks we examined, LLMs exhibit their greatest strengths
in the Gradient-Descent task, displaying remarkable pro-
ficiency in this area. However, they encounter more pro-
nounced difficulties in the meta-heuristics task, where
they must adhere to predefined rules that they have not
encountered previously. Furthermore, LLMs demonstrate
impressive skills in the grid search task, showcasing their
ability to conduct exhaustive searches effectively. In the
Black-Box task, LLMs excel, particularly when dealing
with limited sample sizes, suggesting inherent optimiza-
tion abilities within them.

We also consolidate several crucial insights derived
from our experimental results and subject them to anal-
ysis. We find that pretrained knowledge dominates the
optimization capability of LLMs, while they also possess
a richer solution space in small-scale problems. Further-
more, we elaborate on the potential of LLMs as hybrid
optimizers. These insights and analyses unveil a host of

Figure 6: The confidence intervals for both the policy and
goal metrics of GPT-4 narrow, indicating improved stability.
A negative policy metric with a high goal metric signifies
significant outperformance of the ground truth model with
six-dimensional instances.

unresolved questions that warrant further research.

References
[1] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi,

Q. Le, D. Zhou, Chain of thought prompting elic-
its reasoning in large language models, in: arXiv
preprint arXiv:2201.11903, 2022.

[2] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou,
X. Chen, Large language models as optimizers, in:
arXiv preprint arXiv:2309.03409, 2023.

[3] N. Shinn, F. Cassano, B. Labash, A. Gopinath,
K. Narasimhan, S. Yao, Reflexion: Language
agents with verbal reinforcement learning, in:
arXiv:2303.11366, 2023.

[4] Q. Guo, R. Wang, J. Guo, B. Li, K. Song, X. Tan, G. Liu,
J. Bian, Y. Yang, Connecting large language mod-
els with evolutionary algorithms yields powerful
prompt optimizers, in: arXiv:2309.08532, 2023.

[5] H.-T. Chen, M. Zhang, E. Choi, Rich knowledge
sources bring complex knowledge conflicts: Recal-
ibrating models to reflect conflicting evidence, in:
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
2292–2307, Abu Dhabi, United Arab Emirates, Asso-
ciation for Computational Linguistics., 2022.

[6] A. Pagnoni, V. Balachandran, Y. Tsvetkov, Under-
standing factuality in abstractive summarization
with frank: A benchmark for factuality metrics, in:
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4812–4829, Online. Association for Computa-
tional Linguistics, 2021.

[7] W. Zhou, S. Zhang, H. Poon, M. Chen, Context-
faithful prompting for large language models, in:
ArXiv, abs/2303.11315, 2023.

[8] A. Renda, A. Hopkins, M. Carbin, Can llms generate
random numbers? evaluatingllm sampling in con-
trolled domains, in: ICML 2023Workshop: Sampling
and Optimization in Discrete Space, 2023.

[9] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi,
D. Zhou, Self-consistency improves chain of thought
reasoning in language models, in: arXiv preprint
arXiv:2203.11171, 2022.

A. Prompt Templates

User Prompt:
Q :
Given the data points (y1, y2, ...) = {data}, what is the MSE loss function with respect to the ŷs for a hypothetical set of
predicted ŷs values?
A :
The MSE loss function for the given data points (y1, y2, ...) = {data} with respect to ŷs is:...

Figure 7: Example prompt for getting objective function.

User Prompt:
Q :
Please minimize the loss function using gradient descent with learning rate of 0.1 at point (ŷ1, ŷ2, ŷ3,) = {point}. What is
the point we eventually end up after one update? Your answer includes two parts an explanation with calculation and a short
answer of result.
A :
Explanation : Lets think step by step ...
Short Answer: After calculation, the next update point is (ŷ1𝑛𝑒𝑤, ŷ2𝑛𝑒𝑤, ŷ3𝑛𝑒𝑤,) = ...

Figure 8: Example prompt for Gradient-Descent.

User Prompt :
Q :
I want to do grid search on the ŷs and the range of them are the integers of {low_bound} to {high_bound}. Generate all
possible combinations of ŷs values from the specify range.
What are the combinations? Your answer includes two parts an explanation with calculation and a list containing all the
combinations.
A :
Explanation : Lets think step by step ...
List : [write all the combinations here]

Figure 9: Example prompt for Grid-Search (Create Grid Points)

User Prompt :
Q :
For every combinations of ŷs, calculate its MSE loss. Which combination has the smallest MSE loss? Your answer includes two
parts an explanation with calculation and a list containing the combination with the smallest MSE loss.
A :
Explanation : Lets think step by step
List : [write the combination with smallest MSE loss]

Figure 10: Example prompt for Grid-Search (Select)

User Prompt :
Q :
I want to minimize the loss function using hill climbing. Generate neighboring solutions by either adding 1 or minus 1 to a
specific element in the current solution. The current solution is solution. Your answer includes two parts an explanation with
calculation and a list containing all neighbor solutions(eg. [(ŷ1, ŷ2,....), (ŷ1, ŷ2,....), ...]).
A :
Explanation : Let’s think step by step ...
List : [write neighbor solutions here]

Figure 11: Example prompt for Hill-Climbing Prompt (Generate Neighbors)

User Prompt :
Q :
For every neighbor solution, calculate its MSE loss. Which neighbor has the smallest MSE loss? Your answer includes two parts
an explanation with calculation and a list containing the smallest MSE loss neighbor solution(eg. [(ŷ1, ŷ2,....)]).
A :
Explanation : Lets think step by step ...
List : [write best neighbor solution here]

Figure 12: Example prompt for Hill-Climbing Prompt (Select)

User Prompt :
Q :
You want to minimize an unknown MSE loss function by guessing the values of the ŷs. When you guess, you should take
consider of the past guessing result so that your new guess will have smaller loss than the past results. Pass guessing result are
{pass_result}. Base on the previous guesses, what is your next guess?
A :
(ŷ1, ŷ2,....) = [your answer]

Figure 13: Example prompt for Black-Box

User Prompt :
*Define Loss function
User :
Given the data points (y1, y2, y3) = (2,6,0), what is the MSE loss function with respect to the ŷs for a hypothetical set of
predicted ŷs values?
LLM :
The MSE loss function for the given data points (y1, y2, y3) = (2,6,0) with respect to ŷs is: 1

3
[(̂𝑦1 − 2)2 + (̂𝑦2 − 6)2 + (̂𝑦3 − 0)2]

*First Iteration
User :
Please minimize the loss function using gradient descent with learning rate of 0.1 at point (ŷ1, ŷ2, ŷ3) = (2,3,4). What is the
point we eventually end up after one update? Your answer includes two parts an explanation with calculation and a short
answer of result.
LLM :
Explanation : To minimize the Mean Squared Error (MSE) loss function using gradient descent ...
Short Answer: After calculation, the next update point is (ŷ1𝑛𝑒𝑤, ŷ2𝑛𝑒𝑤, ŷ3𝑛𝑒𝑤) = (1.92, 3.05, 3.94)
*Second Iteration
User :
Please minimize the loss function using gradient descent with learning rate of 0.1 at point (ŷ1, ŷ2, ŷ3) = ((1.92, 3.05, 3.94). What
is the point we eventually end up after one update? Your answer includes two parts an explanation with calculation and a short
answer of result.
LLM :
Explanation : To minimize the Mean Squared Error (MSE) loss function using gradient descent ...
Short Answer: After calculation, the next update point is (ŷ1𝑛𝑒𝑤, ŷ2𝑛𝑒𝑤, ŷ3𝑛𝑒𝑤) = (1.81, 3.12, 3.41)...

Figure 14: Iterative prompt for Gradient-Descent

User Prompt :
*Define Loss function
User :
Given the data points (y1, y2, y3) = (2,6,0), what is the MSE loss function with respect to the ŷs for a hypothetical set of
predicted ŷs values?
LLM :
The MSE loss function for the given data points (y1, y2, y3) = (2,6,0) with respect to ŷs is: 1

3
[(̂𝑦1 − 2)2 + (̂𝑦2 − 6)2 + (̂𝑦3 − 0)2]

*Create Grid Points
User :
I want to do grid search on the ŷs and the range of them are the integers of 2 to 3. Generate all possible combinations of ŷs
values from the specify range. What are the combinations? Your answer includes two parts an explanation with calculation and
a list containing all the combinations.
LLM :
Explanation : To generate all the grid points, you should ...
List : [(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3)]
*Select Best
User :
For every combinations of ŷs, calculate its MSE loss. Which combination has the smallest MSE loss? Your answer includes two
parts an explanation with calculation and a list containing the combination with the smallest MSE loss.
LLM :
Explanation : To select the grid points with smallest MSE value ...
List : [(2, 3, 3)]...

Figure 15: Iterative prompt for Grid-Search

User Prompt :
*Define Loss function
User :
Given the data points (y1, y2, y3) = (2,6,0), what is the MSE loss function with respect to the ŷs for a hypothetical set of
predicted ŷs values?
LLM :
The MSE loss function for the given data points (y1, y2, y3) = (2,6,0) with respect to ŷs is: 1

3
[(̂𝑦1 − 2)2 + (̂𝑦2 − 6)2 + (̂𝑦3 − 0)2]

*Generate Neighbors
User :
I want to minimize the loss function using hill climbing. Generate neighboring solutions by either adding 1 or minus 1 to a
specific element in the current solution. The current solution is (10,10,10). Your answer includes two parts an explanation with
calculation and a list containing all neighbor solutions(eg. [(ŷ1, ŷ2,....), (ŷ1, ŷ2,....), ...]).
LLM :
Explanation : To generate all the neighbors ...
List : [(11, 10, 10), (10, 11, 10), (10, 10, 11), (9, 10, 10), (10, 9, 10), (10, 10, 9)].
*Select Best
User :
For every neighbor solution, calculate its MSE loss. Which neighbor has the smallest MSE loss? Your answer includes two parts
an explanation with calculation and a list containing the smallest MSE loss neighbor solution(eg. [(ŷ1, ŷ2,....)]).
LLM :
Explanation : To select the neighbor solution with smallest MSE value ...
List : [(9, 10, 10)]

Figure 16: Iterative prompt for Hill-Climbing

User Prompt :
*Define Loss function
User :
Given the data points (y1, y2, y3) = (2,6,0), what is the MSE loss function with respect to the ŷs for a hypothetical set of
predicted ŷs values?
LLM :
The MSE loss function for the given data points (y1, y2, y3) = (2,6,0) with respect to ŷs is: 1

3
[(̂𝑦1 − 2)2 + (̂𝑦2 − 6)2 + (̂𝑦3 − 0)2]

First Iteration
User :
You want to minimize an unknown MSE loss function by guessing the values of the ŷs. When you guess, you should take
consider of the past guessing result so that your new guess will have smaller loss than the past results. Pass guessing result are
𝑓 (2, 4, 6) = 10, 𝑓 (1, 5, 0) = 2. Base on the previous guesses, what is your next guess?
LLM :
(ŷ1, ŷ2, ŷ3) = [1, 3, 5]
Second Iteration
User :
You want to minimize an unknown MSE loss function by guessing the values of the ŷs. When you guess, you should take
consider of the past guessing result so that your new guess will have smaller loss than the past results. Pass guessing result are
𝑓 (2, 4, 6) = 10, 𝑓 (1, 5, 0) = 2, 𝑓 (1, 3, 5) = 5. Base on the previous guesses, what is your next guess?
LLM :
(ŷ1, ŷ2, ŷ3) = [1, 1, 1]

Figure 17: Iterative prompt for Black-Box Optimization

	1 Introduction
	2 Related Works
	3 Problem setting
	4 Methodologies
	5 Evaluation
	5.1 Goal Metric
	5.2 Policy Metric
	5.3 Uncertainty Metric

	6 Experiments
	6.1 Dataset
	6.2 Detailed Settings
	6.3 Main Results

	7 Analysis and Discussion
	8 Conclusion and Future Directions
	A Prompt Templates

